

Ball and Roller Bearings

CAT.No.2203/E

Commentary			A- 4
	NTN new generation bearings (ULTAGE series)		B- 5
	Deep groove ball bearings		B- 17
	Miniature and small size ball bearings		B- 45
	Angular contact ball bearings		B- 57
Ball and roller bearings	Self-aligning ball bearings		B- 79
	Cylindrical roller bearings		B- 93
	Tapered roller bearings		B-127
	Spherical roller bearings		B-211
	Thrust bearings		B-253
Special application	bearings		C- 1
Rolling bearing acce	essories		D- 1
Needle roller bearin	gs		E- 1
Bearing units	_		F- 1
Plummer blocks			G- 1
Introduction of cata	logs and technical reviews		H- 1
Appendix tables	Appendix tables		I- 1

NTN "Ball and Roller Bearings Catalog"

Issue of CAT.No.2203/E

A rolling bearing is an important mechanical element that is used in various machines. Rolling bearings are required to have a long operating life, be small/lightweight, fast, and support special environments. Thus, the performance requirements are becoming more sophisticated and diversified. In particular, technology for enhancing the performance of bearing has been required in recent years. To meet these needs, **NTN** is performing research and development to enhance the performance of the entire machines.

The new general catalog has been entirely revised and edited so that the bearings of an optimum type and size can be provided based on the technical contents that are supported by the result of development and improvement.

The main revisions of the catalog are as follows.

- O The latest revision of ISO and JIS is reflected, and the pages of general commentaries such as bearing selection, bearing periphery design, and handling are largely increased.
- O Based on the results of in-house durability testing that has been accumulated over a long time, it has been confirmed that the bearing operating life is longer then previously published. Thanks to the continuous improvement of the material, product, and production techniques, the basic dynamic load ratings were revised based on the current bearing operating life data.
- O We are developing and expanding "ULTAGE," a new generation, all-world class rolling bearing series. This catalog introduces the ULTAGE series, which has been developed by **NTN** so far, and includes line-ups that are ready to be manufactured.

We would like you to use the "Ball and Roller Bearings Catalog" which has been revised, and we would like to work and develop with customers "to realize a smooth society". We hope to receive your continued patronage and support in the future.

Special bearings for each industry and application type are introduced in special sections at the end of the catalog. Please contact **NTN** Engineering for more information.

According to the basic policy of **NTN** corporation, we do not export products or techniques that are regulated by foreign exchange rates or that violate foreign trade laws. For classification of products specified in this catalog, please contact our branch business offices.

In addition, the accuracy of this catalog has been confirmed; however, please note that we do not take any responsibility or liability for any erroneous descriptions or omissions.

TECHNICAL EXPLANATION CONTENTS

1. Classification and characteristics of	
rolling bearings	
1.1 Structure	
1.2 Classification	
1.3 Characteristics ······	<i>1</i> -8
2. Bearing selectionA-	-14
2.1 Bearing selection flow chart ······· A	-14
2.2 Type and characteristics ······ A-	-16
2.3 Selection of bearing arrangement ····· A	·17
3. Load rating and life	-20
3.1 Bearing lifeA	-20
3.2 Basic rating life and basic dynamic	
load rating ······ A-	
3.3 Adjusted rating life A-	-22
3.4 Modified rating life A-	
3.5 Machine applications and requisite	
lifeA	-27
3.6 Weibull distribution and life adjustment	
factor for reliability A-	-28
3.7 Misalignment angle (installation error) and life	-29
3.8 Clearance and life ······ A·	-30
3.9 Basic static load rating ······ A	
3.10 Allowable static equivalent load ····· A	
3.11 Allowable axial load ······· A	
3.12 Review of basic dynamic load ratings	
A	-33
3.13 Bearing life calculation tool ············A	.33
4. Bearing load calculation	-34
4.1 Load acting on shafts ······ A-	
4.2 Bearing load distribution A-	
4.3 Mean load ······ A	

4.4 Equivalent load ······ A-41
4.5 Bearing rating life and load calculation
examples A-43
'
5. Boundary dimensions and bearing
number codes ··················A-46
5.1 Boundary dimensions ······ A-46
5.2 Bearing numbers
3.2 Bearing numbers
6. Bearing tolerances A-54
6.1 Dimensional and rotational accuracy
A-54
6.2 JIS terms A-56
6.3 Chamfer measurements and tolerance or
allowable values of tapered bore A-70
6.4 Bearing tolerance measurement
methods A-72
6.5 Geometrical product specifications
(GPS) A-73
,
7. Bearing fits A-75
7.1 Resultant fits A-75
7.2 The necessity of a proper fit ······ A-75
7.3 Fit selection A-76
8. Bearing internal clearance and
preload A-88
8.1 Bearing internal clearance ············ A-88
8.2 Selection of internal clearance A-88
8.3 Preload A-100
8.4 Necessary minimum load ······ A-104
9. Allowable speed A-106
9.1 Constant speed rotation ······ A-106

9.2 Low-speed rotation and rapid	
acceleration/deceleration ······	
9.3 Oscillating applications ······	
9.4 Heat rating rotational speed	∙∙A-108
10. Friction and temperature rise	A-109
10.1 Friction	
10.2 Temperature rise ······	
10.3 Starting torque calculation ·········	
5 ,	
11. Lubrication	·· A-111
11.1 Purpose of lubrication ·····	·· A-111
11.2 Lubrication methods and	
characteristics ······	
11.3 Grease lubrication ·····	⊶A-112
11.4 Solid grease	··A-119
11.5 Oil lubrication	··A-120
12. External bearing sealing	
12. External bearing sealing devices	⊶A-124
devices	A-128
devices	A-128 A-128
13. Bearing materials	·· A-128 ·· A-128 ·· A-131
13. Bearing materials	·· A-128 ·· A-128 ·· A-131 ·· A-132
13. Bearing materials	·· A-128 ·· A-128 ·· A-131 ·· A-132 ng)
13. Bearing materials	··· A-128 ··· A-128 ··· A-131 ··· A-132 ng) ··· A-132
devices 13. Bearing materials 13.1 Raceway and rolling element 13.2 Cage 13.3 Rubber seal materials 13.4 Periphery of bearing (shaft, housi	···A-128 ···A-128 ···A-131 ···A-132 ng) ···A-132 ···A-132
13. Bearing materials	··· A-128 ··· A-128 ··· A-131 ··· A-132 ng) ··· A-132 e
13. Bearing materials	A-128 A-128 A-131 A-132 ng) A-132 e A-139
13. Bearing materials	A-128 A-128 A-131 A-132 ng) A-132 e A-139
13. Bearing materials	A-128 A-128 A-131 A-132 ng) A-132 e A-139 A-146 A-147

14.3 Shaft and housing accuracy A-149 14.4 Bearing permitted inclination/
allowable alignment angle A-149
15. Bearing handling A-150
15.1 General information ······ A-150
15.2 Bearing storage A-150
15.3 Bearing installation A-152
15.4 Lubricant enclosure ······ A-161
15.5 Post installation running test ······ A-161
15.6 Bearing disassembly ······ A-161
15.7 Bearing maintenance and inspection
A-164
15.8 Bearing maintenance tools ······ A-168
16. Bearing damage and corrective
measuresA-170
16.1 Bearing damage, main causes of
16.1 Bearing damage, main causes of bearing damage, and remedies for
8 8 1
bearing damage, and remedies for correcting the problem
bearing damage, and remedies for correcting the problem
bearing damage, and remedies for correcting the problem ····································
bearing damage, and remedies for correcting the problem
bearing damage, and remedies for correcting the problem ····································
bearing damage, and remedies for correcting the problem
bearing damage, and remedies for correcting the problem ————————————————————————————————————
bearing damage, and remedies for correcting the problem ————————————————————————————————————
bearing damage, and remedies for correcting the problem ————————————————————————————————————
bearing damage, and remedies for correcting the problem ————————————————————————————————————
bearing damage, and remedies for correcting the problem ————————————————————————————————————
bearing damage, and remedies for correcting the problem ————————————————————————————————————

A-2 A-3

1. Classification and characteristics of rolling bearings

1.1 Structure

Most rolling bearings consist of rings with a raceway (inner ring and outer ring), rolling elements (either balls or rollers) and a cage as shown in Fig. 1.1 (Figs. A to H). The cage separates the rolling elements at regular intervals, holds them in place within the inner and outer raceways, and allows them to rotate

Raceway (inner ring and outer ring) or raceway washer¹⁾ (shaft or housing)

The surface on which rolling elements roll is called the "raceway surface." The load placed on the bearing is supported by this contact surface.

Generally the inner ring fits on the axle or shaft and the outer ring in the housing.

Note 1: The raceway of thrust bearings is called the "raceway washer," the inner ring is called the "shaft raceway washer" and the outer ring is called the "housing raceway washer."

Rolling elements

Rolling elements are classified into two types: balls and rollers. Rollers come in four types: cylindrical, needle, tapered, and spherical. Balls geometrically contact with the raceway surfaces of the inner and outer rings at "points", while the contact surface of rollers is a "line" contact. Theoretically, rolling bearings are constructed to allow the rolling elements to rotate orbitally while also rotating on their own axes at the same time.

Cage

Cages function to maintain rolling elements at a uniform pitch so a load is never applied directly to the cage and to prevent the rolling elements from falling out when handling the bearing. Types of cages differ according to the way they are manufactured and include: pressed, machined and formed cages.

1.2 Classification

Rolling bearings are divided into two main classifications: ball bearings and roller bearings. Ball bearings are classified according to their bearing ring configurations: deep groove type and angular contact type. Roller bearings on the other hand are classified according to the shape of the rollers: cylindrical, needle, tapered and spherical. Rolling bearings can be further classified according to the direction in which the load is applied; radial bearings carry radial loads and thrust bearings carry axial loads. Other classification methods include: 1) number of rolling rows (single, double, or 4-row), 2) separable and nonseparable, in which either the inner ring or the outer ring can be detached.

There are also bearings designed for special applications, such as: precision rolling bearings for machine tools, bearings for special environments, as well as linear motion bearings (linear ball bearings, linear roller bearings and linear flat roller bearings). Types of rolling bearings are given in Fig. 1.2. For more detailed information, please refer to the page that introduces each bearing.

Fig. 1.1 Rolling bearing

Fig. 1.2 Classification of rolling bearings

Note: 1) See Precision Rolling Bearings (CAT. No. 2260/E) for bearings of JIS 5 class or above.

- 2) See Bearings Units (CAT. No. 2400/E).
- 3) See Large Bearings (CAT. No. 2250/E)
- 4) See Needle Roller Bearings (CAT. No. 2300/E).
- 5) See the section of "Introduction of catalogs and technical reviews" for the Cat. No of bearings marked with *5.

1.3 Characteristics

1.3.1 Characteristics of rolling bearings

Rolling bearings come in many shapes and varieties, each with its own distinctive features. However, when compared with sliding bearings, rolling bearings all have the following advantages:

- (1) The starting friction coefficient is lower and there is little difference between this and the dynamic friction coefficient.
- (2) They are internationally standardized, interchangeable and readily obtainable.
- (3) They are easy to lubricate and consume less lubricant.
- (4) As a general rule, **one bearing** can carry both radial and axial loads at the same time.
- (5) May be used in either high or low temperature applications.
- (6) **Bearing rigidity** can be improved by preloading.

Construction, classes, and special features of rolling bearings are fully described in the boundary dimensions and bearing numbering system section.

1.3.2 Ball bearings and roller bearings

Table 1.1 gives a comparison of ball bearings and roller bearings.

Table 1.1 Comparison of ball bearings and roller bearings

	Ball bearing	Roller bearing	
Contact with raceway	Point contact Contact surface is oval when a load is applied.	Linear contact Contact surface is generally rectangular when a load is applied.	
Characteristics	Because of point contact, where there is little rolling resistance, ball bearings are suitable for low torque and high-speed applications. They also have superior acoustic characteristics.	Because of linear contact, rotational torque is higher for roller bearings than for ball bearings, but rigidity is also higher.	
Load capacity	Load capacity is lower for ball bearings, but radial bearings are capable of bearing loads in both the radial and axial direction.	Load capacity is higher for rolling bearings. Cylindrical roller bearings equipped with a lip can bear slight axial loads. Combining tapered roller bearings in pairs enables the bearings to bear an axial load in both directions.	

1.3.3 Contact angle and bearing type

A contact angle is an angle made by a line that connects the contact point of the inner ring, rolling element, and outer ring in the radial direction when a load is applied on the bearing (Fig. 1.3).

Bearings with a contact angle of 45° or less have a much greater radial load capacity and are classed as radial bearings; whereas bearings which have a contact angle over 45° have a greater axial load capacity and are classed as thrust bearings. There are also bearings classed as complex bearings which combine the loading characteristics of both radial and thrust bearings.

Fig. 1.3 Contact angle

1.3.4 Load acting on bearing

Types of loads applied on rolling bearings are given in Fig. 1.4. A moment load is caused by an unbalanced load and misalignment.

Fig. 1.4 Types of load

1.3.5 Standard bearings and special bearings

The boundary dimensions and shapes of bearings conforming to international standards are interchangeable and can be obtained easily and economically all over the world. It is therefore better to design mechanical equipment that can use standard bearings.

However, depending on the type of machine they are to be used in, and the expected application and function, a nonstandard or specially designed bearing may be best. Bearings that are adapted to specific applications, and "unit bearings" which are integrated (built-in) into a machine's components, and other specially designed bearings are also available.

The features of typical standard bearings are as follows:

Deep groove ball bearing

The most common type of bearing, deep groove ball bearings are widely used in a variety of fields. Deep groove ball bearings can include shielded bearings or sealed bearings with grease to make them easier to use.

Deep groove ball bearings also include bearings with a locating snap-ring to facilitate positioning when mounting the outer ring, expansion compensating bearings which absorb dimension variation of the bearing fitting surface due to housing temperature, and TAB bearings that are able to withstand contamination in the lubricating oil.

Table 1.2 Configuration of sealed ball bearings

Туре	Shielded type		Sealed type		
and code	Non-contact type ZZ	Non-contact type LLB	Contact type LLU	Low torque type LLH	
Structure					

A-8 A-9

Angular contact ball bearing

The line that unites the point of contact of the inner ring, ball and outer ring runs at a certain angle (contact angle) in the radial direction.

Angular contact ball bearings are generally designed with three contact angles. (Refer to Table 1.3)

Angular contact ball bearings can support an axial load, but cannot be used by themselves because of the contact angle. They must instead be used in pairs or in combination. (Refer to Table 1.5)

Angular contact ball bearings include double row angular contact ball bearings for which the inner and outer rings are combined as a single unit. (Refer to Table 1.4) The contact angle of double row angular contact ball bearings is 25°.

There are also four-point contact bearings that can support an axial load in both directions by themselves. These bearings however require caution because problems such as excessive temperature rise and wear could occur depending on the load conditions.

Table 1.3 Contact angle and symbol

Table 1.4 Configuration of double row angular contact ball bearings

Type and code	Open type	Shielded type ZZ	Non-contact sealed type LLM	Contact sealed type LLD
Structure				

Table 1.5 Combinations of duplex angular contact ball bearings

Type and symbol	Back-to-back arrangement DB	Face-to-face duplex DF	Tandem arrangement DT
Structure			

 ℓ : Distance between load centers

Cylindrical roller bearing

Cylindrical roller bearings use rollers for rolling elements, and therefore have a high load capacity. The rollers are guided by the ribs of the inner or outer ring. The inner and outer rings can be separated to facilitate assembly, and both can be fit with a shaft or housing tightly. If there are no ribs, either the inner or the outer ring can move freely in the axial direction. Cylindrical roller bearings are therefore ideal to be used as so-called "free side bearings" that absorb shaft expansion. In the case where there are ribs, the bearing can bear a slight axial load between the end of the rollers and the ribs. Cylindrical roller bearings include the HT type which modifies the shape of the roller end face and ribs for increasing axial load capacity, and the EA type and E type with a special internal design for enhancing radial load capacity. The EA type is standardized for small-diameter sizes.

Table 1.6 shows the basic shapes.

In addition to these, there are cylindrical roller bearings with multiple rows of rollers and the SL type of full complement roller bearings without a cage.

Table 1.6 Types of cylindrical roller bearings

Type code	Type NU Type N	Type NJ Type NF	Type NUP Type NH (NJ HJ)
Design	Type NU Type N	Type NJ Type NF	Type NUP

Tapered roller bearing

Tapered roller bearings are designed so the inner/outer ring raceway and apex of the tapered rollers intersect at one point on the bearing centerline. By receiving a combined load from the inner and outer ring, the rollers are pushed against the inner ring rib and are guided by the rib.

Induced force is produced in the axial direction when a radial load is applied, so it must be handled with a pair of bearings. The inner ring with rollers and outer ring come apart, thus facilitating mounting with clearance or preload. Assembled clearance is however hard to manage and requires special attention. Tapered roller bearings are capable of supporting large loads in both the axial and radial directions.

NTN also has a line of case hardened steel bearings designed for longer life (ETA-, etc.). NTN tapered roller bearings also include bearings with two and four rows of tapered rollers for extra-heavy loads.

Fig. 1.5 Tapered roller bearings

A-10 A-11

Spherical roller bearing

Equipped with an outer ring with a spherical raceway surface and an inner ring which holds two rows of barrel-shaped rolling elements, NTN spherical roller bearings are able to adjust center alignment to handle inclination of the axle or shaft.

There are a variety of spherical roller bearing types that differ according to their internal design.

In addition to cylindrical bore inner rings, spherical roller bearings can be produced with a tapered bore inner ring. The tapered bore bearing can easily be mounted on a shaft by means of an adapter or withdrawal sleeve. The bearing is capable of supporting heavy loads, and is therefore often used for industrial machinery. When a heavy axial load is applied to the bearing, the load on rollers of one row is not applied, and can cause problems. Attention must therefore be paid to operating conditions.

Table 1.7 Types of spherical roller bearings

Tuno	ULT	AGE	Datama	C 4	2124	
Type	EA type	EM type	B type	C type	213 type	
Structure						

Thrust bearing

There are many types of thrust bearings that differ according to the shape of the rolling element and application.

Allowable rotational speed is generally low and special attention must be paid to lubrication.

In addition to the types shown in Table 1.8 below, there are various other types of thrust bearings for special applications.

Table 1.8 Types of thrust bearings

Туре	Single direction thrust ball bearing	Needle roller thrust bearings
S		AXK type AS type raceway washer GS/WS type raceway washer
Structure	Thrust cylindrical roller bearing	Thrust self-aligning roller bearing
re		

Needle roller bearing

Needle roller bearings use needle rollers as rolling elements. The needle rollers are a maximum of 6 mm in diameter and are 3 to 10 times as long as they are in diameter (JIS B1506 rolling bearings roller). Because the bearings use needle rollers as rolling elements, the cross-section is thin, but they have a high load capacity for their size. Due to the large number of rolling elements, bearings have high rigidity and are ideally suited to oscillating motion.

There are various types of needle roller bearings, and just a few of the most representative types are covered here. For details, see the catalog "Needle roller bearings (CAT. No. 2300/E)."

Table 1.9 Main types of needle roller bearings

Bearing unit

A unit comprised of a ball bearing inserted into various types of housings. The housing can be bolted onto machinery and the inner ring can be easily mounted on the shaft with a set screw.

This means the bearing unit can support rotating equipment without a special design to allow for mounting. A variety of standardized housing shapes are available, including pillow block and flange types. The outer diameter of the bearing is spherical just like the inner diameter of the housing, so it is capable of aligning itself on the shaft.

For lubrication, grease is filled inside the bearing, and foreign particles are prevented from entering with a shaft riding seal and slinger shield.

For details, see the catalog "Bearing unit (CAT. No. 2400/E)."

Fig. 1.6 Bearing unit with grease fitting

A-12 A-13

2. Bearing selection

NTN provides rolling bearings (hereinafter referred to as bearings) of various types and dimensions. When selecting the correct bearing for your application, it is important to consider several factors, and analyze using various means.

2.1 Bearing selection flow chart

An example of the procedure for selecting bearings is shown in the following flow chart. When special consideration is necessary, consult with **NTN** Engineering.

(1) Dimensional limitations

There is a wide range of standardized bearing types and dimensions. Typically, for bearing used in machines, it is necessary to select the optimal bearing type and dimension that fits the space allowed in the machine.

(2) Bearing load

앜

bearing

type

and

configuration

There can be various directions, characteristics, and magnitudes of loading that act on bearings. However, in determining the appropriate bearing type, it is also necessary to consider whether the acting load is a radial load only or combined radial and axial load. In addition, it is necessary to determine what bearing type and size is appropriate based on the basic load rating, specified in the bearing dimension table, while considering the magnitude of the load being applied.

(3) Rotational speed

The allowable speed of a bearing will differ depending upon bearing type, size, tolerances, cage type, load, lubricating conditions, and cooling conditions.

The allowable speeds listed in the bearing tables for grease and oil lubrication are for normal tolerance **NTN** bearings. In general, deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable for high speed applications.

(4) Bearing tolerances

The dimensional accuracy and operating tolerances of bearings are regulated by ISO and JIS standards.

For equipment requiring high tolerance shaft runout or high speed operation, bearings with Class 5 tolerance or higher are recommended.

Deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are recommended for high rotational tolerances.

(5) Rigidity

Elastic deformation occurs along the contact surfaces of a bearing's rolling elements and raceway surfaces under loading. With certain types of equipment it is necessary to reduce this deformation as much as possible. In general, roller bearings exhibit less elastic deformation

than ball bearings. Furthermore, in some cases, bearings are given a load in advance (preloaded) to increase their rigidity. This procedure is commonly applied to deep groove ball bearings, angular contact ball bearings, and tapered roller bearings.

(6) Misalignment of inner and outer rings

Shaft flexure, variations in shaft or housing accuracy, and fitting errors result in a certain degree of misalignment between the bearing's inner and outer rings. In situations where the degree of misalignment is liable to be relatively large, self-aligning ball bearings, spherical roller bearings, bearing units and other bearings with aligning properties are advisable.(Refer to Fig. 2.1)

(7) Noise and torque levels

Rolling bearings are manufactured and processed according to high precision standards, and therefore generally produce only slight amounts of noise and torque. For applications requiring particularly low-noise or low-torque operation, deep groove ball bearings and cylindrical roller bearings are most appropriate.

(8) Installation and disassembly

Some applications require frequent disassembly and reassembly to enable periodic inspections and repairs. For such applications, bearings with separable inner/outer rings, such as cylindrical roller bearings, needle roller bearings, and tapered roller bearings are most appropriate. Incorporation of adapter sleeves simplifies the installation and disassembly of self-aligning ball bearings and spherical roller bearings with tapered bores.

Fig. 2.1

A-14 A-15

2.2 Type and characteristics

Table 2.1 shows the main types and characteristics of rolling bearings.

Table 2.1 Main types of rolling bearings and performance comparison

	Bearing type	Deep groove ball bearings	Angular contact ball bearings	Double row angular contact ball bearings	Duplex angular contact ball bearings	Self-aligning ball bearings	Cylindrical roller bearings	Singleflange cylindrical roller bearings	Doubleflange cylindrical roller bearings	Double row cylindrical roller bearings	Needle roller bearings
CI	naracteristics				Ma	8	凹				
5	Radial load	☆☆	☆☆	☆☆☆	☆☆☆	☆☆	☆☆☆	***	***	ተተተ	ជជជ
Load capacity	Axial load	Both directions	One direction	Both directions	Both directions	Both directions	×	One direction	Both directions	×	×
₹	Combined load	☆☆	***	☆☆☆	***	☆	×	☆☆	**	×	×
	High speed rotation 1)	☆☆☆☆	☆☆☆☆	ተ ተ	ជជជ	አ አ	ተ ተተተ	ተ ተተ	አ አ አ	አ አ አ	ተ ተ ተ
Acc	uracy under high speed 1)	☆☆☆	***	አ አ	ተ ተተ		ተ ተተ	☆☆	☆	አ አ አ	
	Low noise/vibration 1)	☆☆☆☆	***		☆		☆	☆	☆	☆	☆
	Low friction torque 1)	***	***		ታ ታ	☆	☆				
	High rigidity 1)			ታ ታ	ታ ታ		☆☆	☆☆	አ አ	***	☆☆
Vib	ration/shock resistance 1)			☆		×	☆☆	☆☆	ል ል	**	☆☆
Allo	wable misalignment for inner/outer rings 1)	☆				☆☆☆	☆				
Stat	ionary in axial direction 2)	0	0	For DB and DF arrangement	0	0		0	0		
М	ovable in axial direction 3)	0		For DB arrangement	0	0	0			0	0
	Separable of inner and outer rings 4)					0	0	0	0	0	0
	Tapered bore inner ring 5)						0			0	
	Remarks		Duplex arrangement required				NU, N type	NJ, NF type	NUP, NP, NH type	NNU, NN type	NA type
	Reference page	B-17	B-57	B-59	B-57	B-79	B-93	B-93	B-93	B-94	E-2

Tapered roller bearings	Double-row, 4-row tapered roller bearings	Spherical roller bearings	Thrust ball bearings	Thrust cylindrical roller bearings	Thrust spherical roller bearings	Referen ce page	Bearing ty	ype	
		B	FA	H			Characteristics		
ታ ታ ታ	***	ជជជជ	×	×	☆		Radial load	Load	
↑ ↑ ↑ ↑ ↑ ↑ One direction	Both directions	Both directions	☆☆☆ One direction	↑ ↑ ↑ ↑ ↑ ↑ One direction	↑ ↑ ↑ ↑ ↑ One direction		Axial load	ad capacity	
***	☆☆☆☆	ተተ	×	×	×		Combined load	₹	
ታ ታ ታ	**	**	☆	☆	☆	A-106	High speed rotation 1)		
***	☆		☆			A-54	Accuracy under high speed 1)		1) ☆☆☆☆: Particularly exc
			☆			_	Low noise/vibration 1)		☆☆: Highly possible
						A-110	Low friction torque 1)		☆: Possible ×: Poor
☆☆	***	***		***	***	_	High rigidity 1)		
**	***	***		***	***	A-34	Vibration/shock resista	nce 1)	 Oindicates dual direction. Oindicates single direction
☆		ተ ተተ		×	☆☆☆	A-149	Allowable misalignmen inner/outer rings 1)	t for	movement only.
0	0	0	0	0	0	A-17	Stationary in axial direc	tion 2)	 Oindicates movement in t axial direction is possible f
	0	0	0			A-17	Movable in axial directi	on 3)	raceway surface; Oindica movement in the axial dire
0	0		0	0	0	_	Separable of inner and outer rings 4)		is possible for the fitting so of the outer ring or inner r
		0				A-147	Tapered bore inner ring	5)	9
Duplex arrangement required				Including thrust needle roller bearings		_	Remarks		 Oindicates both inner ring outer ring are separable.
B-127	B-128 C-36	B-211	B-253	E-2	B-254		Reference page		 Oindicates inner ring with tapered bore is possible.

cellent

- on axial
- the for the ates rection surface ring.
- ng and

2.3 Selection of bearing arrangement

In general, a shaft is supported by two bearings. A bearing that positions and fixes the shaft in the axial direction is called the "fixed side bearing" and a bearing that allows the axial movement is called the "floating side bearing." This allows expansion and contraction of the shaft due to temperature variation and absorbs errors in the bearing mounting clearance. Fixing two bearings without providing a floating side bearing applies an excessive load on bearings because of the expansion and contraction or the error, damaging the bearings at an early stage.

The **fixed side bearing** is able to support radial and axial loads. A bearing that can fix axial movement in both directions should therefore be selected. A **floating side bearing** that allows movement in the axial direction while

supporting a radial load is desirable. Movement in the axial direction occurs on the raceway surface for bearings with separable inner and outer rings such as cylindrical roller bearings, and occurs on the fitting surface for those which are not separable, such as deep groove ball bearings.

When shaft expansion and contraction due to temperature fluctuations is slight, the same type of bearing may be used for both the fixed-side and floating-side bearing.

Table 2.2 (1) shows typical bearing arrangements where the bearing type differs on the fixed side and floating side. Table 2.2 (2) shows some common bearing arrangements where no distinction is made between the fixed side and floating side. Vertical shaft bearing arrangements are shown in Table 2.2 (3).

Arrang	ement		Application
Fixed side	Floating side	Remarks	(Reference)
		General arrangement for small machinery. For radial loads, but will also accept axial loads in some degree.	Small pumps, auto-mobile transmissions, etc.
		Suitable when mounting error and shaft deflection are minimal or used for high rotational speed application. Even with expansion and contraction of shaft, the floating side moves smoothly.	Medium-sized electric motors, ventilators, etc.
		Relatively heavy radial loading and dual direction of axial loading possible. In place of duplex angular contact ball bearings, double-row angular contact ball bearings are also used.	Worm gears, reducers, compressors
		Heavy loading capable. Shafting rigidity increased by preloading the two back-to-back fixed bearings. Requires high precision shafts and housings, and minimal fitting errors.	Industrial machinery, large reducers
		Allows for shaft deflection and fitting errors. By using an adapter on long shafts without screws or shoulders, bearing mounting and dismounting can be facilitated. Self-aligning ball bearings are used for positioning in the axial direction, and not suitable for applications requiring support of axial load.	Conveyors
		Widely used in general industrial machinery with heavy and shock load demands. Allows for shaft deflection and fitting errors in some degree. Accepts radial loads as well as dual direction of axial loads in some degree.	Industrial machinery, large reducers
		Accepts radial loads as well as dual direction axial loads in some degree. Suitable if an inner and outer ring tight fit is required.	Industrial machinery, large reducers
		Capable of handling large radial and axial loads at high rotational speeds. Maintains clearance between the bearing's outer diameter and housing inner diameter to prevent deep groove ball bearings from receiving radial loads.	Diesel locomotives, carriage axles

Table 2.2 (2) Bearing arrangement (no distinction between fixed and floating-side)

Arrangement	Remarks	Application (Reference)
	General arrangement for use in small machines. Preload is sometimes applied by placing a spring on the outer ring side surface or inserting an adjusted shim. (can be floating-side bearings.)	Small electric motors, small reduction gears, etc.
	Back-to-back arrangement is preferable to face to face arrangement when moment load applied. Able to support axial and radial loads; suitable for high-speed rotation. Rigidity of shaft can be enhanced by providing preload.	Machine tool spindles, etc.
	Capable of supporting heavy loads and impact loads. Suitable if an inner and outer ring tight fit is required. Care must be taken so axial clearance does not become too small during operation.	Construction equipment, mining equipment sheaves, agitators, etc.
Back-to-back arrangement Face-to-face arrangement	Withstands heavy and shock loads. Wide range application. Shaft rigidity can be enhanced by providing preload, but make sure preload is not excessive. Back-to-back arrangement for moment loads, and face-to-face arrangement to alleviate fitting errors. With face-to-face arrangement, inner ring tight fit is facilitated.	Reduction gears, front and rear axle of automobiles, etc.

Table 2.2 (3) Bearing arrangement (Vertical shaft)

Arrangement	Remarks	Application (Reference)
	When a fixing bearing is a duplex angular contact ball bearing, the floating bearing should be a cylindrical roller bearing.	Vertically mounted electric motors, etc.
	Most suitable arrangement for very heavy axial loads. Shaft deflection and mounting error can be absorbed by matching the center of the spherical surface with the center of spherical roller thrust bearings.	Crane center shafts, etc.

A-18 A-19

3. Load rating and life

3.1 Bearing life

Even in bearings operating under normal conditions, the surfaces of the raceway and rolling elements are constantly being subjected to repeated compressive stresses which causes flaking of these surfaces to occur. This flaking is due to material fatigue and will eventually cause bearings to fail.

The effective life of a bearing is usually defined in terms of **the total number of revolutions** a bearing can undergo before **flaking** of either the raceway surface or the rolling element surfaces occurs.

Other causes of bearing failure are often attributed to problems such as seizing, abrasions, cracking, chipping, scuffing, rust, etc. However, these so called "causes" of bearing failure are usually themselves caused by improper installation, insufficient or improper lubrication, faulty sealing or improper bearing selection.

Since the above mentioned "causes" of bearing failure can be avoided by taking proper precautions, and are not simply caused by material fatigue, they are considered separately from the flaking aspect.

3.2 Basic rating life and basic dynamic load rating

A group of seemingly identical bearings when subjected to identical loads and operating conditions will exhibit a wide diversity in their durability. This "life" disparity can be accounted for by the difference in the fatigue of the bearing material itself.

This disparity is considered statistically when calculating bearing life, and **the basic rating life** is defined as follows.

The basic rating life is based on a 90% statistical model which is expressed as the total number of revolutions 90% of the bearings in an identical group of bearings

subjected to identical operating conditions will attain or surpass before flaking due to material fatigue. For bearings operating at fixed constant speeds, the basic rating life (90% reliability) is expressed in the total number of hours of operation. Basic dynamic load rating expresses a rolling bearing's capacity to support a dynamic load.

The basic dynamic load rating is the load which a bearing can theoretically endure for a basic rating life of one million revolutions. This is expressed as pure radial load for radial bearings and pure axial load for thrust bearings. These are referred to as "basic dynamic radial load rating (C_r) " and "basic dynamic axial load rating (C_a) ."

The basic dynamic load ratings given in the bearing tables of this catalog are for bearings constructed of **NTN** high quality bearing materials and of good manufacturing quality.

The relationship between the basic rating life, the basic dynamic load rating and the dynamic equivalent load is shown in formulas (3.1) and (3.2).

For ball bearings :
$$L_{10} = \left(\frac{C}{P}\right)^3 \cdots (3.1)$$

For roller bearings:
$$L_{10} = \left(\frac{C}{P}\right)^{10/3} \cdots (3.2)$$

Where:

 L_{10} : Basic rating life 10^6 revolutions

 ${\it C}~~$: Basic dynamic load rating N

Radial bearing C_r

Thrust bearing C_{a}

P: Dynamic equivalent load $N^{1)}$

Radial bearing $P_{\rm r}$

Thrust bearing P_a

1) For more details, please refer to the section "4. Bearing load calculation."

The relationship between rotational speed n and speed factor $f_{\rm h}$ as well as the relationship between life factor $f_{\rm h}$ and basic rating life $L_{\rm 10h}$ are shown in **Table 3.1** and **Fig. 3.1**.

Table 3.1 Bearing basic rating life, life factor, and speed factor

Division	Ball bearing	Roller bearing
Basic rating life $L_{ m 10h\ h}$	$\frac{10^6}{60n} \left(\frac{C}{P}\right)^3 = 500 f h^3$	$\frac{10^6}{60n} \left(\frac{C}{P}\right)^{10/3} = 500 f h^{10/3}$
Life factor f_{h}	$f_{n} \frac{C}{P}$	$f_{n} rac{C}{P}$
Speed factor f^{n}	$\left(\frac{33.3}{n}\right)^{1/3}$	$\left(\frac{33.3}{n}\right)^{3/10}$

Fig. 3.1 Bearing life rating scale

When several bearings are incorporated in machines or equipment as complete units, all the bearings in the unit are considered as a whole when computing bearing system life (see formula 3.3).

$$L = \frac{1}{\left(\frac{1}{L_1^e} + \frac{1}{L_2^e} + \cdots + \frac{1}{L_p^e}\right)^{1/e}} \quad \dots \dots \quad (3.3)$$

Where:

L: Total basic rating life of entire unit, h $L_1, L_2 \cdots L_n$: Basic rating life of individual bearings 1, 2, \cdots n, h $e: e = 10/9 \cdots$ For ball bearings $e = 9/8 \cdots$ For roller bearings

When the load conditions vary at regular intervals, the life can be given by formula (3.4).

$$L_{\rm m} = \left(\frac{\phi_1}{L_1} + \frac{\phi_2}{L_2} + \cdots + \frac{\phi_j}{L_j}\right)^{-1} \cdots (3.4)$$

Where:

 L_{m} : Total life of bearing, h

 ϕ_j : Frequency of individual load conditions $(\Sigma \phi_i = 1)$

 $L_{
m j}$: Life under individual conditions, h If dynamic equivalent load P and rotational speed n are operating conditions of the bearing, basic rated dynamic load C that satisfies required life of the bearing is determined using Table 3.1 and formula (3.5). Bearings that satisfy the required C can be selected from the bearing dimensions table provided in the catalog.

$$C = P \frac{f_{\mathsf{h}}}{f_{\mathsf{n}}} \dots (3.5)$$

3.3 Adjusted rating life

The basic bearing rating life can be calculated through the formulas mentioned earlier in Section 3.2. However, in some applications bearing reliability higher than 90% may be

required. In addition, bearing life may be enhanced by the use of specialty bearing materials or manufacturing processes. Bearing life is also sometimes affected by operating conditions such as lubrication, temperature and rotational speed.

Basic rating life adjusted to compensate for reliability, special bearing materials and enhancements, and specific operation conditions is called "adjusted rating life," and is determined using formula (3.6).

$$L_{\text{na}} = a_1 \cdot a_2 \cdot a_3 \cdot L_{10} \cdot \cdots$$
 (3.6) Where:

 L_{na} : Adjusted rating life in millions of revolutions (10⁶)

 a_{1} : Life adjustment factor for reliability

*a*₂ : Life adjustment factor for special bearing properties

*a*₃: Life adjustment factor for operating conditions

3.3.1 Life adjustment factor for reliability a_1 The value of life adjustment factor for reliability a_1 is provided in Table 3.2 for reliability of 90% or greater.

3.3.2 Life adjustment factor for special bearing properties a_2

Bearing characteristics concerning life vary according to bearing material, quality of material and if using a special manufacturing process. In this case, life is adjusted using **life adjustment** factor for special bearing properties a_2 .

The basic dynamic load ratings listed in the catalog are based on **NTN**'s standard material and the adjustment factor used is $a_2 = 1$. However, an adjustment factor of a_2 other than 1 may be used for bearings with specially enhanced materials and manufacturing methods. [NOTE: $a_2 < 1$ may occur for temperature stabilization]

 $a_2 > 1$ may be used for bearings with specially improved materials and manufacturing methods.

Bearings made of high carbon chrome bearing steel, conventionally heat treated, may experience dimensional changes during operation if used at high temperatures for extended periods of time. Temperature stabilization treatment (TS treatment) can be used to provide increased dimensional stability of bearing materials at high operational temperatures. However, the dimensional stabilization treatment results in a lower overall hardness of heat treated bearing materials; therefore, the life is adjusted by multiplying by life adjustment factor for special bearing properties a_2 given in Table 3.3.

For further clarification please consult with **NTN** Engineering.

Table 3.2 Life adjustment factor for reliability a_1

Reliability %	L_{n}	Life adjustment factor for reliability a_1
90	L_{10}	1.00
95	L_5	0.64
96	L_4	0.55
97	L_3	0.47
98	L_2	0.37
99	L_1	0.25
99.2	L0.8	0.22
99.4	$L_{0.6}$	0.19
99.6	$L_{0.4}$	0.16
99.8	$L_{0.2}$	0.12
99.9	L _{0.1}	0.093
99.92	$L_{0.08}$	0.087
99.94	$L_{0.06}$	0.080
99.95	$L_{0.05}$	0.077

Table 3.3 Treatment for dimensional stabilization

Code	Max. operating temperature °C	Life adjustment factor for special bearing properties a_2
TS2	160	1.00
TS3	200	0.73
TS4	250	0.48

Please consult **NTN** Engineering for life adjustment factor for special bearing properties (a_2) when using dimensional stabilization treatment combined with any specialty bearing material.

3.3.3 Life adjustment factor for operating conditions a_3

Life adjustment factor for operating conditions a_3 is used to compensate for when lubrication condition worsens due to a rise in temperature or rotational speed, lubricant deteriorates or it becomes contaminated with foreign matter.

Generally speaking, when lubricating conditions are satisfactory, the a_3 factor has a value of 1.0; and when lubricating conditions are exceptionally favorable, and all other operating conditions are normal, a_3 can have a value greater than 1.0. The factor a_3 may be less than 1.0 due to the following cases:

- Dynamic viscosity of lubrication is too low for bearing operating temperature (13 mm²/s or less for ball bearings, 20 mm²/s or less for roller bearings as a standard)
- Rotational speed is particularly low (when the product of pitch diameter D_{pw} mm and rotational speed $n \min^{-1}$ is $D_{pw} \cdot n < 10 000$)
- Lubricant contaminated with foreign matter or moisture

If using a special operating condition, consult with **NTN** Engineering.

The operating life may be also shortened by misalignment and operating clearance but these operating conditions are not accounted for by the a_3 factor. (See sections "3.7 Misalignment angle (installation error) and life" and "3.8 Clearance and life.")

Even if $a_2 > 1$ is used for specialty bearings made of enhanced materials or produced by special manufacturing methods, $a_2 \times a_3 < 1$ is used if lubricating conditions are not favorable.

When an excessively heavy load is applied, harmful plastic distortion may result at the contact surfaces between the rolling elements and raceways. The formulae for determining basic rating life (3.1, 3.2, and 3.6) do not apply if $P_{\rm r}$ exceeds either $C_{\rm Or}$ (basic static load rating) or 0.5 $C_{\rm r}$ for radial bearings, or if $P_{\rm a}$ exceeds 0.5 $C_{\rm a}$ for thrust bearings.

NTN

3.4 Modified rating life

3.4.1 Background

Adjusted rating life L_{na} of bearings is as shown in formula (3.6). System conditions corresponding to a_2 and a_3 are considered independently in that approach. However, it is desirable to consider the integrated system as a whole, resulting in adoption of ISO281:2007. This approach considers life modification factor a_{ISO}, which provides a more practical method to consider the influence of lubrication, contamination and fatigue load on bearing life. Based on these decisions in ISO 281, JIS B 1518 was similarly revised in 2013.

Modified rating life L_{nm} using life modification factor $a_{\rm ISO}$ can be obtained by formula (3.7).

$$L_{\text{nm}} = a_1 \cdot a_{\text{ISO}} \cdot L_{10} \cdot \dots (3.7)$$

3.4.2 Life modification factor also

The life modification factor, a_{ISO} , is a function of lubrication, contamination, material characteristics, and load as shown in formula 3.8.

$$a_{\rm ISO} = f\left(\frac{e_{\rm C} C_{\rm U}}{p}, \kappa\right) \cdots (3.8)$$

Where:

Cu: Fatigue load limit

The fatigue load limit is a load applied on bearings that results in the fatigue limit stress at the maximum loaded contact within the raceway. This depends on the bearing type, internal specifications, quality, and material strength. In ISO 281:2007, 1.5GPa is recommended as contact stress corresponding to C_{u} for the bearings made of commonly used high quality material and good manufacturing quality. The fatigue load limit values with respect to the NTN bearing numbers are specified in each specification table.

ec: Contamination factor

The presence of hard particle contaminants in the lubricant (oil) have the potential to form indentations on the raceway surface, resulting in surface initiated damage and in reduction in bearing life. Contamination factor $e_{\rm C}$ considers this and depends on the level of contamination, bearing size, and lubricant viscosity (oil film thickness). As shown in **Table 3.4**, approximate values are determined by the bearing size (may be substituted by rolling element pitch diameter D_{DW} , average bearing diameter (d + D)/2), filtration and seal structures (including presence of pre-washing).

κ : Viscosity ratio

Bearings are used on the assumption that the rolling contact surface is separated by the lubricant. However, when the viscosity of the lubricant is low, separation becomes insufficient and metal to metal contact occurs, causing surface initiated damage. Viscosity ratio κ considers this effect and is represented by formula (3.9) by the ratio of dynamic viscosity ν in use with respect to reference dynamic viscosity ν_1 of the lubricant.

$$\kappa = \nu / \nu_1 \cdots (3.9)$$

Reference dynamic viscosity v₁ depends on rotation speed n and size (D_{pw}), and can be obtained by Fig. 3.2 or formula (3.10) and formula (3.11).

Table 3.4 Value of contamination factor ec

	ϵ	c
Level of contamination	<i>D</i> _{pw} < 100mm	D _{pw} ≧ 100mm
Extreme cleanliness Particle size of the order of lubricant film thickness; laboratory conditions	1	1
High cleanliness Oil filtered through extremely fine filter; conditions typical of bearing greased for life and sealed	0.8~0.6	0.9~0.8
Normal cleanliness Oil filtered through fine filter; conditions typical of bearings greased for life and shielded	0.6~0.5	0.8~0.6
Slight contamination Slight contamination in lubricant	0.5~0.3	0.6~0.4
Typical contamination Conditions typical of bearings without integral seals; course filtering; wear particles and ingress from surroundings	0.3~0.1	0.4~0.2
Severe contamination Bearing environment heavily contaminated and bearing arrangement with inadequate sealing	0.1~0	0.1~0
Very severe contamination	0	0

Fig. 3.2 Diagram for reference dynamic viscosity v1

In the case of
$$n < 1.000 \, \mathrm{min^{-1}}$$
, $\nu_1 = 45.000 \, n^{-0.83} \, D_{\mathrm{pw}}^{-0.5} \, (3.10)$
In the case of $n \ge 1.000 \, \mathrm{min^{-1}}$, $\nu_1 = 4.500 \, n^{-0.5} \, D_{\mathrm{pw}}^{-0.5} \, (3.11)$

Fig. 3.3 shows the relationship among $C_{\rm U}/P_{\rm r}$ $e_{\rm C}$, κ and, $a_{\rm ISO}$ of radial ball bearings. Using the figure has the following restrictions:

- 1) For practical use, the life modification factor shall be limited $a_{ISO} \le 50$.
- 2) In the case of $\kappa > 4$, $\kappa = 4$ shall be assumed. The same approach does not apply in the case of κ < 0.1.

Diagrams for radial roller bearings, thrust ball bearings, and thrust roller bearing have also been presented (Figs. 3.4 to 3.6). The diagrams can be applied regardless of lubrication types; however, for grease lubrication, special additives, and special rotating behaviors, consult with NTN Engineering.

Fig. 3.3 Life modification factor a_{ISO} (radial ball bearing)

A-24 A-25

Fig. 3.4 Life modification factor $a_{\rm ISO}$ (radial roller bearing)

Fig. 3.5 Life modification factor $a_{\rm ISO}$ (thrust ball bearing)

Fig. 3.6 Life modification factor $a_{\rm ISO}$ (thrust roller bearing)

3.4.3 Applicable bearings of modified rating life

Fatigue load limit $C_{\rm U}$ used for the calculation of life modification factor $\alpha_{\rm ISO}$ depends on the bearing materials. **NTN** bearings that have undergone standard through hardening (immersion quenching) and is made of bearing steel, the fatigue load limit value with respect to each bearing number is specified in each dimension table, and $\alpha_{\rm ISO}$ can be applied.

3.5 Machine applications and requisite life

When selecting a bearing, it is essential that the requisite life of the bearing be established in relation to the operating conditions. The requisite life of the bearing is usually determined by the type of machine in which the bearing will be used, and duration of service and operational

reliability requirements. A general guide to these requisite life criteria is shown in **Table 3.5**.

When determining bearing size, the fatigue life of the bearing is an important factor; however, besides bearing life, the strength and rigidity of the shaft and housing must also be taken into consideration.

Table 3.5 Machine application and requisite life (reference)

Service classification		Machine application	and requisite life $\it L$ 10	h	×10³ hours
Service classification	Up to 4	4 to 12	12 to 30	30 to 60	60 or more
Machines used for short periods or used only occasionally	Household appliances Electric hand tools	Farm machinery Office equipment			
Short period or intermittent use, but with high reliability requirements	Medical appliances Measuring instruments	Home air-conditioning motor Construction equipment Elevators Cranes	Crane (sheaves)		
Machines not in constant use, but used for long periods	Automobiles Two-wheeled vehicles	Small motors Buses/trucks General gear drives Woodworking machines	Machine spindles Industrial motors Crushers Vibrating screens	Main gear drives Rubber/plastic Calender rolls Printing machines	
Machines in constant use over 8 hours a day		Roll neck of steel mill Escalators Conveyors Centrifuges	Railway vehicle axles Air conditioners Large motors Compressor pumps	Locomotive axles Traction motors Mine hoists Pressed flywheels	Papermaking machines Propulsion equipment for marine vessels
24 hour continuous operation, non-interruptible					Water supply equipment Mine drain pumps/ventilators Power generating equipment

A-26 A-27

3.6 Weibull distribution and life adjustment factor for reliability

As described in "3.2 Basic rating life and basic dynamic load rating," a group of seemingly identical bearings when subjected to an identical load and operating conditions may exhibit a wide variation in their durability. In general, this variation is known to follow the "Weibull distribution," and the basic theory is constructed on the premise that the bearing operating life follows the Weibull distribution also regarding the life calculation formulae (3.1) and (3.2) and the calculation formula of the basic dynamic load rating C.

As an index representing the variation of

the Weibull distribution, there is a coefficient called a Weibull slope. A value 10/9 for ball bearings and 9/8 for roller bearings are given in the basic life calculation theory of ISO and JIS. According to this, for example, for a deep groove ball bearing, a difference of 5 times or more is generated between the L_{10} life of 90% reliability and the L_{50} life of 50% reliability.

In some applications where a bearing is used, a life study with reliability exceeding 90% may be required, and in such a case, a life adjustment factor for reliability a_1 is used. In the latest ISO (ISO 281:2007) and JIS (JIS B 1518:2013), a₁ values were updated based on measured test data (see Fig. 7). Table 3.2 shows the latest a_1 values after review.

Fig. 7 Life adjustment factor for reliability a_1

3.7 Misalignment angle (installation error) and life

A lack of accuracy and/or rigidity of the shaft or housing can cause misalignment between the bearing inner and outer rings similar to an externally applied moment load.

The bearing operating life calculation in the case of receiving a moment load cannot be obtained by the commonly used $L = (C_r/P_r)^P$, which is generally used, and it is necessary to obtain it considering the internal design, clearance, etc. of each bearing.

Since the life decrease rate differs depending on the internal clearance, the load condition, and the internal design, it is necessary to calculate the ratio under individual conditions, and the rate cannot be given as a factor in general.

Fig. 3.8 and Fig. 3.9 show the results of detailed calculation of the relationship between the misalignment angle (installation error) and the life of a deep groove ball bearing and a cylindrical roller bearing.

See Table 14.6 in section "14. Shaft and housing design" for the rough standard of allowable misalignment and allowable misalignment of each bearing type.

For further clarification please consult with NTN Engineering.

Fig. 3.8 Misalignment angle and life ratio of deep groove ball bearing

Fig. 3.9 Misalignment angle and life ratio of cylindrical roller bearing

 Light load
 Normal load
 Heavy load

3.8 Clearance and life

It is very difficult to accurately determine what the clearance of a rolling bearing should be in a normal operating state.

When a bearing is subjected to a simple load and full rotation slight clearance is preferable. However, too large of a clearance can cause life deterioration and vibration. In contrast. a negative clearance (preload) can extend the operating life and prevent shaft runout. However, too large of a preload increases friction, temperature rise, lubrication degradation and can cause seizures in extreme cases.

As a general guideline a target of zero operating clearance should be acceptable.

- 1) Clearance and rolling element load W
- (1) In the case of bearing clearance larger than 0 [Fig. 3.11], load distribution ε < 0.5 holds. The maximum rolling element load becomes larger than when the bearing clearance is zero [Fig. 3.10].

[Load factor ε and conceptual diagram]

(2) Fig. 3.13 shows an ideal graph in which operating in a slightly preloaded condition results in maximum bearing life.

Fig. 3.13 Bearing clearance and life ratio

3.9 Basic static load rating

It has been found through experience that a permanent deformation of 0.0001 times the diameter of the rolling element, occurring at the most heavily stressed contact point between the raceway and the rolling elements, can be tolerated without any subsequent impariment of bearing operation.

Testing indicates the above level of permanent deformation corresponds to a calculated contact stress as shown below. The basic static load rating is defined as the static applied load which results in such a contact stress at the center of the contact patch between the raceway and the rolling element receiving the maximum load.

Roller bearings: 4 000 MPa

Ball bearings

(excluding self-aligning ball bearings): 4 200 MPa Self-aligning ball bearings: 4 600 MPa

Referred to as "basic static radial load rating" for radial bearings and "basic static axial load rating" for thrust bearings, the basic static load rating is expressed as C_{0r} or C_{0a} respectively and is provided in the bearing dimensions table.

3.10 Allowable static equivalent load

Generally the static equivalent load which can be permitted (See page A-41) is limited by the basic static load rating as stated in Section 3.9. However, depending on application requirements regarding friction and smooth operation, these limits may be greater or lesser than the basic static load rating.

This is generally determined by taking the safety factor S_0 given in formula (3.12) and guidelines of Table 3.6 into account.

 $S_0 = C_0 / P_0 \cdots (3.12)$ Where:

So: Safety factor

Co: Basic static load rating, N Radial bearing: Cor

Thrust bearing: C_{0a} Po: Static equivalent load, N Radial bearing: Por

Thrust bearing: P_{0a}

Table 3.6 Minimum safety factor values So

Operating conditions	Ball bearing	Roller bearing
Applications that require quiet rotation	2	3
Applications subjected to impact loads	1.5	3
Normal rotation applications	1	1.5

Note: 1. For spherical thrust roller bearings, min. S_0 value = 4.

- 2. For shell needle roller bearings, min. So value = 3. However, for premium shells (see the catalog: CAT. No. 3029/JE), min. S_0 value = 2.
- 3. When vibration and/or shock loads are present, a load factor based on the shock load needs to be included in the P_0 max value.
- 4. If a large axial load is applied to deep groove ball bearings or angular ball bearings, the contact ellipse may exceed the raceway surface. For more information, please contact NTN Engineering.
- 5. When an AS type raceway washer is used in a thrust bearing, min. So value = 3.

3.11 Allowable axial load

Radial bearings can also receive axial loads, but load is limited depending on the bearing type.

(1) Ball bearing

When an axial load acts on ball bearings, such as deep groove ball bearings and angular contact ball bearings, the contact angle changes with the load. The contact ellipse formed between the ball and the raceway surface may protrude from the groove when the load exceeds the allowable range.

This contact surface has an elliptical shape in which 1/2 the major diameter becomes a as shown in Fig. 3.14. The maximum allowable axial load is the maximum applied load in which the contact ellipse does not exceed the shoulder of the raceway groove. It is important to note that the axial load must result in P_{max} < 4200 MPa even if the contact ellipse does not exceed the shoulder of the groove. The allowable axial load differs depending on the bearing internal clearance, groove curvature, and groove shoulder dimension.

When a combination radial and axial load is applied, verify truncation does not occur at the maximum loaded rolling element.

Fig. 3.14 Contact ellipse

A-30 A-31

(2) Tapered roller bearing (Fig. 3.15)

A tapered roller bearing supports axial load at the raceway surface and at the interface between the roller end face and large end rib. Therefore, the bearing can receive a larger axial force by increasing the contact angle α . However, there are different limits depending on the rotational speed and lubrication conditions because sliding contact occurs between the roller large end face and the large end rib inside face. Generally, the PV value, which is obtained by multiplying the sliding speed to the sliding surface pressure, is checked and calculated by a computer.

For further clarification please consult with NTN Engineering.

Fig. 3.15 Tapered roller bearings

(3) Cylindrical roller bearings

Cylindrical roller bearings with ribs on the inner and outer rings are capable of simultaneously supporting a certain degree of radial and axial loads. Unlike basic dynamic load ratings which are based on rolling fatigue, allowable axial load is determined by heat generated at the sliding surface between the ends of the rollers and rib which may cause wear and/or seizure. Based on testing and experience, allowable axial load can be estimated using formula (3.13).

$$P_{\mathsf{t}} = k \cdot d^2 \cdot P_{\mathsf{z}} \cdot \cdots \cdot (3.13)$$
 Where:

Pt: Allowable axial load when rotating N

k: Factor determined by internal design of bearing (see **Table 3.7**)

d: Bearing bore mm

 P_{Z} : Allowable surface pressure of rib MPa (see Fig. 3.16)

If the axial load is greater than the radial load, the rollers will not rotate properly. The allowable axial load therefore must not exceed the value for $F_{a \text{ max}}$ given in **Table 3.7**.

The following are also important to operate the bearing smoothly under an axial load:

- 1) Do not make the internal radial clearance any larger than necessary because it may affect life and abrasion between the raceway surface and the roller.
- 2) Use lubricant with an extreme pressure additive to suppress heat generation, seizure, and abrasion between the roller end surface and the rib.
- 3) Make the shoulder of the housing and shaft high enough for the rib of the bearing to prevent it from being damaged.
- 4) If the bearing is to support an extreme axial load, mounting precision should be improved and the bearing should be rotated slowly before actual use.

If large cylindrical roller bearings (bore of 300 mm or more) are to support an axial load or moment load simultaneously, please contact **NTN** Engineering.

NTN Engineering also offers cylindrical roller bearings for high axial loads (HT type). For details, please contact NTN Engineering.

D_{pw}≒ (Bearing bore diameter +)/2 mm n: Revolution min⁻¹

Fig. 3.16 Allowable surface pressure of rib

Table 3.7 Factor k values and allowable axial load ($F_{a \text{ max}}$)

Bearing series	k	Fa max
NJ, NUP10 NJ, NUP, NF, NH2, NJ, NUP, NH22	0.040	0.4Fr
NJ, NUP, NF, NH3, NJ, NUP, NH23	0.065	0.4 <i>F</i> r
NJ, NUP, NH2EA (E) NJ, NUP, NH22EA (E)	0.050	0.4Fr
NJ, NUP, NH3EA (E) NJ, NUP, NH23EA (E)	0.080	0.4Fr
NJ, NUP, NH4,	0.100	0.4Fr
SL01-48	0.022	0.2Fr
SL01-49	0.034	0.2Fr
SL04-50	0.044	0.2Fr

Note: Type EA and type E have the same value.

3.12 Review of basic dynamic load ratings

As a result of continuous improvement related to material cleanliness, and production techniques, years of in-house durability testing has confirmed **NTN** bearings produced today have a longer operating life compared with past products. Based on this bearing life test data, the basic dynamic load ratings of ball and roller bearings were reviewed and updated to more accurately reflect true bearing performance.

The basic dynamic load ratings for many **NTN** products have been formally increased and can be found in the dimensional tables for each bearing type within this catalog.

* Some bearings use the same basic dynamic load rating as conventional products.

3.13 Bearing life calculation tool

The basic rating life of bearings can be calculated using the bearing technical calculation tool on the NTN website (https:// www.ntnglobal.com/tool/calc/).

A-32 A-33

4. Bearing load calculation

To compute bearing loads, the forces which act on the shaft being supported by the bearing must be determined. Loads which act on the shaft and its related parts include weight of the rotating components, load produced when the machine performs work, and load produced by transmission of dynamic force. These can be mathematically calculated, but calculation is difficult in many cases.

A method of calculating loads that act upon shafts that convey dynamic force, which is the primary application of bearings, is provided herein.

4.1 Load acting on shafts

4.1.1 Load factor

There are many instances where the actual operational shaft load is much greater than the theoretically calculated load, due to shock. This actual shaft load can be estimated by using formula (4.1).

$$K = f_W \cdot K_C \cdot \dots \cdot (4.1)$$

Where:

K: Actual shaft load N

 f_{W} : Load factor (**Table 4.1**)

 K_{C} : Theoretically calculated value N

Table 4.1 Load factor fw

Amount of shock	fw	Machine application examples
Very little or no shock	1.0 to 1.2	Electric machines, machine tools, measuring instruments.
Light shock	1.2 to 1.5	Railway vehicles, automobiles, rolling mills, metal working machines, paper making machines, printing machines, aircraft, textile machines, electrical units, office machines.
Heavy shock	1.5 to 3.0	Crushers, agricultural equipment, construction equipment, cranes.

4.1.2 Gear load

The loads operating on gears can be divided into three main types according to the direction in which the load is applied; i.e. tangential (K_t) , radial (K_s), and axial (K_a). The magnitude and

direction of these loads differ according to the types of gears involved. The following refers to the calculation methods of loads acting on four types of gears.

(1) Loads acting on parallel shaft gears

The forces acting on spur gears and helical gears are depicted in Fig. 4.1 to Fig. 4.3.

Fig. 4.1 Spur gear loads

Fig. 4.2 Helical gear loads

Fig. 4.3 Radial resultant forces

Loads acting on gears are obtained from formulas (4.2) to (4.6).

Equation 4.2 describes the gear load in the tangential direction when the shaft input torque is known

$$K_{\mathsf{t}} = \frac{2T}{D_{\mathsf{D}}} \dots (4.2)$$

Equation 4.3 describes the gear load in the tangential direction when the transmitted power is known

$$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{p} \cdot n}$$
 (4.3)

$$K_{s} = K_{t} \cdot \tan \alpha \text{ (Spur gear)} \cdots (4.4a)$$

$$= K_{t} \cdot \frac{\tan \alpha}{\cos \beta} \text{ (Helical gear)} \cdots (4.4b)$$

$$K_{r} = \sqrt{K_{t}^{2} + K_{S}^{2}} \qquad (4.5)$$

$$K_{a} = K_{t} \cdot \tan \beta \text{ (Helical gear)} \cdots (4.6)$$

Where:

Kt: Tangential gear load (tangential force), N

 K_S : Radial gear load (separating force), N

 K_r : Right angle shaft load (resultant force of tangential force and separating force). N

Ka: Parallel load on shaft, N

T: Input torque, N · mm

H: Transmitted force, kW

n: Rotational speed min⁻¹

 $D_{\rm D}$: Gear pitch circle diameter, mm

 α : Gear pressure angle, deg

 β : Helix angle, deg

Because the actual gear load also contains vibrations and shock loads as well, the theoretical load obtained by the above formula can also be adjusted by the gear factor f_z as shown in Table 4.2.

Table 4.2 Gear factor fz

<i>v</i> –				
Gear type	fz			
Precision ground gears	1.05 to			
(Pitch and tooth profile errors of less than 0.02mm)	1.1			
Ordinary machined gears	1.1 to			
(Pitch and tooth profile errors of less than 0.1mm)	1.3			

(2) Loads acting on cross shafts

Gear loads acting on straight tooth bevel gears and spiral bevel gears on cross shafts are shown in Figs. 4.4 and 4.5. The calculation methods for these gear loads are shown in Table 4.3.

Herein, to calculate gear loads for straight bevel gears, the helix angle $\beta = 0$.

The symbols and units used in Table 4.3 are as follows:

Kt : Tangential gear load (tangential force), N

 K_S : Radial gear load (separating force), N

 K_a : Parallel shaft load (axial load), N

H: Transmitted power, kW : Rotational speed min⁻¹

D_{pm}: Mean pitch circle diameter, mm

 α : Gear pressure angle, deg

: Helix angle, deg : Pitch cone angle, deg

Because the two shafts intersect, pinions and gears have the relationship of formula (4.7) and formula (4.8).

$$K_{\mathsf{sp}} = K_{\mathsf{ag}} \cdots (4.7)$$

 $K_{\mathsf{aD}} = K_{\mathsf{sg}} \cdots (4.8)$

 K_{SD} , K_{Sg} : Pinion and Gear separating force, N

 K_{ap} , K_{ag} : Pinion and Gear axial load, N

For spiral bevel gears, the direction of the load varies depending on the direction of the helix angle, the direction of rotation, and which side is the driving side or the driven side. The directions for the separating force (K_s) and axial load (K_a) shown in Fig. 4.5 are positive directions. The direction of rotation and the helix angle direction are defined as viewed from the large end of the gear. The gear rotation direction in Fig. 4.5 is assumed to be clockwise (right).

A-34 A-35 NTN

Fig. 4.4 Loads on bevel gears

Fig. 4.5 Bevel gear diagram

Table 4.3 Loads acting on bevel gears

Table 4.3 Loads acting on bevel gears							
Types of load	Rotation direction	Clockwise	Clockwise Counter clockwise		Counter clockwise		
Types of load	Helix direction	Right	Left	Left	Right		
Tangential load (tangential force) Kt		$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{pm} \cdot n}$					
Radial load	Driving side	$K_{\rm S} = K_{\rm t} \left[\tan \alpha \frac{c\alpha}{c\alpha} \right]$	$\frac{\cos \delta}{\cos \beta} + \tan \beta \sin \delta$	$K_{\rm S} = K_{\rm t} \left[\tan \alpha \frac{c\alpha}{c\alpha} \right]$	$\frac{\cos \delta}{\cos \beta} - \tan \beta \sin \delta$		
(separation force) $K_{\rm S}$	Driven side	$K_{\rm S} = K_{\rm t} \left[\tan \alpha \frac{c\alpha}{c\alpha} \right]$	$\frac{\cos \delta}{\cos \beta} - \tan \beta \sin \delta$	$K_{\rm S} = K_{\rm t} \left[\tan \alpha \frac{\rm cc}{\rm cc} \right]$	$\frac{\cos \delta}{\cos \beta} + \tan \beta \sin \delta$		
Parallel load on gear	Driving side	$K_{\rm a} = K_{\rm t} \left[\tan \alpha \frac{\rm s}{\rm cc} \right]$	$\frac{\sin \delta}{\cos \beta} - \tan \beta \cos \delta$	$K_{\rm a} = K_{\rm t} \left[\tan \alpha \frac{\rm si}{\rm cc} \right]$	$\frac{\ln \delta}{\log \beta} + \tan \beta \cos \delta$		
shaft (axial load) Ka	Driven side	$K_{a} = K_{t} \left[\tan \alpha \frac{s}{cc} \right]$	$\frac{\sin \delta}{\cos \beta} + \tan \beta \cos \delta$	$K_{a} = K_{t} \left[\tan \alpha \frac{si}{c\alpha} \right]$	$\frac{\ln \delta}{\log \beta} - \tan \beta \cos \delta$		

(3) Load acting on hypoid gears

A hypoid gear is a spiral bevel gear that transmits power by offset shafts. **Fig. 4.6** shows the load acting on a hypoid gear, and **Table 4.4** shows the calculation method.

Fig. 4.6

Where:

 K_t : Tangential gear load (tangential force), N K_s : Radial gear load (separating force), N

 $K_{\mathsf{a}}\,$: Parallel shaft load (axial load), N

H: Transmitted force, kW n: Rotational speed min⁻¹

 D_{p} : Gear mean pitch circle diameter, mm

lpha : Gear pressure angle, deg

 β : Helix angle, deg

 δ_1 : Tooth tip cone angle, deg

 $\delta_{\,2}\!:$ Tooth bottom cone angle, deg

* The driving shaft has a subscript p , and the driven shaft has a subscript g.

Table 4.4 Formula of load acting on hypoid gears

Types of load	Rotation direction	Clockwise	Counter clockwise	Clockwise	Counter clockwise	
rypes or load	Helix direction	Right	Left	Left	Right	
Tangential load	Driving shaft	Formula (4.0)		5 1 (440)		
(tangential force) K _t	Kt Driven shaft Formula (4.9)		Formula (4.10)			
Radial load	Driving shaft	Formula (4.11)		Formula (4.12)		
(separation force) K_S	Driven shaft	Formu	ıla (4.13)	Formu	ıla (4.14)	
Parallel load on gear shaft	Driving shaft	Formu	ıla (4.15)	Formu	ıla (4.16)	
(axial load) Ka	Driven shaft	Formula (4.17)		Formula (4.17) Formula (4.18		ıla (4.18)

$$K_{\rm tp} = \frac{19.1 \times 10^6 H}{D_{\rm pmp} \ n_{\rm p}} \dots (4.9)$$

$$K_{\text{tg}} = \frac{19.1 \times 10^{6} H}{D_{\text{pmg}} \ n_{\text{g}}} = \frac{\cos \beta_{\text{g}}}{\cos \beta_{\text{p}}} \ K_{\text{tp}} \cdots (4.10)$$

$$K_{\rm Sp} = \frac{K_{\rm tp}}{\cos \beta_{\rm p}} \left(\tan \alpha_{\rm p} \cos \delta_{\rm p1} + \sin \beta_{\rm p} \sin \delta_{\rm p1} \right) \cdots (4.11)$$

$$K_{\mathrm{Sp}} = \frac{K_{\mathrm{tp}}}{\cos\beta_{\mathrm{p}}} \left(\tan\alpha_{\mathrm{p}} \cos\delta_{\mathrm{p1}} - \sin\beta_{\mathrm{p}} \sin\delta_{\mathrm{p1}} \right) \cdots (4.12)$$

$$K_{\text{Sg}} = \frac{K_{\text{tg}}}{\cos \beta_{\text{g}}} \left(\tan \alpha_{\text{g}} \cos \delta_{\text{g}2} - \sin \beta_{\text{g}} \sin \delta_{\text{g}2} \right) \cdots (4.13)$$

$$K_{\rm Sg} = \frac{K_{\rm tg}}{\cos\beta_{\rm g}} \left(\tan\alpha_{\rm g}\cos\delta_{\rm g2} + \sin\beta_{\rm g}\sin\delta_{\rm g2} \right) \cdots (4.14)$$

$$K_{\mathsf{ap}} = \frac{K_{\mathsf{tp}}}{\mathsf{cos}\beta_{\mathsf{p}}} \left(\mathsf{tan}\alpha_{\mathsf{p}} \, \mathsf{sin}\delta_{\mathsf{p}1} - \mathsf{sin}\beta_{\mathsf{p}} \, \mathsf{cos}\delta_{\mathsf{p}1} \right) \cdots \left(4.15 \right)$$

$$K_{\mathsf{ap}} = \frac{K_{\mathsf{tp}}}{\mathsf{cos}\beta_{\mathsf{p}}} \left(\mathsf{tan}\alpha_{\mathsf{p}} \, \mathsf{sin}\delta_{\mathsf{p1}} + \mathsf{sin}\beta_{\mathsf{p}} \, \mathsf{cos}\delta_{\mathsf{p1}} \right) \cdots (4.16)$$

$$K_{\text{ag}} = \frac{K_{\text{tg}}}{\cos \beta_{\text{g}}} (\tan \alpha_{\text{g}} \sin \delta_{\text{g2}} + \sin \beta_{\text{g}} \cos \delta_{\text{g2}}) \cdots (4.17)$$

$$K_{\text{ag}} = \frac{K_{\text{tg}}}{\cos \beta_{\text{g}}} \left(\tan \alpha_{\text{g}} \sin \delta_{\text{g2}} - \sin \beta_{\text{g}} \cos \delta_{\text{g2}} \right) \cdots (4.18)$$

(4) Load acting on worm gears

A worm gear is a gear made by combining a worm (screw gear) and a worm wheel (helical gear). The gear direction differs depending on the rotation direction and the screw direction (right screw, left screw) of the worm shaft.

Fig. 4.8 shows the direction of loads acting on the gear, and Table 4.5 shows the calculation method of the loads.

Fig. 4.7 Worm gears

Kt: Tangential gear load (tangential force), N

 K_S : Radial gear load (separating force), N

Ka: Parallel shaft load (axial load), N

 $H\,:$ Transmitted force, kW

n: Rotational speed min⁻¹

 D_{p} : Gear mean pitch circle diameter, mm

lpha : Gear pressure angle, deg

y: Worm lead angle, deg

*The worm shaft has a subscript w, and the worm gear has a subscript h.

A-36

Fig. 4.8 Load acting on worm gears

Table 4.5 Calculation method of load acting on worm gears.

able no edicaldion method of load acting on worm gears					
Gear type	Worm shaft	Worm gear			
Tangential load (tangential force) Kt	$K_{\text{tw}} = \frac{19.1 \times 10^6 H}{n D_{\text{pw}}}$	K th = $\frac{K_{\text{tw}}}{\tan \gamma} = K_{\text{aw}}$			
Radial load (separating force) $K_{\rm S}$	$K_{\text{SW}} = \frac{K_{\text{tw}} \tan \alpha}{\tan \gamma}$	$K_{\rm Sh} = \frac{K_{\rm tw} \tan \alpha}{\tan \gamma} = K_{\rm SW}$			
Parallel load on gear shaft (axial load) $K_{\rm a}$	$K_{\text{aw}} = \frac{K_{\text{tw}}}{\tan \gamma}$	$K_{ah} = K_{tw}$			

4.1.3 Chain / belt shaft load

The tangential loads on sprockets or pulleys when power (load) is transmitted by means of chains or belts can be calculated by formula (4.19) as shown in Fig. 4.9.

$$K_{\rm t} = \frac{19.1 \times 10^6 \cdot H}{D_{\rm p} \cdot n}$$
 (4.19)

Kt: Sprocket/pulley tangential load, N

H: Transmitted power, kW

D_p: Sprocket/pulley pitch diameter, mm

For belt drives, an initial tension is applied to give sufficient constant operating tension on the belt and pulley.

Taking this tension into account, the radial loads acting on the pulley are expressed by formula (4.20). For chain drives, the same formula can also be used if vibrations and shock loads are taken into consideration.

$$K_r = f_b \cdot K_t \cdot \cdots \cdot (4.20)$$

Where:

 K_r : Sprocket or pulley radial load, N

fb: Chain or belt factor (**Table 4.6**)

Table 4.6 chain or belt factor fb

	D
Chain or belt type	f_{b}
Chain (single)	1.2 to 1.5
V-belt	1.5 to 2.0
Timing belt	1.1 to 1.3
Flat belt (w / tension pulley)	2.5 to 3.0
Flat belt	3.0 to 4.0

Fig. 4.9 Chain / belt loads

4.2 Bearing load distribution

For shafting, the static tension is considered to be supported by the bearings, and any loads acting on the shafts are distributed to the bearings. For example, in the gear shaft assembly depicted in Fig. 4.10, the applied bearing loads can be found by using formulas (4.21) and (4.22).

This example is a simple case, but in reality, many of the calculations are quite complicated.

$$F_{\mathsf{FA}} = \frac{a+b}{b} F_{\mathsf{I}} + \frac{d}{c+d} F_{\mathsf{II}} \cdots (4.21)$$

$$F_{\mathsf{rB}} = -\frac{a}{b} \quad F_{\mathsf{I}} + \frac{c}{c+d} \quad F_{\mathsf{II}} \quad \cdots \quad (4.22)$$

Where:

 F_{rA} : Radial load on bearing A, N : Radial load on bearing B, N F_{I}, F_{I} : Radial load on shaft, N

If directions of radial load differ, the vector sum of each respective load must be determined.

Fig. 4.10

4.3 Mean load

The load on bearings used in machines under normal circumstances will, in many cases, fluctuate according to a fixed time period or planned operation schedule. The load on bearings operating under such conditions can be converted to a mean load $(F_{\rm m})$. This is a load which gives bearings the same life they would have under constant operating conditions.

(1) Fluctuating stepped load (Fig. 4.11)

The mean bearing load, $F_{\rm m}$, for stepped loads is calculated from formula (4.23). $F_{\rm 1}, F_{\rm 2} \cdots F_{\rm n}$ are the loads acting on the bearing; $n_{\rm 1}, n_{\rm 2} \cdots n_{\rm n}$ and $t_{\rm 1}, t_{\rm 2} \cdots t_{\rm n}$ are the bearing speeds and operating times respectively.

$$F_{\rm m} = \left(\frac{\sum (F_{\rm i}^{\ p} \ n_{\rm i} \ t_{\rm i})}{\sum (n_{\rm i} \ t_{\rm i})}\right)^{1/p} \cdots (4.23)$$

Where:

p = 3 For ball bearings p = 10/3 For roller bearings

Fig. 4.11 Stepped load

(2) Continuously fluctuating load (Fig. 4.12)

Where it is possible to express the function F(t) in terms of load cycle t_0 and time t, the mean load is found by using formula (4.24).

$$F_{\rm m} = \left(\frac{1}{t_0} \int_0^{t_0} F(t)^p dt\right)^{1/p} \cdots (4.24)$$

Where:

p = 3 For ball bearings p = 10/3 For roller bearings

Fig. 4.12 Load that fluctuated as function of time

(3) Linear fluctuating load (Fig. 4.13)

The mean load, F_m , can be approximated by formula (4.25).

$$F_{\rm m} = \frac{F_{\rm min} + 2F_{\rm max}}{3} \dots (4.25)$$

Fig. 4.13 Linear fluctuating load

(4) Sinusoidal fluctuating load (Fig. 4.14)

The mean load, F_m , can be approximated by formulas (4.26) and (4.27).

Case (a)
$$F_{\text{m}} = 0.75 F_{\text{max}} \cdots (4.26)$$

Case (b) $F_{\text{m}} = 0.65 F_{\text{max}} \cdots (4.27)$

Fig. 4.14 Sinusoidal variable load

4.4 Equivalent load

4.4.1 Dynamic equivalent load

When both dynamic radial loads and dynamic axial loads act on a bearing at the same time, the hypothetical load acting on the center of the bearing which gives the bearings the same life as if they had only a radial load or only an axial load is called the dynamic equivalent load.

For radial bearings, this load is expressed as pure radial load and is called the dynamic equivalent radial load. For thrust bearings, it is expressed as pure axial load, and is called the dynamic equivalent axial load.

(1) Dynamic equivalent radial load

The dynamic equivalent radial load is expressed by formula (4.28).

$$P_{\mathsf{r}} = XF_{\mathsf{r}} + YF_{\mathsf{a}} \cdot \dots \cdot (4.28)$$

Where

Pr: Dynamic equivalent radial load, N

 F_r : Actual radial load, N

 F_a : Actual axial load, N

 $X \; : \mathsf{Radial} \; \mathsf{load} \; \mathsf{factor}$

Y: Axial load factor

The values for X and Y are listed in the bearing tables.

(2) Dynamic equivalent axial load

As a rule, standard thrust bearings with α contact angle of 90° cannot carry radial loads. However, self-aligning thrust roller bearings can accept some radial load. The dynamic equivalent axial load for these bearings is given in formula (4.29).

$$P_{a} = F_{a} + 1.2F_{r} \cdot \cdot \cdot \cdot \cdot (4.29)$$
 Where:

Pa: Dynamic equivalent axial load, N

 F_{a} : Actual axial load, N

 F_r : Actual radial load, N Provided that $F_r/F_a \le 0.55$ only.

4.4.2 Static equivalent load

The static equivalent load is a hypothetical

load which would cause the same total permanent deformation at the most heavily stressed contact point between the rolling elements and the raceway as under actual load conditions; that is when both static radial loads and static axial loads are simultaneously applied to the bearing.

For radial bearings this hypothetical load refers to pure radial loads, and for thrust bearings it refers to pure centric axial loads. These loads are designated static equivalent radial loads and static equivalent axial loads respectively.

(1) Static equivalent radial load

For radial bearings the static equivalent radial load can be found by using formula (4.30) or (4.31). The greater of the two resultant values is always taken for P_{0r} .

$$P_{0r} = X_0 F_r + Y_0 F_a \cdots (4.30)$$

$$P_{0r} = F_r \cdots (4.31)$$

Where:

A-41

Por: Static equivalent radial load, N

Fr : Actual radial load, N

Fa: Actual axial load, N

 X_0 : Static radial load factor

 Y_0 : Static axial load factor

The values for X_0 and Y_0 are given in the respective bearing tables.

(2) Static equivalent axial load

For spherical thrust roller bearings the static equivalent axial load is expressed by formula (4.32).

$$P_{0a} = F_a + 2.7F_r \cdots (4.32)$$

Poa: Static equivalent axial load, N

Fa: Actual axial load, N

Fr : Actual radial load, N

Provided that $F_r / F_a \leq 0.55$ only.

4.4.3 Load calculation for angular contact ball bearings and tapered roller bearings

For angular contact ball bearings and tapered roller bearings the pressure cone apex (load center) is

A-40

located as shown in Fig. 4.15, and their values are listed in the bearing tables.

When radial loads act on these types of bearings a component force is induced in the axial direction. For this reason, these bearings are used in pairs. For load calculation this component force must be taken into consideration and is expressed by formula (4.33).

$$F_{\mathsf{a}} = \frac{0.5F_{\mathsf{f}}}{Y} \cdots (4.33)$$

Where:

F_a: Axial component force, N Fr: Actual radial load. N

Y: Axial load factor

The axial loads for these bearing pairs are given in Table 4.7.

Fig. 4.15 Pressure cone apex and axial component force

Table 4.7 Bearing arrangement and equivalent load

Load center	Load conditions	Axial load
Rear Brg I Brg I	$\frac{0.5F_{\rm r}\mathrm{I}}{Y_{\rm I}} \le \frac{0.5F_{\rm r}\mathrm{II}}{Y_{\rm II}} + F_{\rm a}$	$F_{a} I = \frac{0.5 F_{r} I}{y_{I}} + F_{a}$
Front Brg I Brg I Front Fr I	$\frac{0.5F_{\text{rI}}}{Y_{\text{I}}} > \frac{0.5F_{\text{rII}}}{Y_{\text{II}}} + F_{\text{a}}$	$F_{a}\mathbb{I} = \frac{0.5F_{f}I}{Y_{I}} - F_{a}$
Rear Brg I Brg I	$\frac{0.5F_{\Gamma}I}{YI} \le \frac{0.5F_{\Gamma}I}{YI} + F_{a}$	$F_{a}\mathbb{I} = \frac{0.5F_{f}I}{Y_{I}} + F_{a}$
Front Brg I Brg I F_{r} Fr I	$\frac{0.5F_{rII}}{Y_{II}} > \frac{0.5F_{rI}}{Y_{I}} + F_{a}$	$F_{a} I = \frac{0.5 F_{r} I}{Y I} - F_{a}$

Note: 1. Applies when preload is zero

- 2. Radial forces in the opposite direction to the arrow in the above illustration are also regarded as positive.
- 3. Dynamic equivalent radial load is calculated by using the table on the right of the size table of the bearing after axial load is obtained for

4.5 Bearing rating life and load calculation examples

In the examples given in this section, for the purpose of calculation, all hypothetical load factors as well as all calculated load factors may be presumed to be included in the resultant load values.

Bearing loads and the basic rating life of bearings can be calculated using the bearing technical calculation tool on the NTN website (https://www.ntnglobal.com).

(Example 1)

What is the rating life in hours of operation L_{10h} for deep groove ball bearing **6208** operating at rotational speed $n = 650 \text{ min}^{-1}$, with a radial load F_r of 3.2 kN?

From formula (4.28) the dynamic equivalent radial load Pr:

$$P_r = F_r = 3.2 \text{kN}$$

Basic dynamic load rating C_r for bearing **6208** given on page B-26 is 32.5 kN, ball bearing speed factor f_n relative to rotational speed $n = 650 \text{ min}^{-1} \text{ from Fig. 3.1 is } f_0 = 0.37. \text{ Thus life}$ factor f_h from formula (3.5) is:

$$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P_{\rm r}} = 0.37 \times \frac{32.5}{3.2} = 3.76$$

Therefore, with $f_h = 3.76$ from **Fig. 3.1** the rated life, L_{10h} , is approximately 27 000 hours.

(Example 2)

What is the life rating L_{10h} for the same bearing and conditions as in Example 1, but with an additional axial load F_a of 1.8 kN?

To find the dynamic equivalent radial load value for P_r , the radial load factor X, axial load factor Y. and Constant e are used.

Basic static load rating C_{0r} for bearing **6208**

given on page B-26 is 17.8 kN and fo is 14.0. Therefore:

$$\frac{f_0 \cdot F_a}{C_{0r}} = \frac{14 \times 1.8}{17.8} = 1.42$$

Calculated by the proportional interpolation method given on B-27, e = 0.30.

For the operating radial load and axial load:

$$\frac{F_{\rm a}}{F_{\rm r}} = \frac{1.8}{3.2} = 0.56 > e = 0.30$$

From B-27, X = 0.56 and Y = 1.44, and from formula (4.28) the dynamic equivalent radial load, Pr. is:

$$P_r = XF_r + YF_a$$

= 0.56 × 3.2+1.43 × 1.8
= 4.38 kN

From Fig. 3.1 and Table 3.1 the life factor, fh.

$$f_h = f_n \frac{C_r}{P_r} = 0.37 \times \frac{32.5}{4.38} = 2.75$$

Therefore, with life factor $f_h = 2.75$, from Fig. **3.1** the rated life, L_{10h} , is approximately 10,500 hours.

(Example 3)

Determine the optimum model number for a cylindrical roller bearing operating at the rotational speed $n = 450 \text{ min}^{-1}$, with a radial load F_r of 200 kN, and which must have a life (L_{10h}) of over 20 000 hours.

From Fig. 3.1 the life factor

 $f_h = 3.02$ (L_{10h} at 20 000), and the speed factor $f_n = 0.46$ ($n = 450 \text{ min}^{-1}$). To find the required basic dynamic load rating, C_r , formula (3.5) is used.

$$C_{\rm r} = \frac{f_{\rm h}}{f_{\rm n}} P_{\rm r} = \frac{3.02}{0.46} \times 200 = 1313 \text{kN}$$

From page B-108, the smallest bearing that fulfills all the requirements is NU2332E ($C_r = 1.460 \text{ kN}$).

(Example 4)

The spur gear shown in **Fig. 4.16** (pitch diameter $D_{\rm p}=150$ mm, pressure angle $\alpha=20^{\circ}$) is supported by a pair of tapered roller bearings, **32907XU** ($C_{\rm r}=30.5$ kN) and **32908XU** ($C_{\rm r}=36.0$ kN). Find rating life for each bearing when gear transfer power H=150 kW and rotational speed n=2000 min⁻¹.

Fig. 4.16 Spur gear diagram

The gear load from formulas (4.3), (4.4a) and (4.5) is:

$$K_{t} = \frac{19.1 \times 10^{6} \cdot H}{D_{p} \cdot n} = \frac{19.100000 \times 150}{150 \times 2000}$$

$$= 9.55 \text{kN}$$

$$K_{s} = K_{t} \cdot \tan \alpha = 9.55 \times \tan 20^{\circ}$$

$$= 3.48 \text{kN}$$

$$K_{f} = \sqrt{K_{t}^{2} + K_{s}^{2}} = \sqrt{9.55^{2} + 3.48^{2}}$$

The radial loads for bearings I and II are:

$$F_{r\,I} = \frac{100}{170} K_r = \frac{100}{170} \times 10.16 = 5.98 \text{kN}$$
 $F_{r\,II} = \frac{70}{170} K_r = \frac{70}{170} \times 10.16 = 4.18 \text{N}$
 $\frac{0.5 F_{r\,I}}{Y_I} = 1.45 > \frac{0.5 F_{r\,II}}{Y_I} = 1.01 \text{ Therefore,}$

The axial loads for bearing I and II are:

$$F_{\text{a I}} = 0 \text{kN}$$

$$F_{\text{a II}} = \frac{0.5F_{\text{r I}}}{Y_{\text{I}}} = \frac{0.5 \times 5.98}{2.06} = 1.45 \text{kN}$$

From page B-137, the dynamic equivalent radial load for bearing I is:

$$\frac{F_{\text{a I}}}{F_{\text{r I}}} = \frac{0}{5.98} = 0 < e = 0.29$$

 $P_{\text{r I}} = F_{\text{r I}} = 5.98 \text{kN}$

Equally, the dynamic equivalent radial load for bearing ${\rm I\hspace{-.1em}I}$ is:

$$\frac{F_{\text{a} \, \text{II}}}{F_{\text{r} \, \text{II}}} = \frac{1.45}{4.18} = 0.35 > e = 0.29$$
 $P_{\text{r} \, \text{II}} = XF_{\text{r} \, \text{II}} + Y_{\text{II}} F_{\text{a} \, \text{II}}$
 $= 0.4 \times 4.18 + 2.07 \times 1.45$
 $= 4.67 \text{kN}$

From formula (3.5) and **Fig. 3.1** the life factor, f_h , for each bearing is

$$f_{\text{h I}} = f_{\text{n}} \frac{C_{\text{r I}}}{P_{\text{r I}}} = 0.293 \times 30.5 / 5.98 = 1.49$$

 $f_{\text{h II}} = f_{\text{n}} \frac{C_{\text{r II}}}{P_{\text{r II}}} = 0.293 \times 36.0 / 4.67 = 2.26$

Therefore, from **Table 3.1**

$$L_{\text{h I}} = 500 f_{\text{h I}} = 1900 \text{ hours}$$

 $L_{\text{h II}} = 500 f_{\text{h II}} = 7550 \text{ hours}$

The combined system bearing life, L_h , from formula (3.3) is:

$$L_{h} = \frac{1}{\left(\frac{1}{L_{h1}^{e}} + \frac{1}{L_{h2}^{e}}\right)^{1/e}}$$

$$= \frac{1}{\left(\frac{1}{1900^{9/8}} + \frac{1}{7550^{9/8}}\right)^{8/9}}$$
= 1 600 hours

(Example 5)

Find the mean load for spherical roller bearing **23932EMD1** ($C_r = 455 \text{ kN}$) when operated under the fluctuating conditions shown in **Table 4.8**.

Table 4.8

Condition No.	Operating time	Radial load	Axial load	Rotational speed
i	Φi	Fri	Fai	ni
	%	kN	kN	min ⁻¹
1	5	10	2	1 200
2	10	12	4	1 000
3	60	20	6	800
4	15	25	7	600
5	10	30	10	400

The dynamic equivalent radial load, $P_{\rm r}$, for each operating condition is found by using formula (4.28) and shown in **Table 4.9**. Because all the values for $F_{\rm ri}$ and $F_{\rm ai}$ from the bearing tables are greater than $F_{\rm a}$ / $F_{\rm r}$ > e = 0.17, X = 0.67, $Y_{\rm 2}$ = 5.81

 $P_{\text{ri}} = XF_{\text{ri}} + Y_2$ $F_{\text{ai}} = 0.67F_{\text{ri}} + 5.81F_{\text{ai}}$ From formula (4.23) the mean load, F_{m} , is:

$$F_{\rm m} = \left(\frac{\sum (P_{\rm fi}^{10/3} \cdot n_{\rm i} \cdot \phi_{\rm i})}{\sum (n_{\rm i} \cdot \phi_{\rm i})}\right)^{3/10} = 50.0 \,\rm kN$$

Table 4.9

Condition No.	Dynamic equivalent radial load. P_{ri} (kN)
1	18.3
2	31.3
3	48.3
4	57.4
5	78.2

(Example 6)

Find the threshold values for rating life time and allowable axial load when cylindrical roller bearing **NUP312** is used under the following conditions:

Provided that intermittent axial load and oil lubricant.

Radial load $F_{\rm r}=10{\rm kN}$ Rotational speed $n=2~000{\rm min^{-1}}$

Radial load F_r is 10 kN, and

$$P_{r} = F_{r} = 10 \text{kN}$$

The speed factor of cylindrical roller bearing, f_0 , at $n = 2\,000\,\mathrm{min^{-1}}$, from Table 3.1

$$f_{\rm n} = \left(\frac{33.3}{2.000}\right)^{3/10} = 0.293$$

The life factor, f_h , from **Table 3.1**

$$f_{\rm h} = 0.293 \times \frac{137}{10} = 4.01$$

Therefore the basic rated life, $L_{10\mathrm{h}}$, from Table 3.1

 $L_{10h} = 500 \times 4.01^{10/3} = 51\,000 \text{ hours}$

Next, the allowable axial load of the cylindrical roller bearing is shown on page A-32.

In formula (3.13) on page A-32, based on **NUP312** from **Table 3.7** on page A-33, k = 0.065. In addition, $D_{\text{pw}} = (60 + 130) / 2 = 95 \text{ mm}$, $n = 2\,000 \text{ min}^{-1}$.

Thus, the formula below holds when the case of the intermittent axial load is taken into consideration.

$$D_{DW} \cdot n \times 10^4 = 19 \times 10^4$$

In Fig. 3.16 on page A-33, $D_{\rm pW} \cdot n = 19 \times 10^4$. In the case of the intermittent axial load, allowable surface pressure at the lip $P_{\rm t} = 40$ MPa.

Therefore the allowable axial load, $P_{\rm t}$, becomes the following.

$$P_t = 0.065 \times 60^2 \times 40 = 9360N$$

Based on **Table 3.7** on page A-33, it is within the limits of $F_{a \text{ max}}$ < 0.4 × 10 000 = 4 000 N. Therefore P_t < 4 000 N.

A-44

5. Boundary dimensions and bearing number codes

5.1 Boundary dimensions

A rolling bearing's major dimensions, known as "boundary dimensions," are shown in **Figs. 5.1 - 5.3**. To facilitate international bearing interchangeability and economical bearing production, bearing boundary dimensions have been standardized by the International Organization for Standardization (ISO). In Japan, rolling bearing boundary dimensions are regulated by Japanese Industrial Standards (JIS B 1512 series).

Boundary dimensions which have been standardized include: bearing bore diameter, outside diameter, width/height, and chamfer dimensions - all important dimensions when considering the compatibility of shafts, bearings, and housings. However, as a general rule, bearing internal construction dimensions are not covered by these standards.

For metric series rolling bearings there are 90 standardized bore diameters (a) ranging in size from 0.6 mm - 2,500 mm.

Outer diameter dimensions (D) for radial bearings with standardized bore diameter dimensions are covered in the "diameter series;" their corresponding width dimensions (B) are covered in the "width series." For thrust bearings there is no width series; instead, these dimensions are covered in the "height series." The combination of all these series is known as the "dimension series." All series numbers are shown in **Table 5.1**.

Although many rolling bearing dimensions are standardized and have been listed here for purposes of future standardization, there are many standard bearing dimensions which are not presently manufactured.

Boundary dimensions for radial bearings and thrust bearings are shown in the attached tables (I-2 to I-19).

Fig. 5.1 Radial bearings (excluding tapered roller bearings)

Fig. 5.2 Tapered roller bearings

Fig. 5.3 Single direction thrust bearings

Table 5.1 Dimension series numbers

	Dimension series					
	Diameter series (outer diameter dimensions)		Width series (width dimensions)	Height series (height dimensions)	Reference diagram	
Radial bearings (excluding tapered roller	Code	7.8.9.0.1.2.3.4	8.0.1.2.3.4.5.6		Fig. 5.4	
bearings)	Dimension	Small ← Large	Small ← Large		1 15. 3.4	
Tapered roller bearings	Code	9. 0. 1. 2. 3	0. 1. 2. 3		Fig. 5.5	
rapered roller bearings	Dimension	Small ← Large	Small ← → Large		rig. 3.3	
Thrust bearings	Code	0. 1. 2. 3. 4		7.9.1.2	Fig. 5.6	
Till ust bearings	Dimension	Small ← → Large	Small ← → Large		Fig. 5.6	

Fig. 5.4 Dimension series for radial bearings (excluding tapered roller bearings; diameter series 7 has been omitted)

Fig. 5.5 Dimension series for tapered roller bearings (based on JIS B 1534)

Fig. 5.6 Dimension series for thrust bearings (excluding diameter series 5)

NTN

5.2 Bearing numbers

Rolling bearing part numbers indicate bearing type, dimensions, tolerances, internal construction, and other related specifications. Bearing numbers are comprised of a "basic number" followed by "supplementary codes." The makeup and order of bearing numbers is shown in Table 5.2.

The **basic number** indicates general information about a bearing, such as its fundamental type, boundary dimensions, series number, bore diameter code and contact angle. The **supplementary codes** derive from prefixes and suffixes which indicate a bearing's tolerances, internal clearances, and related specifications.

"ULTAGE" (a name created from the combination of "ultimate," signifying refinement, and "stage," signifying **NTN**'s intention that this series of products be employed in diverse applications) is the general name for **NTN**'s new generation of bearings that are noted for their industry-leading performance.

A-48 A-49

NTN

Boundary Dimensions and Bearing Number Codes

Supplementary prefix code				Basic numb	er		
		Bearing series		Boro diam	notor codo	l	Contact angle code
Special application/	Bearing	Bearing Dimension		Doi e dian	ore diameter code		Contact angle code
material/ heat treatment code	series code	Width/height series 1)	Diameter series	Code	Bore diameter mm	Code ¹) Contact angle
	Code Deep groov 67 68 69 160 60 62 63 Angular conta 78 79 70 72 73 Self aligning 12 13 22 23 Cylindrical roller be: NU12 NU2 NU3 NU4 NNU49 NN30 Tapered ro 329X 320X 302 322 303 303D 3131X 323		series ype code 6) 7 8 9 0 2 3 (type code 7) 8 9 0 2 3 ape code 1, 2) 2 3 4, NF,NNU, NN, etc.) 0 2 2 3 3 4 9 0 pe code 3) 9 0 2 2 3 3 3 3 3 3	Code /0.6 /1.5 /2.5 1 :: 9 00 01 102 03 /22 /28 /32 04 05 06 :: 8 88 92 96 /500 /5300 /5560 /2 360 /2 360 /2 500	diameter	Ar (A) B C	ontact angle Ingular contact ball bear Standard contact angle Too
	222 232 213 223 Single direction 511 512 513	thrust ball bearing	2 2 3 3 3 gs (type code 5) 1 2 3				
	514	in thrust bearing:	4				
	Spherical thru 292 293 294	st roller bearings 9 9 9	(type code 2) 2 3 4				

¹⁾ Codes in () are not shown in nominal numbers.

Note: Please consult NTN Engineering concerning bearing series codes, and supplementary prefix/suffix codes not listed in the above table.

			Supplementa	ry suffix codes			
Internal modifications code	Cage code	Seal / Shield code	Raceway external configuration code	Duplex arrangement code	Internal clearance ¹⁾ Preload code	Tolerance code ¹⁾	Lubrication
U Internationally interchangeable tapered roller bearings R Non-internationally interchangeable tapered roller bearings ST Low torque tapered roller bearings HT Angular ball bearings and cylindrical roller bearings for high axial loads E High load capacity cylindrical roller bearing EA ULTAGE series cylindrical roller bearings E ULTAGE series cylindrical roller bearings UTG ULTAGE series Large tapered roller bearing	L1 High strength, machined brass cage F1 Machined carbon steel cage G1 High strength machined brass rivetless cage with square holes G2 Pin type cage J Pressed steel cage (ULTAGE series self aligning roller bearings) M High strength, machined brass cage (ULTAGE series self aligning roller bearings)	LB One-side synthetic rubber seal (non-contact type) LLB Double-side synthetic rubber seal (non-contact type) LU One-side synthetic rubber seal (contact type) LU Double-side synthetic rubber seal (contact type) LH One-side synthetic rubber seal (low-torque type) LHH Double-side synthetic rubber seal (low-torque type) LHH Double-side synthetic rubber seal (low-torque type) LCH Double-side synthetic rubber seal (low-torque type) LCH Double-side synthetic rubber seal (low-torque type) Z One-side steel Shield	K Tapered inner ring bore, standard taper ratio 1:12 K30 Tapered inner ring bore, standard taper ratio 1:30 N With snap ring groove NR Snap ring D With oil hole D1 Lubrication hole/lubrication groove	DB Back-to-back arrangement DF Face-to-face arrangement DT Tandem arrangement D2 Two matched, paired bearings + α Spacer (α = spacer's standard width dimensions)	C2 Internal clearance less than normal (CN) Normal clearance C3 Internal clearance greater than normal C4 Internal clearance greater than C3 C5 Internal clearance greater than C4 CM Radial internal clearance for electric motor use /GL Light preload /GN Normal preload /GM Medium preload /GH Heavy preload	(PO) JIS Class 0 P6 JIS Class 6 P5 JIS Class 5 P4 JIS Class 4 P2 JIS Class 2 -4 ABMA Class 2 -3 ABMA Class 3 -0 ABMA Class 0 -00 ABMA Class 00	/2AS Alvania Grease S2 /3AS Alvania Grease S3 /8A Alvania Grease EP2 /5K Multemp SRL /LX11 Barrierta JFE552 /LP03 Solid grease

¹⁾ Codes in () are not shown in nominal numbers.

Note: Please consult NTN Engineering concerning bearing series codes, and supplementary prefix/suffix codes not listed in the above table.

A-50

A-51

5.2.1 Numbers of inch series tapered roller bearings

The composition of numbers of inch series tapered roller bearings is specified by the American Bearing Manufacturers Association (ABMA). The inner ring component (CONE) and the outer ring (CUP) each have a corresponding number. Table 5.3 shows the composition of these numbers. Each corresponding code is also described in more detail below.

Table 5.3 Bearing number composition

Prefix code	Contact angle code	Contact gle code number		Suffix code			
XX	0	000	00	XX			

Note: X in the table is represented by letters, and O is represented by numbers.

Load limit code -This code has 9 types from light

loads to heavy loads: EL, LL, L, LM, M, HM, H, HH, and EH. "J" at the beginning of the code indicates metric bearings.

Contact angle code

This code indicates the contact angle of the series. The classification of each code is shown in Table 5.3 (1).

Table 5.3 (1) Contact angle symbol

Carla	Outer ring angle (contact angle × 2)									
Code	Inc.	Below								
1	0°	24°								
2	24°	25°30′								
3	25°30′	27°								
4	27°	28°30′								
5	28°30′	30°30′								
6	30°30′	32°30′								
7	32°30′	36°								
8	36°	45°								
9	45°(Excluding	thrust bearings)								

Suffix code

This code consists of either one or two letters. It is used when the appearance and the inside of the standard type are changed.

Serial number

The serial number of the outer ring is 10 to 19.

The serial number of the inner ring is 30 to 49.

Serial numbers exceeding the above are 20 to 29. The outer ring starts from 20, and the inner ring starts from 29 in the opposite direction.

Series number

A number that is determined by internal specifications.

5.2.2 Numbers of metric tapered roller bearings based on ISO355

Dimension series previously not covered by 3XX are regulated under JIS B 1512. These dimension series are specified in ISO355 and consist of series codes of the angle, diameter, and width. In addition, the inner ring subunit and the outer ring are internationally interchangeable. The composition of bearing

numbers are shown in Table 5.4. The series codes of the dimension series are shown in Table 5.4 (1) to (3).

Table 5.4 Bearing number composition

Tapered roller	Dir	Bore		
bearing code	Angle series	Diameter series	Width series	diameter code
Т	0	X	Х	000

Note: X in the table is represented by letters, and O is represented

\circ X X \circ Tapered roller bearing code Bore diameter code The bearing bore diameter is Angle series code represented in mm. This code represents the contact angle. Example) 040: bore The classification is shown in Table 5.4 (1). diameter dimension 40 mm Diameter series code Width series code

This code represents the ratio of the bearing outside diameter to the bearing inner diameter. The classification is shown in Table 5.4 (2).

Table 5.4 (1) Angle series code

Code	Contact angle $lpha$									
Code	Over	Incl.								
2	10°	13°52′								
3	13°52′	15°59′								
4	15°59′	18°55′								
5	18°55′	23°								
6	23°	27°								
7	27°	30°								

Table 5.4 (2) Diameter series code

14016 3.4 (2)	Jiainietei senes	code
Code	Over	<u>D</u> 0.77 Incl.
В	3.4	3.8
С	3.8	4.4
D	4.4	4.7
Е	4.7	5
F	5	5.6
G	5.6	7

Note: Quantifiers

- d: Nominal inner diameter
- D: Nominal outside diameter

This code represents the ratio of the assembly width to the difference between the outer diameter and inner diameter of the single row bearing. The classification is shown in Table 5.4 (3).

Table 5.4 (3) Width series code

Code	Over $\frac{T}{(D-d)^{0.95}}$ Incl.								
В	0.50	0.68							
С	0.68	0.80							
D	0.80	0.88							
Е	0.88	1							

Note: Quantifiers

- d: Nominal inner diameter
- D: Nominal outside diameter
- T: Assembly width of single row bearing

A-52 A-53

6. Bearing tolerances

6.1 Dimensional and rotational accuracy

Bearing "tolerances" or dimensional accuracy and running accuracy, are regulated by ISO and JIS standards, JIS B 1514 (rolling bearing tolerances) series. For dimensional accuracy, these standards prescribe the tolerances necessary when installing bearings on shafts or in housings. Running accuracy is defined as the allowable limits for bearing runout during operation.

Dimensional accuracy

Dimensional accuracy constitutes the acceptable values for bore diameter, outer diameter, assembled bearing width, and bore diameter uniformity as seen in chamfer dimensions, allowable inner ring tapered bore deviation and shape error. Also included are variation of mean bore diameter within a plane, outer diameter within a plane, mean outer diameter within a plane, as well as raceway thickness (for thrust bearings).

Running accuracy

Running accuracy constitutes the acceptable values for inner and outer ring radial runout and axial runout, inner ring side surface squareness, and outer ring outer diameter squareness.

Allowable rolling bearing tolerances have been established according to precision classes. Bearing precision is stipulated as JIS class 6, class 5, class 4, or class 2, with precision rising from ordinary precision indicated by class 0.

Table 6.1 indicates which standards and precision classes are applicable to the major bearing types. **Table 6.2** shows a relative comparison between JIS B 1514 precision class standards and other standards.

For details of allowable limitations and values, refer to **Tables 6.4 - 6.10**, which are described in the application table column of **Table 6.1**. Allowable values for chamfer dimensions are shown in **Table 6.11**. Allowable limitations and values for radial bearing inner ring tapered bores are shown in **Table 6.12**.

Table 6.1 Bearing types and applicable tolerance

	Bearing type	Applicable standard		Acc	uracy cla	ss		Tolerance table			
Deep groo	ve ball bearings		Class 0	Class 6	Class 5	Class 4	Class 2				
Angular co	ontact ball bearings		Class 0 Class 6 Class 5 Class								
Self-aligni	ng ball bearings	JIS B 1514-1	Class 0	_	_	_	_	Table C 4			
Cylindrical	roller bearings	(ISO492)	Class 0	Class 6 Class 5 Class 4 Class 2 Table 6.4							
Needle rol	ler bearings		Class 0	Class 6	Class 5	Class 4	_				
Self-aligni	ng roller bearings		Class 0	_	_	_	_				
	Metric series (single-row)	JIS B 1514	Class 0, 6X	Class 6 ¹⁾	Class 5	Class 4	_	Table 6.5			
Tapered roller	Metric series (double-row/four-row)	BAS1002	Class 0	-	=	_	_	Table 6.6			
bearings	Inch series	ANSI/ABMA Std.19	Class 4	Class 2	Class 3	Class 0	Class 00	Table 6.7			
	J series	ANSI/ABMA Std.19.1	Class K	Class N	Class C	Class B	Class A	Table 6.8			
Thrust ball	bearings	JIS B 1514-2	Class 0	Class 6	Class 5	Class 4	_	Table 6.9			
Spherical r	oller thrust bearings	(ISO199)	Class 0	-	_	_	_	Table 6.10			

¹⁾ The class is the NTN standard class.

Table 6.2 Comparison of tolerance classifications of national standards

Standard	Applicable standard		Acc	curacy cla	ss		Bearing type
Japanese industrial	JIS B 1514-1	Class 0, 6	Class 6	Class 5	Class 4	Class 2	Radial bearings
standard (JIS)	JIS B 1514-2	Class 0	Class 6	Class 5	Class 4	_	Thrust bearings
	ISO 492	Normal class Class 6X	Class 6	Class 5	Class 4	Class 2	Radial bearings
International Organization for Standardization (ISO)	ISO 199	Normal Class	Class 6	Class 5	Class 4	_	Thrust bearings
	ISO 578	Class 4	_	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)
	ISO 1224	_	_	Class 5A	Class 4A	_	Precision instrument bearings
Deutsches Institut fur Normung (DIN)	DIN 620	P0	P6	P5	P4	P2	All types
American National	ANSI/ABMA Std.20 1)	ABEC-1 RBEC-1	ABEC-3 RBEC-3	ABEC-5 RBEC-5	ABEC-7	ABEC-9	Radial bearings (excluding tapered roller bearings)
Standards Institute (ANSI) American Bearing Manufacturer's Association (ABMA)	ANSI/ABMA Std.19.1	Class K	Class N	Class C	Class B	Class A	Tapered roller bearings (Metric series)
	ANSI/ABMA Std.19	Class 4	Class 2	Class 3	Class 0	Class 00	Tapered roller bearings (Inch series)

^{1) &}quot;ABEC" is applied to ball bearings and "RBEC" to roller bearings.

Note: 1. JIS B 1514 series, ISO492, 199, and DIN620 have the same specification level.

^{2.} The tolerance and allowance of JIS B 1514 series are slightly different from those of ABMA standards.

Application of accuracy class

Ordinary precision JIS Class 0 is applied to general roller bearings. However, depending on the conditions and applications, bearings with JIS Class 5 or higher may be necessary.

Table 6.3 shows application examples of accuracy class according to the required performance of bearings to be used.

Table 6.3 Application example of accuracy class

Required performance	Application example	Applied accuracy class
Accuracy under high speed	Machine tool main spindles Printing machine body bearings Magnetic tape guides	JIS Class 5, JIS Class 4 or higher JIS Class 5 JIS Class 5
High rotational speed	Jet engine main spindles Turbochargers Machine tool main spindles Touchdown bearings of magnetic bearing spindles for turbo-molecular pumps	JIS Class 4 or higher Equivalent to JIS Class 4 JIS Class 5, JIS Class 4 or higher JIS Class 5
Low torque low noise	Machine tool main spindles Hubs of road bikes Cleaner motors Hand spinners Fan motors	JIS Class 5, JIS Class 4 or higher JIS Class 5 JIS Class 0 JIS Class 0 JIS Class 0

6.2 JIS terms

The following is a description of JIS accuracy terms used in **Table 6.4**.

(However, the outer diameter surface is omitted because the meaning is similar.)

Fig. 6.1 Shape model figure

Terms	Quantifiers	Description
Nominal bore diameter	d	Reference dimension representing the bore diameter size, and reference value with respect to the dimensional difference of the actual bore diameter surface.
Single bore diameter	d_{S}	Distance between two parallel straight lines that are in contact with the intersection line of the actual bearing bore diameter surface and the radial plane.
Deviation of a single bore diameter	Δd s	Difference between ds and d (difference of nominal diameter serving as the measured bore and standard).
Mean bore diameter in a single plane	dmp	Arithmetic mean of the maximum and minimum measured bore diameters within one radial plane. In the model figure, in arbitrary radial plane A_i , when the maximum bore diameter is d_{si1} and the minimum bore diameter is d_{si3} , the value is obtained by $(d_{si1} + d_{si3})/2$. There is one value for each plane.
Mean bore diameter	d_{m}	Arithmetic mean of the maximum and minimum measured bore diameters obtained from all the cylindrical surfaces. In the model figure, when the maximum measured bore diameter is d_{s11} and the minimum measured bore diameter is d_{s23} , which are obtained from the all the planes A_1, A_2, A_i , the mean bore diameter is obtained by $(d_{s11} + d_{s23})/2$. There is one value for one cylindrical surface.
Deviation of mean bore diameter	Δd m	Difference between the mean bore diameter and the nominal bore diameter.
Deviation of mean bore diameter in a single plane	$oldsymbol{\Delta} d$ mp	Difference between the arithmetic mean and the nominal bore diameter of the maximum and minimum measured bore diameters within one radial plane. The value is specified in JIS.
Variation of bore diameter in a single plane	Vd sp	Difference between the maximum and minimum measured bore diameters within one radial plane. In the model figure, in radial plane A1, when the maximum measured bore diameter is $d_{\rm S11}$ and the minimum measured bore diameter is $d_{\rm S13}$, the difference is $Vd_{\rm Sp}$ and one value can be obtained for one plane. This characteristic is an index that indicates the roundness. The value is specified in JIS.
Variation of mean bore diameter	V_d mp	Difference between the maximum and minimum values of the mean bore diameter within a plane that are obtained from all the planes. A unique value is obtained for each product, and it is near to cylindricity (that is different from geometric cylindricity). The value is specified in JIS.
Nominal inner ring width	В	Distance between both theoretical side surfaces of a raceway. This value is a reference dimension that represents the raceway surface (distance between both side surfaces).
Single inner ring width	B_{S}	Distance between two intersections. The straight is perpendicular to the plane that is in contact with the inner ring reference side and both actual side surfaces. This value represents the actual width dimension of an inner ring.
Deviation of a single inner ring width	ΔB s	Difference between the measured inner ring width and the nominal inner ring width. This value is also the difference between the measured inner ring width dimension and the reference dimension that represents the inner ring width. The value is specified in JIS.
Variation of inner ring width	V_{B} s	Difference between the maximum and minimum measured inner ring widths, which are specified in JIS.
Radial runout of inner ring of assembled bearing	<i>K</i> ia	Difference between the maximum and minimum values of the radial distance between the inner ring bore diameter at each angle position and one fixed point of the outer ring outer diameter surface with respect to radial runout.
Axial runout of inner ring of assembled bearing	Sia	Difference between the maximum and minimum values of the axial distance between the inner ring reference side surface at each angle position and one fixed point of the outer ring outer diameter surface with respect to half the radial distance of the raceway contact diameter from the inner ring central axis and the inner ring of a deep groove ball bearing.

A-56 A-57

Table 6.4 Tolerance of radial bearings (except tapered roller bearings) Table 6.4 (1) Inner rings

Nomi bore dia			D	evia	tion o		an bo		iamet	er				Va	riat	tion c	f bor	e di	ame	ter	in a s	ingle	pla	ne		
Doi e dia	meter				111 6	3 5111	gie pie	ine																		
d		Δ_{d} mp									V_{dsp} Diameter series 9 Diameter series 0, 1 Diameter series 2								es 2	. 3. 4						
mn	n	Class 0 Class 6 Class 5 Class 4 ¹⁾ Class 2 ¹⁾						ss 2 ¹⁾					4 Class 2					4 Class 2					Class 2			
Over	Incl.	Uppei	Lower	Upp	er Lower			Uppe	r Lower	Uppe	r Lower			Max				1	Мах.					Max.		
0.6 ⁴⁾ 2.5 10	2.5 10 18	0 0	-8 -8 -8	0 0	-7 -7 -7	0 0	-5 -5 -5	0 0	-4 -4 -4	0 0	-2.5 -2.5 -2.5	10 10 10	9 9 9	5 5 5	4	2.5 2.5 2.5	8 8 8	7 7 7	4 4 4	3 3	2.5 2.5 2.5	6 6 6	5 5 5	4 4 4	3 3 3	2.5 2.5 2.5
18 30 50	30 50 80	0 0 0	-10 -12 -15	0 0 0	-8 -10 -12	0 0 0	-6 -8 -9	0 0 0	-5 -6 -7	0 0 0	-2.5 -2.5 -4	13 15 19	10 13 15	6 8 9	6	2.5 2.5 4	10 12 19	8 10 15	5 6 7	4 5 5	2.5 2.5 4	8 9 11	6 8 9	5 6 7	5	2.5 2.5 4
80 120 150	120 150 180	0 0 0	-20 -25 -25	0 0 0	-15 -18 -18	0 0 0	-10 -13 -13	0 0 0	-8 -10 -10	0 0 0	-5 -7 -7	25 31 31	19 23 23	10 13 13	8 10 10		25 31 31	19 23 23	8 10 10	6 8 8	5 7 7	15 19 19	11 14 14	8 10 10	8	5 7 7
180 250 315	250 315 400	0 0 0	-30 -35 -40	0 0 0	-22 -25 -30	0 0 0	-15 -18 -23	0 _ _	-12 - -	0 _ _	-8 - -	38 44 50	28 31 38	15 18 23	12 _ _	8 _ _	38 44 50	28 31 38	12 14 18	9 — —	8 _ _	23 26 30	17 19 23	12 14 18	9 — —	8 _ _
400 500 630	500 630 800	0 0 0	-45 -50 -75	0 0 —	-35 -40 —	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	56 63 —	44 50 —	_ _	_ _ _	_ _ _	56 63 —	44 50 —	_ _	_ _ _	_ _ _	34 38 —	26 30 —	_ _ _	_ _ _	_ _ _
1 000	1 000 1 250 1 600 2 000	0	-100 -125 -160 -200	_ _ _	_ _ _	_ _ _	_ _ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _ _	_ _ _	_ _ _	_ _ _ _	_ _ _	_ _ _ _	_ _ _	_ _ _	_ _ _	_ _ _ _

¹⁾ The dimensional difference Δ_{ds} of the measured bore diameter applied to Classes 4 and 2 is the same as the tolerance of dimensional difference Δ_{dmp} of the mean bore diameter within a plane. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 for Class 4, and also to all the diameter series for Class 2.

Table 6.4 (2) Outer rings

iable 0.	- (2) (Juli	CI III	153																						
	Nominal Deviation Itside diameter						n outs gle pla		diame	ter			١	/aria	atio	n of c	outsid	le di	ame	eter	in a s	ingle	pla	ne ⁶)	
																		1	V _{Dsp})						
D						ΔI	Omp)per	ı be	arin	g					
									Ε.				met								0, 1	Dian				
mr			ass 0		ass 6						ss 2 ⁵⁾	Class 0				4 Class 2	Class 0				Class 2	Class 0				Class 2
Over	Incl.	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Uppe	r Lower		- 1	Мах				1	Иaх					Max		
2.5 ⁸⁾		0	-8	0	-7	0	-5	0	-4	0		10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
6	18	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5	6	5	4	3	2.5
18	30	0	-9	0	-8	0	-6	0	-5	0	-4	12	10	6	5	4	9	8	5	4	4	7	6	5	4	4
30	50	0	-11	0	-9	0	-7	0	-6	0	-4	14		7	6	4	11	9	5	_	4	8	7	5	5	4
50	80	0	-13	0	-11	0	-9	0	-7	0			14	9	7		13	11	7	5	4	10	8	7	5	4
80	120	0	-15	0	-13	0	-10	0	-8	0	-5	19	16	10	8	5	19	16	8	6	5	11	10	8	6	5
120	150	0	-18		-15	0	-11	0	-9	-	-5		19		9	5	23	19	8		5	14	11	8	7	5
150	180	0	-25	0	-18	0	-13	0	-10	-	-7		23			7	31	23		-	7	19	14		8	7
180	250	0	-30	0	-20	0	-15	0	-11	0	-8	38	25	15	11	8	38	25	11	8	8	23	15	11	8	8
250	315	0	-35	0	-25	0	-18	0	-13	-	-8		31				44		14			26		14		
315	400	0	-40	0	-28	0	-20	0	-15	0	-10		35		15	10		35				30		15	11	10
400	500	0	-45	0	-33	0	-23	_	_	_	_		41		_	_		41			_	34		17	_	_
500	630	0	-50	-	-38	0	-28	_	_	_	_		48			_	63		21		_	38	29		-	_
630	800	0	-75	0	-45	0	-35	_	_	_	_		56	35	_	_	94		26	_	_			26	_	_
800	1 000		-100	0	-60	_	_	_	_	_	_	125	75	_	_	_	125	75		_	_	75	45		_	_
1 000	1 250		-125	-	_	-	_	-	_	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-
1 250	1 600		-160	_	_	-	_	-	_	_	-	_	-	-	-	_	_	_	_	_	-	_	-	-	-	_
1 600 2 000	2 000		-200 -250			_		_		_				_	_			_	_	_				_	_	
2 000	2 300	U.	-230	_	_	_	_	_	_	_	_	_					_				_	_			_	_

⁵⁾ The dimensional difference ΔD_S of the measured outer diameter applied to Classes 4 and 2 is the same as the tolerance of dimensional difference Δ_{Dmp} of the mean outer diameter within a plane. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 for Class 4, and also to all the diameter series for Class 2.

			Unit: μm
Variation of mean bore diameter	Radial runout Perpendicularity of inner ring of assembled face with respect	Axial runout Deviation of a single inner ring width of inner ring of assembled	Variation of inner ring width
V_d mp Class 0 Class 6 Class 5 Class 4 Class 2 ${\sf Max}.$	$\begin{array}{c c} \textbf{bearing} & \textbf{to the bore} \\ Kia & Sd \\ \text{Class 0 Class 6 Class 5 Class 4 Class 2} & \text{Class 5 Class 4 Class 2} \\ \text{Max.} & \text{Max.} \end{array}$		Class 0 Class 6 Class 5 Class 4 Class 2
6 5 3 2 1.5 6 5 3 2 1.5 6 5 3 2 1.5	10 5 4 2.5 1.5 7 3 1.5 10 6 4 2.5 1.5 7 3 1.5 10 7 4 2.5 1.5 7 3 1.5	7 3 1.5 0 -40 0 -40 0 -40 0 -250 0 -250 7 3 1.5 0 -120 0 -40 0 -40 0 -250 0 -250 7 3 1.5 0 -120 0 -80 0 -80 0 -250 0 -250	15 15 5 2.5 1.5
8 6 3 2.5 1.5 9 8 4 3 1.5 11 9 5 3.5 2	13 8 4 3 2.5 8 4 1.5 15 10 5 4 2.5 8 4 1.5 20 10 5 4 2.5 8 5 1.5	8 4 2.5 0 -120 0 -120 0 -120 0 -250 0 -250 8 4 2.5 0 -120 0 -120 0 -120 0 -250 0 -250 8 5 2.5 0 -150 0 -150 0 -150 0 -380 0 -250	20 20 5 3 1.5
15 11 5 4 2.5 19 14 7 5 3.5 19 14 7 5 3.5	25 13 6 5 2.5 9 5 2.5 30 18 8 6 2.5 10 6 2.5 30 18 8 6 5 10 6 4	9 5 2.5 0 -200 0 -200 0 -200 0 -380 0 -380 10 7 2.5 0 -250 0 -250 0 -250 0 -500 0 -380 10 7 5 0 -250 0 -250 0 -250 0 -500 0 -380	30 30 8 5 2.5
23 17 8 6 4 26 19 9 — — 30 23 12 — —	40 20 10 8 5 11 7 5 50 25 13 13 60 30 15 15	13 8 5 0 -300 0 -300 0 -300 0 -500 0 -500 15 0 -350 0 0 0 -500 0 - 20 - 0 0 -400 0 0 0 -630 0 -	30 30 10 6 5 35 35 13 — — 40 40 15 — —
34 26 38 30 55	65 35 — — — — — — — — — — — — — — — — — —	0 -450	50 45 — — — 60 50 — — — 70 — — —
75 — — — — 94 — — — — 120 — — —	90 120		80 100 120
150	140	0	140

²⁾ Applies to ball bearings such as deep groove ball bearings and angular ball bearings. 4) The nominal bore diameter of bearings of 0.6 mm is included in this dimensional division. 3) Applies to individual raceway rings manufactured for combined bearing use.

Unit: μ m

in a single pl Sealed/shie dian Diamet 2,3,4 Class 0	utside diameter ane $V_{D{ m sp}^6}$) eld bearings neter er series 0,1,2,3,4 Class 6 ax.	OI	utsic	ion d le dia V _D m Glass S Max	p Class 4	ter		oute emb	l run er rir bled Kea Class 5 Max	ng of bear	ring	of outs outs wit to	outer i ide su h resp the fa	orface bect ace Class 2	of o of a b	outer ssem earii Sea ⁷	Class 2	$\begin{array}{c} \text{Deviation} \\ \text{of a single} \\ \text{outer ring} \\ \text{width} \\ \Delta_{Cs} \\ \text{All classes} \end{array}$	Class 0,6 Class	ng ⁄cs	widt	
10 10 12	9 9 10	6 6 7	5 5 6	3 3 3	2 2 2.5	1.5 1.5 2	15 15 15	8 8 9	5 5 6	3 3 4	1.5 1.5 2.5	8 8 8	4 4 4	1.5 1.5 1.5	8 8 8	5 5 5	1.5 1.5 2.5	Depends on tolerance of	Depends on tolerance of	5 5 5	2.5	1.5 1.5 1.5
16 20 26	13 16 20	8 10 11	7 8 10	4 5 5	3 3.5 4	2 2 2.5	20 25 35	10 13 18	7 8 10	5 5 6	2.5 4 5	8 8 9	4 4 5	1.5 1.5 2.5	8 10 11	5 5 6	2.5 4 5	Δ_{Bs} in relation to d of the same bearing	$V_{B{ m S}}$ in relation to d of the same bearing	5 6 8	2.5 3 4	1.5 1.5 2.5
30 38 —	25 30 —	14 19 23	11 14 15	6 7 8	5 5 6	2.5 3.5 4	40 45 50		11 13 15	7 8 10	5 5 7	10 10 11	5 5 7	2.5 2.5 4	13 14 15	7 8 10	5 5 7			8 8 10	5 5 7	2.5 2.5 4
_ _ _	_ _ _	26 30 34	21	9 10 12	7 8 —	4 5 —	60 70 80	30 35 40	18 20 23	11 13 —	7 8 —	13 13 15	8 10 —	5 7 —	18 20 23	10 13 —	7 8 —			11 13 15	7 8 —	5 7 —
_ _ _	_ _ _	38 55 75	29 34 45	14 18 —	_ _ _	_ _ _	100 120 140	50 60 75	25 30 —	_ _ _	_ _ _	18 20 —	_ _ _	_ _ _	25 30 —	_ _ _	_ _ _			18 20 —	_ _ _	_ _ _
- - -	- - - -	_ _ _	_ _ _	_ _ _	_ _ _	- - -	160 190 220 250	_ _ _	_ _ _	_ _ _	- - -	_ _ _	- - -	_ _ _	_ _ _	_ _ _	_ _ _			_ _ _	_ _ _	_ _ _ _

⁶⁾ Applies to cases where snap rings are not installed on the bearings.

8) The nominal bore diameter of bearings of 2.5 mm is included in this dimensional division.

⁷⁾ Applies to ball bearings such as deep groove ball bearings and angular ball bearings.

1able 6.5 ((1) inner rings		
Nominal	Deviation of mean	Variation	
bore	bore diameter	of bore diameter	
diameter	in a single plane	in a single plane	
d	Δ_{d} mp	V_{dsp}	
	Class 0 Class 6 1)	Class 0	Cla
mm	Class 6× Class 5 Class 4 2)	Class 6× Class 6 1) Class 5 Class 4	Cla

	omina bore amete d	-		b in	ore d a sin Δ	n of m iamet gle pla	er ine		in	Variation V_{a}	liame		bo	iation ore dia V_{dr}	mete		ii	dial runner riemblec $K_{\rm i}$	ing of		Perpend of inner r with re to the	ring face espect bore
	mm			ss 0 ss 6×		ss 6 ¹⁾ ss 5		s 4 ²)	Class 0	Class 6.1	1) Class	5 Class 4	Class 0	Class 61)	Class 5	Class 4	Class 0	Class 6 1)	Class 5	Class 4	Class 5	Class A
Ov		cl.						r Lower		Ma		J Cluss 4	Class on	Ма		Ciuss	Ciasson	Ма		0.000	Ma	
1 1 3	8 3	8 0 0	0 0 0	-12 -12 -12	0 0 0	-7 -8 -10	0 0 0	-5 -6 -8	12 12 12	7 8 10	5 6 8	4 5 6	9 9 9	5 6 8	5 5 5	4 4 5	15 18 20	7 8 10	5 5 6	3 3 4	7 8 8	3 4 4
5 8 12	0 12		0 0 0	-15 -20 -25	0 0 0	-12 -15 -18	0 0 0	-9 -10 -13	15 20 25	12 15 18	9 11 14	7 8 10	11 15 19	9 11 14	6 8 9	5 5 7	25 30 35	10 13 18	7 8 11	4 5 6	8 9 10	5 5 6
18 25 31	0 31	5	0 0 0	-30 -35 -40	0 _ _	-22 _ _	<u>0</u> _	-15 - -	30 35 40	22 _ _	17 _ _	11 _ _	23 26 30	16 _ _	11 _ _	8 _ _	50 60 70	20 _ _	13 _ _	8 _ _	11 - -	7 _ _

¹⁾ Class 6 is the **NTN** standard class.

Table 6.5 (2) Outer rings

Nom outs diam	eter		out	side a sin	n of m diame gle pla Dmp	eter			Varia Itside Isinglo V_{D}	diam e pla			ation side d $V_{D ext{n}}$	iame		c	dial ru outer i emble K_6	ing o	f	of out outside with r	licularity er ring surface espect e face
m		Cla	ss 0 ss 6×	Cla	ss 6 ¹⁾ ss 5		s 4 ⁴⁾	Class 0 Class 6×			Class 4	Class 0 Class 6×			Class 4	Class 0 Class 6×			5 Class 4	St Class 5	Class 4
Over	Incl.	Uppe	, 12 0 0 0 0					Ма	х.			Ма	х.			Ma	ix.		M	ax.	
18 30 50	30 50 80	0 0 0	-12 -14 -16	0 0 0	-8 -9 -11	0 0 0	-6 -7 -9	12 14 16	8 9 11	6 7 8	5 5 7	9 11 12	6 7 8	5 5 6	4 5 5	18 20 25	9 10 13	6 7 8	4 5 5	8 8 8	4 4 4
80 120 150	120 150 180	0 0 0	-18 -20 -25	0 0 0	-13 -15 -18	0 0 0	-10 -11 -13	18 20 25	13 15 18	10 11 14	8 8 10	14 15 19	10 11 14	7 8 9	5 6 7	35 40 45	18 20 23	10 11 13	6 7 8	9 10 10	5 5 5
180 250 315	250 315 400	0 0 0	-30 -35 -40	0 0 0	-20 -25 -28	0 0 0	-15 -18 -20	30 35 40	20 25 28	15 19 22	11 14 15	23 26 30	15 19 21	10 13 14	8 9 10	50 60 70	25 30 35	15 18 20	10 11 13	11 13 13	7 8 10
400 500	500 630	0	-45 -50	_	_	_	_	45 60	_	_	_	34 38	_	_	_	80 100	_	_	_	_	_

³⁾ Does not apply to bearings with flange.

Unit: μ m Axial runout Deviation of a single Deviation of the actual inner ring width assembled bearing width of inner ring of assembled bearing Class 0 Class 5 Class 5 Class 0 Sia Class 4 Class 6 Class 6× Class 4 Class 6 Class 4 Class 6× Max. Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower +200 -200 3 -120 -50 0 -200 +200 +100 -120 0 -50 0 -200 0 -240 +200 0 +100 +200 -200 0 -120 0 -50 +200 0 +100 0 +200 -200 4 4 -150 0 -50 0 -300 +200 0 +100 +200 -200 -200 0 -50 0 -400 +200 -200 +100 0 +200 -200 0 -250 0 -50 0 -500 +350 -250 +150 0 8 0 -300 0 -50 0 -600 +350 -250 +150 0 +350 -250 -350 0 -50 +350 -250 +200 0 0 -400 0 -50 +400 -400 +200 0

			Unit: µm
Axial runout of outer ring of assembled bearing Sea Class 4	Deviation of outer ring Δ_C Class 0, Class 6 Class 4	s width	
Max.	Upper Lower		Lower
5 5 5 6 7 8 10	Depends on tolerance of Δ_{BS} in relation to d of the same bearing	0 0 0 0 0 0	-100 -100 -100 -100 -100 -100 -100 -100
13 _ _		0 0 0	-100 -100 -100

⁵⁾ Applies to bearings with a nominal bore diameter d over 10 mm and 400 mm or less.

Table 6.5 (3) Effective width of inner subunits and outer rings

Unit: µm

									πιτ. μπι
diam	t	of inne with		e width nit asse er outer	mbled r ring	of ou	effectiv uter ring master Δα	of the ac re width g assem inner s	bled ubunit
m	m	Clas	ss 0	Class	6×	Cla	ss 0	Class	6×
Over	Incl.	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
10 18 30	18 30 50	+100 +100 +100	0 0 0	+50 +50 +50	0 0 0	+100 +100 +100	0 0 0	+50 +50 +50	0 0 0
50 80 120	80 120 180	+100 +100 +150	0 -100 -150	+50 +50 +50	0 0 0	+100 +100 +200	0 -100 -100	+50 +50 +100	0 0 0
180 250 315	250 315 400	+150 +150 +200	-150 -150 -200	+50 +100 +100	0 0 0	+200 +200 +200	-100 -100 -200	+100 +100 +100	0 0 0

A-60 A-61

²⁾ The dimensional difference Δds of the measured bore diameter applied to Class 4 is the same as the tolerance of dimensional difference Δdmp of the mean bore diameter within a plane.

⁴⁾ The dimensional difference ΔD_8 of the measured outer diameter applied to Class 4 is the same as the tolerance of dimensional difference ΔD_{mp} of the mean outer diameter within a plane.

Table 6.6 Tolerance of tapered roller bearings (inch series)

Table 6.6 (1) Inner rings

Unit: μ m

NTN

Nominal bore	e diameter				Deviation	on of a sin	gle bore d	liameter			Опіс. діп
d						Δ	ds				
mm (ir	nch)	Clas	ss 4	Cla	ss 2	Cla	ss 3	Cla	ss 0	Clas	s 00
Over	Incl.	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
	76.2(3)	+13	0	+13	0	+13	0	+13	0	+8	0
76.2 (3)	266.7 (10.5)	+25	0	+25	0	+13	0	+13	0	+8	0
266.7(10.5)	304.8 (12)	+25	0	+25	0	+13	0	+13	0	_	_
304.8 (12)	609.6 (24)	+51	0	+51	0	+25	0	_	_	_	_
609.6 (24)	914.4(36)	+76	0	_	_	+38	0	_	_	_	_
914.4 (36)	1 219.2(48)	+102	0	_	_	+51	0	_	_	_	_
1 219.2 (48)		+127	0		_	+76	0	_	_	_	_

Table 6.6	(2) (Outer	rings
-----------	-------	-------	-------

Unit: μ m

Nominal outside diameter		Deviation	of a single outside	diameter	
D			$oldsymbol{\Delta}_{D}$ s		
mm (inch)	Class 4	Class 2	Class 3	Class 0	Class 00
Over Incl.	Upper Lower	Upper Lower	Upper Lower	Upper Lower	Upper Lower
266.7 (10.5) 266.7 (10.5) 304.8 (12) 304.8 (12) 609.6 (24)	+25 0 +25 0 +51 0	+25 0 +25 0 +51 0	+13 0 +13 0 +25 0	+13 0 +13 0 — —	+8 0
609.6 (24) 914.4 (36) 914.4 (36) 1 219.2 (48) 1 219.2 (48) — —	+76 0 +102 0 +127 0	+76 0 — — — —	+38 0 +51 0 +76 0	 	

Table 6.6 (3) Assembly width of single-row bearings, combination width of 4-row bearings, effective width of inner ring subunits, effective width of outer rings

Non	ninal	Nor	ninal		D	eviation	of the	actual a	ssembl	ed		Devia	tion of
bore di	ameter	outside	diameter			sing	e row b	earing v	width			four-rov	bearing
c	d	1	D				Δ	TS				overal	l width
												$\Delta B2s$,	$\Delta \mathit{C}2s$
mm (inch)	mm	(inch)	Cla	ss 4	Cla	ss 2	Cla	ss 3	Class	0,00	Class 4	4,2,3,0
Over	Incl.	Over	Incl.	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
	101.6 (4) 304.8 (12) 609.6 (24)	_	508.0 (20)	+203 +356 +381	0 -254 -381	+203 +203 +381	0 0 -381	+203 +203 +203	-203 -203 -203	+203 +203 —	-203 -203 -	+1 524 +1 524 +1 524	-1 524 -1 524 -1 524
304.8 (12) 609.6 (24)	609.6 (24) —	508.0 (20)	_	+381 +381	-381 -381	+381	-381 —	+381 +381		_	_	+1 524 +1 524	-1 524 -1 524

Table 6.6 (4) Radial runout of inner and outer rings

Unit: µm										
Nominal out	side diameter	Radial	runout of ir	nner ring of a	assembled b	earing				
		K _{ia}								
i	D	Radial runout of outer ring of assembled bearing								
				K_{ea}						
mm	(inch)	Class 4	Class 2	Class 3	Class 0	Class 00				
Over	Incl.	Max.	Max.	Max.	Max.	Max.				
_	304.8 (14)	51	38	8	4	2				
304.8 (14)	609.6 (24)	51	38	18	_	_				
609.6 (24)	914.4 (36)	76	51	51	_	_				
914.4 (36)	_	76	_	76	_	-				

											Unit: μ m				
	Deviation of the actual effective width of inner subunit							Deviation of the actual effective width of outer ring assembled							
	assembled with a master outer ring $\Delta_{\it T1}$ s						with a master inner subunit $\Delta_{\it T2S}$								
	Class 4 Class 2 C				Cla	Class 3		Class 4		Class 2		Class 3			
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower			
	+102	0	+102	0	+102	-102	+102	0	+102	0	+102	-102			
	+152	-152	+102	0	+102	-102	+203	-102	+102	0	+102	-102			
	_	_	+178	-178 ¹⁾	+102	$-102^{1)}$	_	_	+203	-203 ¹⁾	+102	-102 ¹⁾			
	_	_	_	_	_	_	_	_	_	_	_	_			
	_	_	_	_	_	_	_	_	_	_	_	_			

¹⁾ Applies to nominal bore diameters d of 406.400 mm (16 inch) or less.

A-62

Table 6.7 Tolerance of double-row and 4-row tapered roller bearings (metric series)

Table 6.7 (1) Inner rings

	Table 0.7 (1) Timer rings													
ı	Nom	Nominal Deviation			Variation	Variation	Radial	Deviation		Deviation of bearing overall width				
bore of mea		nean	of bore	of mean	runout of	of a single		Double row bearing		Four-row bearing				
diameter bore diame			diameter	bore	inner ring of		er ring				0			
			gle plane	· ·	diameter	assembled		vidth						
d Δ_{d} n		<i>l</i> mp	V_{dsp}	V_{d} mp	bearing	Δ_{B} s		Δ_{B1s}		Δ B2s				
	mr	m					Kia							
	Over	Incl.	Upper	Lower	Max.	Max.	Max.	Upp	er Lower	Upper	Lower	Upper	Lower	
	30	50	0	-12	12	9	20	0	-120	+240	-240	_	_	
	50	80	0	-15	15	11	25	0	-150	+300	-300	_	_	
	80	120	0	-20	20	15	30	0	-200	+400	-400	+500	-500	
	120	180	0	-25	25	19	35	0	-250	+500	-500	+600	-600	
	180	250	0	-30	30	23	50	0	-300	+600	-600	+750	-750	
	250	315	0	-35	35	26	60	0	-350	+700	-700	+900	-900	
	315	400	0	-40	40	30	70	0	-400	+800	-800	+1 000	-1 000	
	400	500	0	-45	45	34	80	0	-450	+900	-900	+1 200	-1 200	
	500	630	0	-60	60	40	90	0	-500	+1 000	-1 000	+1 200	-1 200	
	630	800	0	-75	75	45	100	0	-750	+1 500	-1 500	+1 500	-1 500	
	800	1 000	0	-100	100	55	115	0	-1 000	+1 500	-1 500	+1 500	-1 500	

^{0 -100} 1) Values in dot-line frame are the **NTN** stadard.

Table 6.7 (2) Outer rings

		m	

Nominal		Deviation		Variation	Variation	Radial	Deviation	Deviation of bearing overall width				
outside diameter			of mean outside diameter in a single plane		of outside diameter in a single plane	of mean outside diameter	runout of outer ring of assembled	of a single outer ring width	Double row bearing		Four-row bearing	
		D Δ_{Dmp}		•	V_{Dsp}	$V_{D{ m mp}}$	bearing K_{ea}	ΔCs	∆ C1s		∆ <i>C</i> 2s	
	Over	Incl.	Upper	Lower	Max.	Max.	Max.	Upper Lower	Upper	Lower	Upper	Lower
	50 80 120 150 180 250 315 400 500	80 120 150 180 250 315 400 500 630	0 0 0 0 0 0 0 0 0	-16 -18 -20 -25 -30 -35 -40 -45 -50	16 18 20 25 30 35 40 45 60	12 14 15 19 23 26 30 34 38	25 35 40 45 50 60 70 80 100	Depends on tolerance of Δ_{Bs} in relation to d of the same bearing	Depends on tolerance of Δ_{B1s} in relation to d of the same bearing		Depends on tolerance of Δ_{B2s} in relation to d of the same bearing	
		800 1 000 1 250 1 600	0 0 0	-75 -100 -125 -160	80 100 130 170	55 75 90 100	120 140 160 180					

A-64 A-65

Table 6.8 Tolerance of tapered roller bearings of J series (metric series) Table 6.8 (1) Inner rings

Non bo dian	re		Deviation of mean bore diameter in a single plane							Variation of bore diameter in a single plane			er		iation ore dia			Axial runout of inner ring of assembled bearing
C	l		Δ_{d} mp					V_{dsp}				V_{d}	mp		S_{ia}			
		CI	Class Class			Class Class			Class	Class	Class	Class	Class	Class	Class	Class	Class	
m	m		K		N	(0		В	K	Ν	С	В	К	Ν	С	В	В
Over	Incl.	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower		Ma	ax.			Ma	ax.		Max.
10	18	0	-12	0	-12	0	-7	0	-5	12	12	4	3	9	9	5	4	3
18	30	0	-12	0	-12	0	-8	0	-6	12	12	4	3	9	9	5	4	4
30	50	0	-12	0	-12	0	-10	0	-8	12	12	4	3	9	9	5	5	4
50	80	0	-15	0	-15	0	-12	0	-9	15	15	5	3	11	11	5	5	4
80	120	0	-20	0	-20	0	-15	0	-10	20	20	5	3	15	15	5	5	5
120	180	0	-25	0	-25	0	-18	0	-13	25	25	5	3	19	19	5	7	7
180	250	0	-30	0	-30	0	-22	0	-15	30	30	6	4	23	23	5	8	8

Note: Please consult **NTN** Engineering for Class A bearings.

Table 6.8 (2) Outer rings

	Iable	0.0	(2)	Julei	ring	5													Unit: μ m
	Nom outs diam	side		Devi		of mear n a sing			neter		Variation of outside diameter in a single plane						of me		Axial runout of outer ring of assembled bearing
	I)				Δ_I)mp					V_L)sp			V_D	mp		S_{ea}
			CI	ass	CI	ass	CI	ass	CI	ass	Class	Class	Class	Class	Class	Class	Class	Class	Class
	m	m		K N Jpper Lower Upper Lo		N		СВ		K	Ν	С	В	K	Ν	С	В	В	
	Over	Incl.	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower		M	ax.			Ma	ax.		Max.
ı	18	30	0	-12	0	-12	0	-8	0	-6	12	12	4	3	9	9	5	4	3
	30	50	0	-14	0	-14	0	-9	0	-7	14	14	4	3	11	11	5	5	3
	50	80	0	-16	0	-16	0	-11	0	-9	16	16	4	3	12	12	6	5	4
	80	120	0	-18	0	-18	0	-13	0	-10	18	18	5	3	14	14	7	5	4
	120	150	0	-20	0	-20	0	-15	0	-11	20	20	5	3	15	15	8	6	4
	150	180	0	-25	0	-25	0	-18	0	-13	25	25	5	3	19	19	9	7	5
	180	250	0	-30	0	-30	0	-20	0	-15	30	30	6	4	23	23	10	8	6
	250	315	0	-35	0	-35	0	-25	0	-18	35	35	8	5	26	26	13	9	6
	315	400	0	-40	0	-40	0	-28	0	-20	40	40	10	5	30	30	14	10	6

Note: Please consult **NTN** Engineering for Class A bearings.

Table 6.8 (3) Effective width of inner subunits and outer rings.

Table	0.0	(3) [1]	ectiv	e wiu	uioi	IIIIIei	Subu	er rilig	3					l	Jnit: μ m		
bor	Nominal Deviation of the actual effective width bore of inner subunit assembled with a master outer ring diameter									Deviation of the actual effective width of outer ring assembled with a master inner subuni							
d					Δ	T1s							$\Delta \tau$	'2s			
		Cla	SS	Cla	ass	Cl	ass	Cl	ass	Cla	ass	Cla	ass	Cla	ass	Cla	ass
mn	n	K		1	٧	(С		В	H	<	1	N	(2	- 1	В
Over	Incl.	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
10	80	+100	0	+50	0	+100	-100	*	*	+100	0	+50	0	+100	-100	*	*
80	120	+100	-100	+50	0	+100	-100	*	*	+100	-100	+50	0	+100	-100	*	*
120	180	+150	-150	+50	0	+100	-100	*	*	+200	-100	+100	0	+100	-150	*	*
180	250	+150	-150	+50	0	+100	-150	*	*	+200	-100	+100	0	+100	-150	*	*

A-66

Note: 1. " * " mark bearings are manufactured only for combined bearings.

on of the actual assembled bearing width

	Deviatio	n of the	actual a	ssemble	ed beari	ng width	1
			Δ	Ts .			
Cla	ass	Cla	ass	Cla	ass	Cla	ass
H	<	1	N	(2	E	3
Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
+200	0	+100	0	+200	-200	+200	-200
+200	0	+100	0	+200	-200	+200	-200
+200	0	+100	0	+200	-200	+200	-200
+200	0	+100	0	+200	-200	+200	-200
+200	-200	+100	0	+200	-200	+200	-200
+350	-250	+150	0	+350	-250	+200	-250
+350	-250	+150	0	+350	-300	+200	-300

Table 6.8 (4) Radial runout of inner and outer rings $U_{\text{nit: } \mu\text{m}}$

Nom outs diam	nbled bearing				
mr Over	m Incl.	Class K	Class N	ea Class C ax.	Class B
18 30 50	30 50 80	18 20 25	18 20 25	5 6 6	3 3 4
80 120 150	120 150 180	35 40 45	35 40 45	6 7 8	4 4 4
250	250 315 400	50 60 70	50 60 70	10 11 13	5 5 5

Note: Please consult NTN Engineering for Class A bearings

A-67

Please consult **NTN** Engineering for Class A bearings.

bo	Nominal bore diameter $\it d$		Devi		ean bore dia gle plane	meter	Varia of bore d in a singl	iameter	Variation in thickness between shaft washer raceway and back face			
	d		Δd mp				Vds	sp	<i>S</i> i			
	mm		Class 0, 6, 5 Class 4			Class 0, 6,	5 Class 4	Class 0	Class 6	Class 5	Class 4	
Ov	ver	Incl.	Upper	Lower	Upper	Lower	Ma	x.		Ma	ax.	
	 .8 80	18 30 50	0 0 0	-8 -10 -12	0 0 0	-7 -8 -10	6 8 9	5 6 8	10 10 10	5 5 6	3 3 3	2 2 2
5 8 12		80 120 180	0 0 0	-15 -20 -25	0 0 0	-12 -15 -18	11 15 19	9 11 14	10 15 15	7 8 9	4 4 5	3 3 4
25	180 250 250 315 315 400		0 0 0	-30 -35 -40	0 0 0	-22 -25 -30	23 26 30	17 19 23	20 25 30	10 13 15	5 7 7	4 5 5
40 50		500 630	0 0	-45 -50	0	-35 -40	34 38	26 30	30 35	18 21	9 11	6 7

Table 6.9 (2) Housing washer

Unit: μ m

Nominal outside diameter		Devia		n outside di gle plane	ameter	Variat of outside of in a single	liameter	Variation in thickness between housing washer raceway and back face
D mm		Δ_{Dmp} Class 0, 6, 5 Class 4				V _{Dst}	p	S _e Class 0, 6, 5, 4
Over	Incl.	Upper	Lower	Upper	Lower	Max	ί.	Max.
10 18 30	18 30 50	0 0 0	-11 -13 -16	0 0 0	-7 -8 -9	8 10 12	5 6 7	
50 80 120	80 120 180	0 0 0	-19 -22 -25	0 0 0	-11 -13 -15	14 17 19	8 10 11	Depends on tolerance of
180 250 315	250 315 400	0 0 0	-30 -35 -40	0 0 0	-20 -25 -28	23 26 30	15 19 21	S_1 against d of the same bearings
400 500 630	500 630 800	0 0 0	-45 -50 -75	0 0 0	-33 -38 -45	34 38 55	25 29 34	

Table 6.9 (3) Bearing height Unit: μ m

	• •		O					
	ninal ameter	Deviation of the actual bearing height,						
boile di	ametei	0 0 ,						
		single-direction bearing 1)						
C	t	Δ	Ts					
m	m							
Over	Incl.	Upper	Lower					
_	30	0	-75					
30	50	0	-100					
50	80	0	-125					
80	120	0	-150					
120	180	0	-175					
180	250	0	-200					
250	315	0	-225					
315	400	0	-300					
400	500	0	-350					
500	630	0	-400					

¹⁾ Applies to flat back face bearing of Class 0.

The values are the **NTN** standard.

Table 6.10 Tolerance of spherical thrust roller bearings Table 6.10 (1) Shaft washer

Unit: μ m

	ninal ameter	Deviatior bore di in a sing	ameter	Variation of bore diameter in a single plane	Perpendicularity of shaft washer back face with respect	Deviation of the actual bearing height 1)	
d		Δd mp		V_d sp	to the bore 1)	ΔT s	
m	ım				$S_{\sf d}$		
Over	Incl.	Upper	Lower	Max.	Max.	Upper	Lower
50	80	0	-15	11	25	+150	-150
80	120	0	-20	15	25	+200	-200
120	180	0	-25	19	30	+250	-250
180	250	0	-30	23	30	+300	-300
250	315	0	-35	26	35	+350	-350
315	400	0	-40	30	40	+400	-400
400	500	0	-45	34	45	+450	-450

¹⁾ The standard conforms to JIS B 1539.

Table 6.10 (2) Housing washer

Unit: μ m

outside	ninal diameter D	Deviation of mean outside diameter in a single plane Δ_{Dmp}						
Over	Incl.	Upper	Lower					
120	180	0	-25					
180	250	0	-30					
250	315	0	-35					
315	400	0	-40					
400	500	0	-45					
500	630	0	-50					
630	800	0	-75					
800	1 000	0	-100					

A-68 A-69

6.3 Chamfer measurements and tolerance or allowable values of tapered bore

Table 6.11 Allowable critical-value of bearing chamfer Table 6.11 (1) Radial hearings (except tapered

Table 6.1	11 (1)	Radial roller b	bearings (exc earing)	ept tapered: Unit: μm
$r_{ m smin^{1)}}$ or	bore di	ninal ameter	$r_{ m s}$ max Or	
r _{1s min}	Over	d Incl.	Radial direction	Axial direction
0.05	_	_	0.1	0.2
0.03	_		0.16	0.3
0.1	_		0.10	0.4
0.15	_		0.3	0.6
0.2	_		0.5	0.8
0.2	_	40	0.6	1
0.3	40	_	0.8	1
	_	40	1	2
0.6	40	_	1.3	2
	-	50	1.5	3
1	50	30	1.9	3
	_	120	2	3.5
1.1	120	_	2.5	4
	120	120	2.3	4
1.5	120	120	3	5
	-	80	3	4.5
2	80	220	3.5	5
2	220	-	3.8	6
	-	280	4	6.5
2.1	280	-	4.5	7
	-	100	3.8	6
2.5	100	280	4.5	6
2.5	280		5	7
	-	280	5	8
3	280	200	5.5	8
4	280		6.5	9
5	_			10
6	_		8 10	13
	_		12.5	17
7.5 9.5	_		12.5	19
	_			
12	_		18	24
15	_	_	21	30

¹⁾ These are the allowable minimum dimensions of the chamfer dimension "r" or " r_1 " and are described in the dimensional table.

25

19

Table 6.11 (2) Tapered roller bearings

	of metric series Unit: µm											
$r_{ m smin^{2)}}$ or	diame or nomin	al bore ter $d^{3)}$ al outside	$r_{ m s}$ max Or	<i>r</i> 1s max								
r1s min	Over	eter D Incl.	Radial direction	Axial direction								
	-	40	0.7	1.4								
0.3	40	-	0.9	1.6								
0.6	-	40	1.1	1.7								
0.6	40	-	1.3	2								
4	-	50	1.6	2.5								
1	50	-	1.9	3								
	-	120	2.3	3								
1.5	120	250	2.8	3.5								
	250	-	3.5	4								
	-	120	2.8	4								
2	120	250	3.5	4.5								
	250	-	4	5								
	-	120	3.5	5								
2.5	120	250	4	5.5								
	250	-	4.5	6								
	-	120	4	5.5								
3	120	250	4.5	6.5								
3	250	400	5	7								
	400	-	5.5	7.5								
	-	120	5	7								
4	120	250	5.5	7.5								
4	250	400	6	8								
	400	-	6.5	8.5								
5	-	180	6.5	8								
J	180	-	7.5	9								
6	-	180	7.5	10								
U	180	-	9	11								

²⁾ These are the allowable minimum dimensions of the chamfer dimension "r" or " r_1 " and are described in the dimensional table. 3) Inner rings shall be in accordance with the division of "d" and outer rings with that of "D".

Note: The standard applies to the bearings whose dimensional series (refer to the dimensional table) are specified in the standard ISO 355 or JIS B 1512. For further information concerning bearings outside of these standards or tapered roller bearings using a US customary unit, please contact NTN Engineering.

Table 6.11 (3) Thrust bearings

C 0.11 (5) .	in ast bearings	Unit: L
min or r 1 min $^{4)}$	r s max Or r 1s n $oxed{Radial}$ and axial dir	

r s min or r 1 min $^{4)}$	rs max or r 1s max Radial and axial directions
0.05	0.1
0.08	0.16
0.1	0.2
0.15	0.3
0.2	0.5
0.3	0.8
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5
4	6.5
5	8
6	10
7.5	12.5
9.5	15
12	18
15	21
19	25

⁴⁾ These are the allowable minimum dimensions of the chamfer dimension "r" or " r_1 " and are described in the

Tapered bore having dimensional differen Theoretical tapered bore of mean bore diameter within plane

Table 6.12 (1) Tolerance of tapered bores of radial bearings and tapered bores with allowable standard taper ratio 1:12 (Class 0) Unit: //m

	_ (0.000	• / Oπ. μπ				
d		Δd	lmp	Δ_{d1mp}	V _{dsp} 1)2)	
mn	n					
Over	Incl.	Upper	Lower	Upper	Lower	Max.
	10	+ 22	0	+ 15	0	9
10	18	+ 27	0	+ 18	0	11
18	30	+ 33	0	+ 21	0	13
30	50	+ 39	0	+ 25	0	16
50	80	+ 46	0	+ 30	0	19
80	120	+ 54	0	+ 35	0	22
120	180	+ 63	0	+ 40	0	40
180	250	+ 72	0	+ 46	0	46
250	315	+ 81	0	+ 52	0	52
315	400	+ 89	0	+ 57	0	57
400	500	+ 97	0	+ 63	0	63
500	630	+110	0	+ 70	0	70
630	800	+125	0	+ 80	0	_
800	1 000	+140	0	+ 90	0	_
1 000	1 250	+165	0	+105	0	_
1 250	1 600	+195	0	+125	0	_

Table 6.12 (2) Tolerance of tapered bores of radial bearings and tapered bores with allowable standard taper ratio 1:30 (Class 0) Unit: //m

	Startage ratio 1130 (class of office μ)									
ľ	d	!	Δd	mp	Δ_{d} 1mp	$-\Delta_d$ mp	V _{dsp} 1) 2)			
	mr	m								
	Over	Incl.	Upper	Lower	Upper	Lower	Max.			
	50	80	+15	0	+30	0	19			
	80	120	+20	0	+35	0	22			
	120	180	+25	0	+40	0	40			
	180	250	+30	0	+46	0	46			
	250	315	+35	0	+52	0	52			
	315	400	+40	0	+57	0	57			
ſ	400	500	+45	0	+63	0	63			
L	500	630	+50	0	+70	0	70			

¹⁾ Applies to all radial flat planes of tapered bores.

2) Does not apply to diameter series 7 and 8.

Note: Quantifiers

For a standard taper ratio of

For a standard taper ratio of $\frac{1}{30}$, $d1 = d + \frac{1}{30}$ B

 Δ_{dmp} : Dimensional difference of the mean bore diameter within the flat surface at the theoretical small end of the tapered bore

 Δ_{d1mp} : Dimensional difference of the mean bore diameter within the flat surface at the theoretical large end of the tapered bore

: Unevenness of the bore diameter with the flat surface

B: Nominal width of inner ring

 $:\frac{1}{a}$ of the tapered bore's standard taper angle

For a standard taper ratio of $\frac{1}{12}$ For standard taper ratio of $\frac{1}{30}$ $\alpha = 2^{\circ}23'9.4''$ = 2.38594°

= 0.041643 rad

 $\alpha = 0^{\circ}57'17.4''$ = 0.95484° = 0.016665 rad

A-71

38

6.4 Bearing tolerance measurement methods

For reference, measurement methods for rolling bearing tolerances are specified in JIS B 1515-2.

Table 6.13 shows some of the major methods of measuring rotation tolerances.

Table 6.13 Rotation tolerance measurement methods

Accuracy characteristics	Measurement methods							
Radial runout of inner ring of assembled bearing (K_{la})	Measuring load Measuring load	Radial runout of the inner ring is the difference between the maximum and minimum reading of the measuring device when the inner ring is turned one revolution.						
Radial runout of outer ring of assembled bearing (K_{ea})	Measuring load Measuring load	Radial runout of the outer ring is the difference between the maximum and minimum reading of the measuring device when the outer ring is turned one revolution.						
Axial runout of inner ring of assembled bearing (S_{la})	Measuring load Measuring load	Axial runout of the inner ring is the difference between the maximum and minimum reading of the measuring device when the inner ring is turned one revolution.						
Axial runout of outer ring of assembled bearing (S_{ea})	Measuring load Measuring load	Axial runout of the outer ring is the difference between the maximum and minimum reading of the measuring device when the outer ring is turned one revolution.						
Perpendicularity of inner ring face with respect to the bore (Sd)		The squareness of the inner ring side surface is the difference between the maximum and minimum readings of the measuring device when the inner ring is turned one revolution together with the tapered mandrel.						
Perpendicularity of outer ring outside surface with respect to the face (SD)	1.2rs max 1.2rs max Reinforcing plate	The squareness of the outer ring outer diameter surface is the difference between the maximum and minimum readings of the measuring device when the outside ring is turned one revolution along the reinforcing plate.						

6.5 Geometrical product specifications (GPS)

GPS is an abbreviation of geometrical product specifications. GPS is the new drawing notation for accurately describing the geometrical specifications of product shapes, dimensions, and surface characteristics. The standard that specifies rules for making drawings with GPS is called "GPS standard."

<Purpose of GPS>

While conventional drawing notation typically describes product dimensions and characteristics accurately, there are several "unclear" aspects of the conventional notation that can lead to varying interpretations (see Fig. 6.2). The main purpose of the GPS is to eliminate the ambiguity of drawing notation, thereby preventing troubles.

The dimensional tolerance of bearing bore diameters is specified in ISO/
JIS as "Dimensional tolerance of mean bore diameter within plane" (see **Table 6.4 (1)**). However, expressions such as "within plane" and "mean" are omitted in the conventional drawing notation as shown above. This can lead to several interpretations of the dimensional tolerance.

GPS code "SD" represents "middle" and "ACS" represents "arbitrary cross section." By adding these two codes after the inner bore tolerance, it is possible to clearly express "middle of the measured diameter within an arbitrary cross section", which is the dimensional tolerance of the mean bore diameter within a plane.

Conventional notation

GPS notation

Fig. 6.2 Notation example of bearing bore diameter tolerance

A-72 A-73

<Applying GPS to rolling bearings>

In regards to standards related to roller bearings, ISO 492 specifying the tolerance of radial bearings and ISO 199 specifying the tolerance of thrust bearings were revised with GPS in 2014. In response to this, JIS B 1514-1 and JIS B 1514-2 were also revised in 2017.

<Example of bearing drawing applying GPS>

Fig. 6.3 shows an example of a bearing drawing that uses GPS.

Drawings that use GPS include notations and codes that are different from the ones used in conventional drawings.

For details, please contact **NTN** Engineering.

Fig. 6.3 Example of bearing drawing applying GPS

7. Bearing fits

7.1 Resultant fits

For rolling bearings, it is necessary to fix inner and outer rings on the shaft or in the housing so that relative movement does not occur between fitting surfaces during operation or under load. This relative movement between the mating surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. Types of resultant fit include tight, transition and loose fits, which describe whether or not there is interference between the bearing and the shaft or housing.

The most effective way to fix the mating surfaces between a bearing and shaft or housing is to apply a "tight fit." The advantage of a tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; and when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases.

7.2 The necessity of a proper fit

In some cases, an improper fit may lead to damage and shorten bearing life. Therefore it is necessary to carefully select the proper fit. Some possible bearing failures caused by an improper fit are listed below.

- Raceway cracking, early flaking and displacement of raceway
- Raceway and shaft or housing abrasion caused by creeping and fretting corrosion
- Seizing caused by negative internal clearances
- Increased noise and deteriorated rotational accuracy due to raceway groove deformation

Please refer to "16. Bearing Damage and Corrective Measures" for information concerning diagnosis of these conditions.

7.3 Fit selection

Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of:

- Shaft and housing material, wall thickness, surface finish accuracy, etc.
- Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.)

7.3.1 "Tight fit" or "Loose fit"

(1) For bearing rings under rotating loads, a tight fit is necessary. (Refer to Table 7.1) "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction.

For bearing rings under static loads, on the other hand, a **loose fit** is sufficient. (Example) Rotating inner ring load = the direction of the radial load on the inner ring is rotating relatively

(2) For non-separable bearings, such as deep groove ball bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit.

Table 7.1 Radial load and bearing fit

Design	Bearing rotat	ion	Ring load	Fit
Static load		Inner ring: Rotating		
		Outer ring: Stationary	Rotating inner ring load	Inner ring: Tight fit
Unbalanced load		Inner ring: Stationary	Static outer ring load	Outer ring: Loose fit
		Outer ring: Rotating		
Static load		Inner ring: Stationary		
		Outer ring: Rotating	Static inner ring load	Inner ring: Loose fit
Unbalanced load		Inner ring: Rotating	Rotating outer ring load	Outer ring: Tight fit
		Outer ring: Stationary		

7.3.2 Recommended fits

Bearing fit is governed by the tolerances selected for bearing shaft diameters and housing bore diameters.

Widely used fits for Class 0 tolerance bearings and various shaft and housing bore diameter tolerances are shown in **Fig. 7.1**.

Generally-used, standard fits for most types of bearings and operating conditions are shown in **Tables 7.2** to **7.7**.

Table 7.2: Fits for radial bearings

Table 7.3: Fits for thrust bearings

Table 7.4: Fits for electric motor bearings

Table 7.6: Inch series tapered roller bearings

Fits of (ANSI/ABMA CLASS 4) **Table 7.7**: Inch series tapered roller bearings

Fits of (ANSI/ABMA CLASS 3, CLASS 0)

Table 7.5 shows fits and their numerical values.

For special fits or applications, please consult **NTN** Engineering.

7.3.3 Interference minimum and maximum values

The following points should be considered when it is necessary to calculate the interference for an application:

- Regarding minimum values,
 - 1) interference is reduced by radial loads
 - interference is reduced by differences between bearing temperature and ambient temperature
 - 3) interference is reduced by variation in mating surface
 - 4) interference is reduced by deformation
- The upper limit value should not exceed 1/1 000 of the shaft diameter.

Required interference calculations are shown below.

(1) Mating surface variation and interference

Interference decreases because the mating surface is smoothed by the resultant fit (surface roughness is reduced). The amount

the interference decreases depends on the roughness of the mating surfaces. It is generally necessary to anticipate the following decrease in interference.

For ground shafts: 1.0 to 2.5 μ m For machined shafts: 5.0 to 7.0 μ m

The interference including this decrease amount is called effective interference.

(2) Radial loads and required interference

Interference of the inner ring and shaft decreases when a radial load is applied to the bearing. The interference required for installation to solid shafts is expressed by formulae (7.1) and (7.2) for each load condition.

General applications ($F_r \le 0.3C_{0r}$)

$$\Delta d_{\rm F} = 0.08 (d \cdot F_{\rm f} \, / \, B)^{1/2} \, \, {\rm N} \, \cdots \cdots \cdots (7.1)$$
 Under heavy load conditions $(F_{\rm f} > 0.3 \, C_{0{\rm f}})$ $\Delta d_{\rm F} = 0.02 (F_{\rm f} \, / \, B) \, \, {\rm N} \, \cdots \cdots \cdots (7.2)$ Where:

 $\Delta\,d{\rm F}$: Required effective interference according to radial load $\mu{\rm m}$

 $d = {\sf Bearing\ bore\ mm}$

: Inner ring width mm

Fr : Actual radial load, N

 C_{0r} : Basic static load rating N For solid shafts, please contact **NTN** Engineering.

(3) Temperature difference and required interference

Interference between inner rings and steel shafts is reduced as a result of temperature increases (difference between bearing temperature and ambient temperature, ΔT) caused by bearing rotation. Calculation of the minimum required amount of interference in such cases is shown in formula (7.3).

 $\Delta dT = 0.0015 \cdot d \cdot \Delta T \cdot (7.3)$

 ΔdT : Required effective interference for temperature difference μ m

 ΔT : Difference between inner ring temperature and ambient temperature °C

d: Bearing bore mm

(4) Maximum interference

When bearing rings are installed with an interference fit, tensile or compressive stress may occur along their raceways. If interference is too great, this may cause damage to the rings and reduce bearing life. The maximum stress due to the resultant fit must not exceed approximately 127 MPa for safety. If the value is to be exceeded, consult NTN Engineering.

See section "17.4 Resultant fit surface pressure" for the calculation method of maximum stress due to the resultant fit.

(5) Interference change amount when materials other than steel are used for shafts and housings

When materials other than steel are used for shafts and housings, the fits between the inner ring and the shaft and the outer ring and the housing change because of difference in the expansion coefficient of each material as the temperature rises during the rotation of the bearing. Therefore, it is necessary to set the resultant fit with expansion coefficients in consideration. The calculation formula of the change in interference is shown below.

 $\Delta dTE = (\alpha_1 - \alpha_2) \times d \times \Delta T$

 Δd_{TE} : Change in interference caused by difference in the expansion coefficients mm

 α_1 : Bearing expansion coefficient 1/°C

 α_2 : Shaft and housing expansion coefficient 1/°C

: Reference dimension of resultant fit mm

 ΔT : Temperature increase by bearing rotation °C

(Expansion coefficient: See Table 13.19 in

"13. Bearing Materials.")

7.3.4 Other details

- (1) Large interference fits are recommended for,
- Operating conditions with large vibrations or shock loads
- Applications using hollow shafts or housings with thin walls
- Applications using housings made of light alloys or plastic
- (2) Small interference fits are preferable for,
- Applications requiring high running accuracy
- Applications using small sized bearings or thin walled bearings
- (3) Consideration must also be given to the fact that fit selection will effect internal bearing clearance selection. (refer to page A-88.)
- (4) A particular type of fit is recommended for SL type cylindrical roller bearings. (refer to page C-67.)
- (5) Bearing dimensions are measured and managed at a temperature of 20°C.

Fig 7.1 State of resultant fit

Table 7.2 General standards for radial bearing fits (JIS Class 0, 6X, 6)

Table 7.2 (1) Tolerance class of shafts commonly used for radial bearings (classes 0, 6X and 6)

Condition No.		Ball be	earing	roller l Tapere	lylindrical ler bearing Self-aligning pered roller roller bearing bearing		Shaft tolerance	Remarks	
				haft diam				Class	
		Over	Incl.	Over	Incl.	Over	Incl.		
	45			cal bore b	earing (C	lasses 0,	6X and 6, I		
	Light load ¹⁾ or Fluctuating load	18 100 —	18 100 200 —	40 140	40 140 200		- - -	h5 js6 k6 m6	When greater accuracy is required js5, k5, and m5 may be substituted for js6, k6, and m6.
Inner ring rotational load or load of undetermined direction	Normal load ¹⁾	18 100 140 200 —	18 100 140 200 280 —	- 40 100 140 200	40 100 140 200 400	 40 65 100 140 280	40 65 100 140 280 500	js5 k5 m5 m6 n6 p6	Alteration of inner clearances to accommodate fit is not a consideration with single-row angular contact bearings and tapered roller bearings. Therefore, k5 and m5 may be substituted for k6 and m6.
	Heavy load ¹⁾ or Impact load		_ _ _	50 140 200	140 200 —	50 100 140	100 140 200	n6 p6 r6	Use bearings with larger internal clearances than CN clearance bearings.
Static inner	Inner ring must move easily over shaft		Overall shaft diameter					g6	When greater accuracy is required use g5. For large bearings, f6 will suffice to facilitate movement.
ring load	Inner ring does not have to move easily over shaft		Overall shaft diameter					h6	When greater accuracy is required use h5.
Center a	Center axial load Overall shaft diameter				js6	Generally, shaft and inner rings are not fixed using resultant fits.			
		Tapered	bore bear	ing (class	0) (with	adapter o	r withdra	wal sleeve)	
Full	oad		0	verall sha	ft diamet	er		h9/IT5 ²⁾	h10/IT7 ²⁾ will suffice for power transmitting shafts.

Table 7.2 (2) Fit with shaft (fits for tapered bore bearings (Class 0) with adapter assembly/ withdrawal sleeve)

Full load	All boaring types	Tolerance	h9 / IT5 ²⁾	General applications
Full load	All bearing types	class	H10 / IT7 ²⁾	Transmission shafts, etc.

1) Standards for light loads, normal loads, and heavy loads

Light loads: dynamic equivalent radial load $\leq 0.05 Cr$

Normal loads: $0.05 Cr \le dynamic equivalent radial load \le 0.10 Cr$

Heavy loads: 0.10 Cr < dynamic equivalent radial load

2) IT5 and IT7 show shaft roundness tolerances, cylindricity tolerances, and related values.

Note: All values and fits listed in the above tables are for solid steel shafts.

Table 7.2 (3) Tolerance class of housing bores commonly used for radial bearings (classes 0, 6X and 6)

		Conditions		Housing bore	Remarks	
Housing	Load	d type, etc.	Outer ring axial direction movement 3)	tolerance class		
Single housing		All types of loads	Yes	Н7	G7 can be used for large bearings or bearings with large temperature differential between the outer ring and housing.	
or Divided		Light ¹⁾ or ordinary load ¹⁾	Yes	Н8	_	
housing	Static outer ring load	Shaft and inner ring become hot	Easily	G 7	F7 be used for large bearings or bearings with large temperature differential between the outer ring and housing.	
		Requires precise rotation under light	As a rule, it cannot move.	K6	Primarily applies to roller bearings.	
		or ordinary loads	Yes	Js6	Primarily applies to ball bearings.	
		Requires low noise operation	Yes	H6	_	
	Indeterminate load	Light or ordinary load	Yes	Js7	If high accuracy is required, Js6	
Single housing		Ordinary or heavy load ¹⁾	As a rule, it cannot move.	K7	and K6 are used in place of Js7 and K7.	
		High impact load	No	M7	_	
		Light or fluctuating load	No	M7	_	
	Rotating outer ring load	Ordinary or heavy load	No	N7	Primarily applies to ball bearings.	
	Ting load	Heavy load or large impact load with thin wall housing ²⁾	No	P7	Primarily applies to roller bearings.	

¹⁾ Standards for light loads, normal loads, and heavy loads

 \int Light loads: dynamic equivalent radial load $\leq 0.05~Cr$

 $\stackrel{\checkmark}{\ }$ Normal loads: 0.05 Cr ≤ dynamic equivalent radial load ≤ 0.10 Cr

Heavy loads: 0.10 Cr < dynamic equivalent radial load

3) Indicates whether or not outer ring axial movement is possible with non-separable type bearings.

Note: 1. All values and fits listed in the above tables are for cast iron or steel housings.

2. If only a center axial load is applied to the bearing, select a tolerance class that provides clearance for the outer ring in the radial direction.

A-80

²⁾ The axial direction needs to be secured because the outer ring may move in the shaft direction, causing problems, depending on the use. (Example: planetary gear, etc.)

Table 7.3 Standard fits for thrust bearings (JIS Class 0 and 6) Table 7.3 (1) Shaft fits

Bearing type	Load conditions Centered axial load only		Fit	Shaft diameter mm Over Incl.	Tolerance class
All thrust bearings			Transition fit	Overall shaft diameter	js6 or h6
		Static inner ring load	Transition fit	Overall shaft diameter	js6
Self-aligning roller thrust bearing	Combined load	Rotating inner ring load or Indeterminate load	Transition fit Tight fit	Up to 200 400 to 200 400 or more	k6 or js6 m6 or k6 n6 or m6

Table 7.3 (2) Housing fits

Bearing type	Load conditions		Fit	Tolerance class	Remarks
All thrust bearings	bearings Centered axial load only			Select a tolerance class that will provide clearance between outer ring and housing.	
	Combined load	Static outer ring load	Loose fit	Н8	Greater accuracy required with thrust ball bearings
Self-aligning roller				H7	—
thrust bearing		Indeterminate load or Rotating outer ring load	Transition fit	K7	Normal operating conditions
				M7	For relatively large radial loads

Note: All values and fits listed in the above tables are for cast iron or steel housings.

Table 7.4 Fits for electric motor bearings

	Shaft fi	ts	Housing fits		
Bearing type	Shaft diameter mm Over Incl.	Tolerance class	Housing bore diameter	Tolerance class	
Deep groove ball bearing	~ 18 18 ~ 100 100 ~ 160	j5 k5 m5	All sizes	H6 or J6	
Cylindrical roller bearing	~ 40 40 ~ 160 160 ~ 200	k5 m5 n6	All sizes	H6 or J6	

A-82

Table 7.5 Numeric values associated with fits for radial bearing of class 0 Table 7.5 (1) Shaft fits

Non	ninal	Mean	bore 1)	g5	g6	h5	h6	j5	js5	j6
bearin	g bore	dian	neter	Bearing Shaft						
dian	neter	devi	ation							
C	_	Δa	<i>l</i> mp							
m										
Over	Incl.	Upper	Lower							
3	6	0	-8	4T∼ 9L	4T∼ 12L	8T∼ 5L	8T∼ 8L	11T∼ 2L	10.5T∼ 2.5L	14T∼ 2L
6	10	0	-8	3T∼11L	3T∼ 14L	8T∼ 6L	8T∼ 9L	12T∼ 2L	11T ∼ 3L	15T∼ 2L
10	18	0	-8	2T~14L	2T~ 17L	8T∼ 8L	8T∼11L	13T∼ 3L	12T ~ 4L	16T∼ 3L
18	30	0	-10	3T∼16L	3T∼ 20L	10T∼ 9L	10T~13L	15T∼ 4L	14.5T∼ 4.5L	19T∼ 4L
30	50	0	-12	3T~20L	3T∼ 25L	12T~11L	12T~16L	18T∼ 5L	17.5T∼ 5.5L	23T∼ 5L
50	80	0	-15	5T∼23L	5T∼ 29L	15T~13L	15T~19L	21T∼ 7L	21.5T∼ 6.5L	27T∼ 7L
80	120	0	-20	8T∼27L	8T∼ 34L	20T~15L	20T~22L	26T∼ 9L	27.5T∼ 7.5L	33T∼ 9L
120 140 160	140 160 180	0	-25	11T∼32L	11T∼ 39L	25T~18L	25T~25L	32T~11L	34T ∼ 9L	39T~11L
180 200 225	200 225 250	0	-30	15T∼35L	15T~ 44L	30T~20L	30T∼29L	37T∼13L	40T ~10L	46T∼13L
250 280	280 315	0	-35	18T~40L	18T∼ 49L	35T~23L	35T~32L	42T∼16L	46.5T~11.5L	51T~16L
315 355	355 400	0	-40	22T~43L	22T~ 54L	40T~25L	40T∼36L	47T~18L	52.5T~12.5L	58T~18L
400 450	450 500	0	-45	25T~47L	25T~ 60L	45T~27L	45T~40L	52T~20L	58.5T~13.5L	65T~20L

¹⁾ The above table is not applicable to tapered roller bearings whose bore diameter d is 30 mm or less.

Table 7.5 (2) Housing fits

Tuble 715 (2) Troubing Ites											
	Nom	ninal	Mean	bore 2)	G7	Н6	H7	J6	J7	Js7	K6
t	pearing	g bore	diar	neter	Housing Bearing						
	diam	eter	devi	iation							
	L)	Δ	Dmp							
	mı	m				4		#			 -
	Over	Incl.	Upper	Lower							
	6	10	0	-8	5L∼ 28L	0∼17L	0∼ 23L	4T∼13L	7T∼16L	7.5T~15.5L	7T~ 10L
	10	18	0	-8	6L∼ 32L	0∼19L	0∼ 26L	5T∼ 14L	8T∼18L	9T ∼17L	9T∼10L
	18	30	0	-9	7L∼ 37L	0∼22L	0∼ 30L	5T∼17L	9T∼21L	10.5T~19.5L	11T~11L
	30	50	0	-11	9L∼ 45L	0~27L	0∼ 36L	6T∼21L	11T~25L	12.5T~23.5L	13T~14L
	50	80	0	-13	10L∼ 53L	0~32L	0∼ 43L	6T∼ 26L	12T~31L	15T ∼28L	15T~17L
	80	120	0	-15	12L∼ 62L	0∼37L	0∼ 50L	6T∼31L	13T~37L	17.5T~32.5L	18T∼19L
	120	150	0	-18	14L∼ 72L	0∼43L	0∼ 58L	7T∼ 36L	14T~44L	20T ∼38L	21T~ 22L
	150	180	0	-25	14L∼ 79L	0~50L	0∼ 65L	7T∼ 43L	14T~51L	20T ∼45L	21T~ 29L
	180	250	0	-30	15L∼ 91L	0∼59L	0∼ 76L	7T∼ 52L	16T~60L	23T ∼53L	24T~35L
	250	315	0	-35	17L~104L	0~67L	0∼ 87L	7T~60L	16T∼71L	26T ∼61L	27T~40L
	315	400	0	-40	18L~115L	0∼76L	0∼ 97L	7T∼ 69L	18T∼79L	28.5T~68.5L	29T∼47L
	400	500	0	-45	20L~128L	0∼85L	0∼108L	7T~ 78L	20T~88L	31.5T~76.5L	32T∼ 53L

²⁾ The above table is not applicable to tapered roller bearings whose outside diameter D is 150 mm or less. Note: Fit symbol "L" indicates clearance and "T" indicates interference.

								U	nit: µm
js6	k5	k6	m5	m6	n6	р6	r6	Non	ninal
Bearing Shaft	bearin	_							
								diam	
								C	
								m	
								Over	Incl.
12T ~ 4L	14T~1T	17T~1T	17T∼ 4T	20T∼ 4T	24T∼ 8T	28T~ 12T		3	6
12.5T∼ 4.5L	15T~1T	18T~1T	20T∼ 6T	23T∼ 6T	27T~10T	32T∼ 15T		6	10
13.5T∼ 5.5L	17T~1T	20T∼1T	23T∼ 7T	26T∼ 7T	31T∼12T	37T∼ 18T		10	18
16.5T∼ 6.5L	21T~2T	25T∼2T	27T∼ 8T	31T∼ 8T	38T∼15T	45T∼ 22T		18	30
20T ∼ 8L	25T~2T	30T∼2T	32T∼ 9T	37T∼ 9T	45T∼17T	54T∼ 26T		30	50
24.5T~ 9.5L	30T∼2T	36T∼2T	39T~11T	45T∼ 11T	54T∼ 20T	66T∼ 32T		50	80
31T ∼11L	38T~3T	45T∼ 2T	48T~13T	55T∼ 13T	65T∼23T	79T∼ 37T		80	120
							113T∼ 63T	120	140
37.5T~12.5L	46T∼3T	53T∼3T	58T∼15T	65T∼ 15T	77T~27T	93T∼ 43T	115T~ 65T	140	160
							118T∼ 68T	160	180
							136T∼ 77T	180	200
44.5T~14.5L	54T~4T	63T~4T	67T~17T	76T∼ 17T	90T∼31T	109T∼ 50T	139T∼ 80T	200	225
							143T∼ 84T	225	250
51T ∼16L	62T~4T	71T~4T	78T∼20T	87T∼ 20T	101T∼34T	123T∼ 56T	161T~ 94T	250	280
							165T∼ 98T	280	315
58T ∼18L	69T~4T	80T∼4T	86T~21T	97T∼ 21T	113T~37T	138T~ 62T	184T~108T	315	355
							190T~114T	355	400
65T ∼20L	77T∼5T	90T∼4T	95T∼23T	108T∼ 23T	125T~40T	153T∼ 68T	211T~126T	400	450
							217T~132T	450	500

Unit: μ

				Un	it: μm
K7	M7	N7	P7	Nomi	nal
Housing Bearing	Housing Bearing	Housing Bearing	Housing Bearing	bearing	
				diame	eter
				D	
	— — — — — — — — — — — — — — — — — — —			mn	n
				Over	Incl.
10T∼ 13L	15T∼ 8L	19T∼ 4L	24T~ 1T	6	10
12T∼ 14L	18T∼ 8L	23T∼ 3L	29T∼ 3T	10	18
15T∼ 15L	21T∼ 9L	28T∼ 2L	35T∼ 5T	18	30
18T∼ 18L	25T~ 11L	33T∼ 3L	42T∼ 6T	30	50
21T~ 22L	30T∼ 13L	39T∼ 4L	51T∼ 8T	50	80
25T~ 25L	35T∼ 15L	45T∼ 5L	59T∼ 9T	80	120
28T~ 30L	40T∼ 18L	52T∼ 6L	68T~10T	120	150
28T∼ 37L	40T∼ 25L	52T∼ 13L	68T∼ 3T	150	180
33T~ 43L	46T∼ 30L	60T∼ 16L	79T∼ 3T	180	250
36T∼ 51L	52T∼ 35L	66T∼ 21L	88T∼ 1T	250	315
40T∼ 57L	57T∼ 40L	73T∼ 24L	98T∼ 1T	315	400
45T∼ 63L	63T∼ 45L	80T∼ 28L	108T∼ 0	400	500

Table 7.6 General fit standards for tapered roller bearings using US customary unit (ANSI class 4)
Table 7.6 (1) Fit with shaft

	(=)							Offic. #111
Operating conditions		Nominal bearing bore diameter d mm Over Incl.	toler	ameter ance ds Lower	Shaft diam tolerand	ce	Fit ¹⁾	Remarks
inner	Normal load	\sim 76.2 76.2 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +25 +51 +76	0 0 0	+ 38 + + 64 + +127 + +191 +1	38 76	$38T \sim 13T$ $64T \sim 13T$ $127T \sim 25T$ $191T \sim 38T$	Applicable when a slight impact load is applied as well.
Rotating inner ring load	Heavy load Impact load	\sim 76.2 76.2 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +25 +51 +76	0 0 0	Minimum i	ean in in terfo mato	erence is $25~\mu$ m.	nm of inner ring bore diameter. Folerance for the shaft is aring bore diameter.
Rotating outer ring load	Inner ring does not have to move easily over shaft with an ordinary load.	\sim 76.2 76.2 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +25 +51 +76	0 0 0	+ 13 + 25 + 51 + 76	0000	$13T \sim 13L$ $25T \sim 25L$ $51T \sim 51L$ $76T \sim 76L$	Not applicable when
Rotatin ring	Inner ring must move easily over shaft with an ordinary load.	\sim 76.2 76.2 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +25 +51 +76	0 0 0	0 -	13 25 51 76	$0 \sim 13L$ $0 \sim 51L$ $0 \sim 102L$ $0 \sim 152L$	impact load is applied.

Table 7.6 (2) Fit with housing

labi	e 7.6 (2) Fit With					Unit: µm		
	Operating conditions	Nominal bearing outside diameter D mm Over Incl.	$egin{array}{cccc} extbf{diameter} & extbf{dimensional} & extbf{constant} & extbf{c$		dian toler	ng bore neter rance	Fit ¹⁾	Types of fits
oad	When used on floating or fixed side	\sim 76.2 76.2 \sim 127.0 127.0 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+25 +25 +25 +51 +76	0 0 0 0	+ 76 + 76 + 76 +152 +229	+ 51 + 51 + 51 +102 +152	$25L \sim 76L$ $25L \sim 76L$ $25L \sim 76L$ $51L \sim 152L$ $76L \sim 229L$	Loose fit
Rotating inner ring load	When outer ring is adjusted in the axial direction	\sim 76.2 76.2 \sim 127.0 127.0 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+25 +25 +25 +51 +76	0 0 0 0	+ 25 + 25 + 51 + 76 +127	0 0 0 + 25 + 51	$25T \sim 25L$ $25T \sim 25L$ $25T \sim 51L$ $25T \sim 76L$ $25T \sim 127L$	Transition fit
	When outer ring is not adjusted in the axial direction	\sim 76.2 76.2 \sim 127.0 127.0 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+25 +25 +25 +51 +76	0 0 0 0	- 13 - 25 - 25 - 25 - 25	- 51	$64T \sim 13T$ $76T \sim 25T$ $76T \sim 25T$ $127T \sim 25T$ $178T \sim 25T$	Tight fit
Rotating outer ring load	When outer ring is not adjusted in the axial direction	\sim 76.2 76.2 \sim 127.0 127.0 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+25 +25 +25 +51 +76	0 0 0 0	- 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	64T ~ 13T 76T ~ 25T 76T ~ 25T 127T ~ 25T 178T ~ 25T	ngnent

¹⁾ Fit symbol "L" indicates clearance and "T" indicates interference.

Table 7.7 General fit standards for tapered roller bearings using US customary unit (ANSI classes 3 and 0) Table 7.7 (1) Fit with shaft

					Offit. #11
	Operating conditions	Nominal bearing bore diameter d mm Over Incl.	Bore diameter tolerance Δds Upper Lower	Shaft diameter tolerance Upper Lower	Fit ¹⁾
Rotating inner ring load	Precision machine tool spindles	~ 304.8 304.8 ~ 609.6 609.6 ~ 914.4	+13 0 +25 0 +38 0	+ 30 + 18 + 64 + 38 +102 + 64	30T ~ 5T 64T ~ 13T 102T ~ 25T
Rotatin ring	Heavy load Shock load High-speed rotation	\sim 304.8 \sim 609.6 \sim 914.4	+13 0 +25 0 +38 0	Minimum interform 0.25 μ m per 1 inner ring bore of	mm of
Rotating outer ring load	Precision machine tool spindles	~ 304.8 304.8 ~ 609.6 609.6 ~ 914.4	+13 0 +25 0 +38 0	+ 30 + 18 + 64 + 38 +102 + 64	30T ~ 5T 64T ~ 13T 102T ~ 25T

Note: For class 0, bearing bore diameter d applies to 304.8 mm or less.

Table 7.7 (2) Fit with housing

- 1	la i	4.	11	n

	Operating conditions	Nominal bearing bore diameter D mm Over Incl.	dimer toler Δ			ng bore neter rance	Fit ¹⁾	Types of fits
	When used for floating-side	\sim 152.4 152.4 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +13 +25 +38	0 0 0	+38 +38 +64 +89	+25 +25 +38 +51	13L ~ 38L 13L ~ 38L 13L ~ 64L 13L ~ 89L	Loose fit
Rotating inner ring load	When used for fixed side	\sim 152.4 152.4 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +13 +25 +38	0 0 0 0	+25 +25 +51 +76	+13 +13 +25 +38	$\begin{array}{c} 0 \sim 25L \\ 0 \sim 25L \\ 0 \sim 51L \\ 0 \sim 76L \end{array}$	Loose III
Rotating inr	When outer ring is adjusted in axial direction	\sim 152.4 152.4 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +13 +13 +38	0 0 0	+13 +25 +25 +38	0 0 0	$13T \sim 13L$ $13T \sim 25L$ $25T \sim 25L$ $38T \sim 38L$	Transition fit
	When outer ring is not adjusted in axial direction	\sim 152.4 152.4 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +13 +25 +38	0 0 0	0 0 0 0	-13 -25 -25 -38	$25T \sim 0$ $38T \sim 0$ $51T \sim 0$ $76T \sim 0$	
Rotating outer ring load	Normal load When outer ring is not adjusted in the axial direction	\sim 152.4 152.4 \sim 304.8 304.8 \sim 609.6 609.6 \sim 914.4	+13 +13 +25 +38	0 0 0	-13 -13 -13 -13	-25 -38 -38 -51	38T ~ 13T 51T ~ 13T 64T ~ 13T 89T ~ 13T	Tight fit

¹⁾ Fit symbol "L" indicates clearance and "T" indicates interference. Note: For class 0, bearing outer diameter D applies to 304.8 mm or less.

A-86 A-87

8. Bearing internal clearance and preload

8.1 Bearing internal clearance

Bearing internal clearance is the amount of internal free movement before mounting. As shown in Fig. 8.1, when either the inner ring or the outer ring is fixed and the other ring is free to move, displacement can take place in either an axial or radial direction. This amount of displacement (radially or axially) is termed the internal clearance and, depending on the direction, is called the radial internal clearance or the axial internal clearance.

When the internal clearance of a bearing is measured, a slight measurement load is applied to the raceway so the internal clearance may be measured accurately. However, at this time, a slight amount of elastic deformation of the bearing occurs under the measurement load, and the clearance measurement value (measured clearance) is slightly larger than the true clearance. This difference between the true bearing clearance and the increased amount due to the elastic deformation must be compensated for. These compensation values are given in Table 8.1. For roller bearings the amount of elastic deformation is small enough to be ignored. The internal clearance values for each bearing class are shown in Tables 8.8 through 8.16.

axial internal clearance $= \delta_1 + \delta_2$ Fig. 8.1 Internal clearance

8.2 Selection of internal clearance

The internal clearance of a bearing under operating conditions (effective clearance) is usually smaller than the initial clearance before being installed and operated. This is due to several factors including bearing fit, the difference in temperature between the inner and outer rings, etc. As a bearing's operating clearance has an effect on bearing life, heat generation, vibration, noise, etc.; care must be taken in selecting the most suitable operating clearance.

8.2.1 Criteria for selecting bearing internal clearance

A bearing's life is theoretically at its maximum when operating clearance is slightly negative in steady operation. However, in reality it is difficult to constantly maintain this optimal condition. If the negative clearance becomes larger by fluctuating operating conditions, heat will be produced and the life will decrease severely. Under normal circumstances, a study should be performed to select an operating clearance slightly larger than zero. For ordinary operating conditions, use fitting for ordinary loads. If rotational speed and operating temperature are ordinary, selecting normal clearance enables you to obtain the proper operating clearance.

Table 8.2 gives examples applying internal clearances other than CN (normal) clearance.

For the relationship between clearance and life, see the section of "3.8 Clearance and life."

Table 8.1 Adjustment of radial internal clearance based on measured load (deep groove ball bearing)

Nominal bearing bore diameter mm		Measuring Load N	Adjustment of internal clearance				
Over	Incl.		C2	CN	С3	C4	C5
10(incl	luded) 18	24.5	3~4	4	4	4	4
18	50	49	4~5	5	6	6	6
50	200	147	6~8	8	9	9	9

Table 8.2 Examples of applications where bearing clearances other than CN (normal) clearance are used

Operating conditions	Applications	Selected clearance
With a heavy or	Railway vehicle axles	C3
shock load, high fit.	Vibration screens	C3, C4
With an indeterminate load, both inner and	Railway vehicle traction motors	C4
outer rings are tight fit.	Tractors and final reduction gear	C4
Shaft or inner ring	Paper making machines and driers	C3, C4
is heated.	Table rollers for rolling mill	C3
Required low noise and vibration when rotating.	Small electric motors	C2, CM
Adjustment of clearance to minimize shaft runout.	Main spindles of lathes (Double-row cylindrical roller bearings)	C9NA, C0NA
Loose fit for both inner and outer rings.	Roll neck of steel mill	C2

8.2.2 Calculation of operating clearance

Operating clearance of a bearing can be calculated from initial bearing internal clearance and considering the decrease in clearance due to fitting and the difference in temperature of the inner and outer rings.

$$\Lambda_{e} = \Delta_{0} - (\delta_{f} + \delta_{f}) = \Delta_{f} - \delta_{f} \cdots (8.1)$$

Where:

 Δ_e : Effective internal clearance, mm

 Δ_0 : Bearing internal clearance (initial), mm

Δf: Residual clearance (clearance after preloading), mm

 $\delta_{\rm f}$: Reduced amount of clearance due to fitting, mm

 $\delta_{\rm t}$: Reduced amount of clearance due to temperature differential of inner and outer rings, mm

(1) Reduced clearance due to fitting

When bearings are installed with interference fits on shafts and in housings, the inner ring will expand and the outer ring will contract; thus reducing the bearings' internal clearance.

The amount of expansion or contraction varies depending on the shape of the bearing, the shape of the shaft or housing, dimensions of the respective parts, and the type of materials used. The differential can range from approximately 70% to 90% of the effective interference.

$$\delta_{\rm f} = (0.70 \sim 0.90) \, \Delta \, d_{\rm eff} \cdots (8.2)$$

 $\delta_{\rm f}$: Reduced amount of clearance due to interference, mm

 $\Delta d_{ ext{eff}}$: Effective interference, mm

(2) Residual clearance

When the reduced clearance due to interference is calculated using the expansion rate and the contraction rate of each bearing, the residual clearance is calculated by the formula below.

1) Calculation considering distribution
Assume that the initial clearance, bearing inner ring bore diameter, bearing outer diameter outer diameter, bearing outer diameter, and housing bore diameter follow the normal distribution.
The residual clearance is generally calculated as the range of percent defective.

When each dimension and clearance follow the normal distribution and the percent defective is 0.26% (standard range = $\pm 3\,\sigma$), residual clearance Δ_f can be represented by the formula below.

$$\Delta_{f} = \Delta_{fm} \pm 3 \sigma_{\Delta f} \cdots (8.3)$$
Where:

 Δ_{fm} : Average value of standard clearance, mm

 $\sigma_{\Delta f}$: Standard deviation of residual clearance

For the average values and standard deviation of residual clearance, see **Table 8.3** and **Table 8.4**.

A-89

2) Calculation by direct sum
When the use condition is severe and calculation
is to be done under the worst condition,
the maximum and minimum values of each
dimension are used for direct sum.

$$\Delta f_{\text{max}} = \Delta_{0 \text{ max}} - \lambda_{i} \Delta_{d \text{ min}} - \lambda_{o} \Delta_{D \text{ min}}$$

$$\Delta f_{\text{min}} = \Delta_{0 \text{ min}} - \lambda_{i} \Delta_{d \text{ max}} - \lambda_{o} \Delta_{D \text{ max}}$$

$$\left. \left. \right\} (8.4)$$

 $\begin{array}{ll} \Delta_{\text{f max}} \ \Delta_{\text{f min}} & : \text{Maximum and minimum} \\ & \text{values of residual} \end{array}$

clearance. mm

 $\Delta_{\,\text{O max}}\,\,\Delta_{\,\text{O min}}$: Maximum and minimum values

of initial clearance, mm

 $\Delta_{d \max} \Delta_{d \min}$: Maximum and minimum values of inner ring interference, mm

 $\Delta_{\it D\,max}~\Delta_{\it D\,min}$: Maximum and minimum values of outer ring interference, mm

 $\lambda_i \quad \lambda_o$: Inner ring expansion rate, outer

 $ring\ contraction\ rate$

Table 8.3 Average value and standard deviation of residual clearance

Inner ring fit condition	Outer ring fit condition	$\frac{\Delta_{\text{fm}}}{\text{(Average value of residual clearance)}}$	$\sigma_{\Delta f}$ (Standard deviation of residual clearance)
Tight fit	Loose fit	Δ 0m $-\lambda$ I \cdot Δ d m	$\sqrt{\sigma_{\Delta 0}^2 + \lambda_{I}^2 \cdot \sigma_{\Delta d}^2}$
rigiit iit	Tight fit	Δ 0m $-\lambda$ I \cdot Δ dm $-\lambda$ 0 \cdot Δ Dm	$\sqrt{\sigma_{\Delta 0}^2 + \lambda_1^2 \cdot \sigma_{\Delta d}^2 + \lambda_0^2 \cdot \sigma_{\Delta D}^2}$
Loose fit	Loose fit	∆ 0m	$\sigma_{\Delta 0}$
Loose III	Tight fit	$\Delta_{Om} - \lambda_{O} \cdot \Delta_{Dm}$	$\sqrt{\sigma_{\Delta0}^2 + \lambda_0^2 \cdot \sigma_{\Delta D}^2}$

Table 8.4 Symbols and formulas used for calculation

		Average value	Standard deviation	Standard range			
Shaft diameter	D_{S}	D_{sm}	$\sigma_{DS} = \frac{R_{DS}}{6}$	R_{DS}			
Inner ring bore diameter	d	d_{m}	$\sigma_d = \frac{R_d}{6}$	R_d			
Inner ring interference	Δ_d	$\Delta_{d\mathrm{m}} = D_{\mathrm{sm}} - d_{\mathrm{m}}$	$\sigma_{\Delta d} = \sqrt{\sigma_{Ds}^2 + \sigma_{d}^2}$				
Housing bore diameter	dh	d_{hm}	$\sigma_{dh} = \frac{R_{dh}}{6}$	R_{d} h			
Outer ring outer diameter	D	D_{m}	$\sigma_D = \frac{R_D}{6}$	R_D			
Outer ring interference	Δ_D	$\Delta_{D\mathrm{m}} = D_{\mathrm{m}} - d_{\mathrm{hm}}$	$\sigma_{\Delta D} = \sqrt{\sigma_{D}^2 + \sigma_{dh}^2}$				
Initial clearance	Δ0	Δ 0m	$\sigma_{\Delta 0} = \frac{R_{\Delta 0}}{6}$	$R_{\Delta 0}$			
Residual clearance	Δf	Δ fm	σ Δf				
Inner ring expansion rate	λ_{I}	Con Table 9 F					
Outer ring contraction rate	λ_{\circ}	See Table 8.5					

Note: When the linear expansion coefficient difference or the temperature difference of the outer ring and the housing or the inner ring and the shaft are to be considered, it is necessary to first calculate using the bearing inner ring bore diameter, bearing outer ring outer diameter, shaft outer diameter, and housing bore diameter before and after the expansion/contraction and then calculate the expansion rate of the raceway and the effective interference.

Table 8.5 Expansion rate and contraction rate of raceway diameter

Fit condition	Calculation item	Calculation formula	Symbol (Unit: N, mm)
Fit of inner ring and shaft (when the inner ring and the shaft are solid steel)	Inner ring	$\lambda_{\rm I} = \frac{d}{D_{\rm i}}$	$d:$ Inner ring bore diameter or shaft diameter $d_{\mathtt{S}}:$ Hollow shaft inner diameter $D_{\mathtt{i}}:$ Inner ring average raceway diameter (refer to Table 8.7)
Fit of inner ring and hollow shaft (when the inner ring and the shaft are solid steel)	expansion rate	$\lambda_{\rm I} = \frac{d}{D_{\rm i}} \cdot \frac{\left\{1 - \left(\frac{d_{\rm s}}{d}\right)^2\right\}}{1 - \left\{\left(\frac{d}{D_{\rm i}}\right)^2 \cdot \left(\frac{d_{\rm s}}{d}\right)^2\right\}}$	$\phi ds \phi d \phi Di$
Fit of outer ring and housing (when the outer	Outer ring contraction rate	$\lambda_{o} = \frac{D_{e}}{D} \cdot \frac{\left\{1 - \left(\frac{D}{D_{h}}\right)^{2}\right\}}{1 - \left\{\left(\frac{D_{e}}{D}\right)^{2} \cdot \left(\frac{D}{D_{h}}\right)^{2}\right\}}$	$\begin{array}{c} D : \text{Outer ring outer diameter, housing} \\ \text{bore diameter} \\ D_\text{h} : \text{Housing outer diameter} \\ D_\text{e} : \text{Outer ring average raceway diameter} \\ \text{(refer to Table 8.7)} \end{array}$
ring and the housing are solid steel)	Outer ring contraction rate $D_h = \infty$	$\lambda_{o} = \frac{D_{e}}{D}$	ϕD e ϕD ϕD h

Table 8.6 Fit of two cylinders (general expression)

Calculation item	Calculation formula	Symbol (Unit: N, mm)
Expansion rate of outer cylinder outer diameter	$\lambda_{1} = \frac{E_{2}\left(\frac{\left(d_{1}^{2} + d_{2}^{2}\right)}{\left(d_{1}^{2} - d_{2}^{2}\right)} + 1\right)}{E_{2}\left\{\frac{\left(d_{1}^{2} + d_{2}^{2}\right)}{\left(d_{1}^{2} - d_{2}^{2}\right)} + \nu_{1}\right\} + E_{1}\left\{\frac{\left(d_{2}^{2} + d_{3}^{2}\right)}{\left(d_{2}^{2} - d_{3}^{2}\right)} - \nu_{2}\right\}} \cdot \frac{d_{2}}{d_{1}}$	E_1, E_2 : Longitudinal elastic modulus of outer and inner cylinders ν_1, ν_2 : Poisson's ratio of outer and inner cylinders
Contraction rate of inner cylinder bore diameter	$\lambda_{2} = \frac{E_{1} \left(\frac{(d_{2}^{2} + d_{3}^{2})}{(d_{2}^{2} - d_{3}^{2})} + 1 \right)}{E_{2} \left\{ \frac{(d_{1}^{2} + d_{2}^{2})}{(d_{1}^{2} - d_{2}^{2})} + \nu_{1} \right\} + E_{1} \left\{ \frac{(d_{2}^{2} + d_{3}^{2})}{(d_{2}^{2} - d_{3}^{2})} - \nu_{2} \right\}} \cdot \frac{d_{3}}{d_{2}}$	\$\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d\d

Note: Table 13.6 (A-143) in the section of "13. Bearing materials" shows the physical property values of the main materials.

Table 8.7 Average raceway diameter (approximate expression)

Poprin	a tuno	Average race	way diameter
Bearin	g type	Inner ring	Outer ring
Ball bearing	All types	1.05 $\frac{4d+D}{5}$	0.95 $\frac{d+4D}{5}$
	12	1.03 $\frac{3d+D}{4}$	$0.97 \frac{d+2D}{3}$
Self-aligning ball bearing	13, 22	1.03 $\frac{3d+D}{4}$	$0.97 \frac{d+3D}{4}$
	23	1.03 $\frac{4d+D}{5}$	$0.97 \frac{d+4D}{5}$
Cylindrical roller bearing 1)	All types	1.05 $\frac{3d+D}{5}$	$0.98 \frac{d+3D}{4}$
Calf alimpia and an harming	Type B, type C, type 213	$\frac{2d+D}{3}$	$0.97 \frac{d+4D}{5}$
Self-aligning roller bearing	ULTAGE series	$\frac{3d+D}{4}$	$0.98 \frac{d + 5D}{6}$
Tapered roller bearing	All types	$\frac{3d+D}{4}$	$\frac{d+3D}{4}$

¹⁾ Average raceway diameter values shown for double-flange type.

(3) Reduced internal clearance due to inner/ outer ring temperature difference.

During operation, normally the outer ring will range from 5 to 10°C cooler than the inner ring or rotating parts. However, if the cooling effect of the housing is large, the shaft is connected to a heat source, or a heated substance is conducted through the hollow shaft; the temperature difference between the two rings can be even greater. The amount of internal clearance is thus further reduced by the differential expansion of the two rings.

$$\delta_t = \alpha \cdot \Delta T \cdot D_0 \cdot \cdots (8.5)$$

 $\delta_{\,t}\,$: Reduced amount of clearance due to temperature differential of inner and outer rings, mm

 $\alpha~$: Bearing material expansion coefficient 12.5 \times 10⁻⁶/°C

 $\Delta\,T$: Inner/outer ring temperature differential, °C

 D_0 : Outer ring raceway diameter, mm

Outer ring raceway diameter, D_0 , values can be approximated by using formula (8.6) or (8.7). For ball bearings and spherical roller bearings, $D_0 = 0.20(d + 4.0D) \cdots (8.6)$

For roller bearings (except spherical roller bearings).

 $D_0 = 0.25(d + 3.0D) \cdots (8.7)$

d: Bearing bore diameter, mm

D: Bearing outside diameter, mm

For the ULTAGE series bearings, consult **NTN** Engineering.

Note that the formula in item 8.2.2 only applies to steel bearings, shafts and housings.

"Operating clearance calculation (based on 3σ)" can be done by using the bearing technique calculation tool on the **NTN** website (https://www.ntnglobal.com).

Table 8.8 Radial internal clearance of deep groove ball bearings

Unit: μ m

				Offic. p		
Nominal bearing bore diameter d mm	C2	CN	C3	C4	C5	
Over Incl.	Min. Max.					
- 2.5	0 6	4 11	10 20			
2.5 6	0 7	2 13	8 23			
6 10	0 7	2 13	8 23	14	20	
10 18	0 9	3 18	11 25	18 33	25 45	
18 24	0 10	5 20	13 28	20 36	28 48	
24 30	1 11	5 20	13 28	23 41	30 53	
30 40	1 11	6 20	15 33	28 46	40 64	
40 50	1 11	6 23	18 36	30 51	45 73	
50 65	1 15	8 28	23 43	38 61	55 90	
65 80	1 15	10 30	25 51	46 71	65 105	
80 100	1 18	12 36	30 58	53 84	75 120	
100 120	2 20	15 41	36 66	61 97	90 140	
120 140	2 23	18 48	41 81	71 114	105 160	
140 160	2 23	18 53	46 91	81 130	120 180	
160 180	2 25	20 61	53 102	91 147	135 200	
180 200	2 30	25 71	63 117	107 163	150 230	
200 225	2 35	25 85	75 140	125 195	175 265	
225 250	2 40	30 95	85 160	145 225	205 300	
250 280	2 45	35 105	90 170	155 245	225 340	
280 315	2 55	40 115	100 190	175 270	245 370	
315 355	3 60	45 125	110 210	195 300	275 410	
355 400	3 70	55 145	130 240	225 340	315 460	
400 450	3 80	60 170	150 270	250 380	350 510	
450 500	3 90	70 190	170 300	280 420	390 570	
500 560	10 100	80 210	190 330	310 470	440 630	
560 630	10 110	90 230	210 360	340 520	490 690	

A-92 A-93

Unit: μ m

Table 8.9 Radial internal clearance of self-aligning ball bearings

Nominal bearing bore diameter			Cylindrical bore bearing									
		ameter mm	C2		CN		C	C3		:4	C5	
	Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	2.5	6	1	8	5	15	10	20	15	25	21	33
	6	10	2	9	6	17	12	25	19	33	27	42
	10	14	2	10	6	19	13	26	21	35	30	48
	14	18	3	12	8	21	15	28	23	37	32	50
	18	24	4	14	10	23	17	30	25	39	34	52
	24	30	5	16	11	24	19	35	29	46	40	58
	30	40	6	18	13	29	23	40	34	53	46	66
	40	50	6	19	14	31	25	44	37	57	50	71
	50	65	7	21	16	36	30	50	45	69	62	88
	65	80	8	24	18	40	35	60	54	83	76	108
	80	100	9	27	22	48	42	70	64	96	89	124
	100	120	10	31	25	56	50	83	75	114	105	145
	120	140	10	38	30	68	60	100	90	135	125	175
	140	160	15	44	35	80	70	120	110	161	150	210

Table 8.10 (1) Radial internal clearance for duplex angular contact ball bearings $_{\rm Unit:\ \mu m}$

4644									6-	OTHE	. µ III	
	Nom bearing diam d r Over	g bore leter		Max.	Min.		C Min.			Max.		:4 Max.
	- 10 18	10 18 30	3 3	8 8 10	6 6 6	12 12 12	8 8 10	15 15 20	15 15 20	22 24 32	22 30 40	30 40 55
	30 50 80	50 80 100	3 3 3	10 11 13	8 11 13	14 17 22	14 17 22	25 32 40	25 32 40	40 50 60	55 75 95	75 95 120
	100 120 150 180	120 150 180 200	3 3 3	15 16 18 20	15 16 18 20	30 33 35 40	30 35 35 40	50 55 60 65	50 55 60 65	75 80 90 100	110 130 150 180	170 200

Note: The clearance group in the table is applied only to contact angles in the table below.

Contact angle symbol	Nominal contact angle	Applicable clearance ²⁾
С	15°	C1, C2
A ¹⁾	30°	C2, CN, C3
В	40°	CN, C3, C4

¹⁾ Not indicated for bearing number.

Table 8.10 (2) Radial internal clearance of double row angular contact ball bearings Unit: //m

											. µ. 1111
bearin dian	ninal g bore neter mm Incl.		. Max.	C Min.		C Min.		C Min.		C Min.	
100	only	0	10	5	15	10	21	16	28	24	36
10	18	1	11	6	16	12	23	19	31	28	40
18	24	1	11	6	16	13	24	21	33	31	43
24	30	1	13	6	19	13	26	21	35	31	45
30	40	2	15	7	22	15	30	24	39	35	50
40	50	2	15	9	24	17	32	28	45	40	57
50	65	0	15	7	24	16	33	28	48	41	61
65	80	1	17	11	31	21	42	34	56	50	74
80	100	3	20	13	36	25	49	40	65	58	67

Table 8.11 Radial internal clearance of bearings for electric motor $U_{\text{onit: }\mu\text{m}}$

	~~~		Unit: $\mu$ m		
Nominal	bearing	Rad	lial interna	l clearanc	e CM
bore di			groove		ndrical
d r	nm	ball b	earing	roller	bearing
Over	Incl.	Min.	Max.	Min.	Max.
10	18	4	11	_	_
18	24	5	12	_	_
24	30	5	12	15	30
30	40	9	17	15	30
40	50	9	17	20	35
50	65	12	22	25	40
65	80	12	22	30	45
80	100	18	30	35	55
100	120	18	30	35	60
120	140	24	38	40	65
140	160	24	38	50	80
160	180	_	_	60	90
180	200	_	_	65	100

Note: 1. Suffix CM is added to bearing numbers. Example: 6205 ZZ CM

Nominal bearing Tapered bore bearing bore diameter C2 CN С3 C4 C5 d mm Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Incl. Over 2.5 15 24 

Table 8.12 Interchangeable radial internal clearance for cylindrical roller bearing (cylindrical bore)

	//m

Nominal bearing bore diameter	C2	CN	С3	C4	C5	
d mm Over Incl.	Min. Max.					
- 10	0 25	20 45	35 60	50 75		
10 24	0 25	20 45	35 60	50 75	65 90	
24 30	0 25	20 45	35 60	50 75	70 95	
30 40	5 30	25 50	45 70	60 85	80 105	
40 50	5 35	30 60	50 80	70 100	95 125	
50 65	10 40	40 70	60 90	80 110	110 140	
65 80	10 45	40 75	65 100	90 125	130 165	
80 100	15 50	50 85	75 110	105 140	155 190	
100 120	15 55	50 90	85 125	125 165	180 220	
120 140	15 60	60 105	100 145	145 190	200 245	
140 160	20 70	70 120	115 165	165 215	225 275	
160 180	25 75	75 125	120 170	170 220	250 300	
180 200	35 90	90 145	140 195	195 250	275 330	
200 225	45 105	105 165	160 220	220 280	305 365	
225 250	45 110	110 175	170 235	235 300	330 395	
250 280	55 125	125 195	190 260	260 330	370 440	
280 315	55 130	130 205	200 275	275 350	410 485	
315 355	65 145	145 225	225 305	305 385	455 535	
355 400	100 190	190 280	280 370	370 460	510 600	
400 450	110 210	210 310	310 410	410 510	565 665	
450 500	110 220	220 330	330 440	440 550	625 735	

A-94 A-95

For information concerning clearance other than applicable clearance, please contact NTN Engineering.

^{2.} Clearance not interchangeable for cylindrical roller bearings.

Unit:  $\mu$ m

Table 8.13 Non-interchangeable radial internal clearance for cylindrical roller bearing

	l bearing					Су	lindrical b	ore bear	ing				
	iameter mm Incl.	C1 Min.	NA Max.	C2 Min.	C2NA Min. Max.		<b>\</b> 1) Max.	C3 Min.	BNA Max.	C4 Min.	NA Max.	C5 Min.	NA Max.
_	10	5	10	10	20	20	30	35	45	45	55	—	—
10	18	5	10	10	20	20	30	35	45	45	55	65	75
18	24	5	10	10	20	20	30	35	45	45	55	65	75
24	30	5	10	10	25	25	35	40	50	50	60	70	80
30	40	5	12	12	25	25	40	45	55	55	70	80	95
40	50	5	15	15	30	30	45	50	65	65	80	95	110
50	65	5	15	15	35	35	50	55	75	75	90	110	130
65	80	10	20	20	40	40	60	70	90	90	110	130	150
80	100	10	25	25	45	45	70	80	105	105	125	155	180
100	120	10	25	25	50	50	80	95	120	120	145	180	205
120	140	15	30	30	60	60	90	105	135	135	160	200	230
140	160	15	35	35	65	65	100	115	150	150	180	225	260
160	180	15	35	35	75	75	110	125	165	165	200	250	285
180	200	20	40	40	80	80	120	140	180	180	220	275	315
200	225	20	45	45	90	90	135	155	200	200	240	305	350
225	250	25	50	50	100	100	150	170	215	215	265	330	380
250	280	25	55	55	110	110	165	185	240	240	295	370	420
280	315	30	60	60	120	120	180	205	265	265	325	410	470
315	355	30	65	65	135	135	200	225	295	295	360	455	520
355	400	35	75	75	150	150	225	255	330	330	405	510	585
400	450	45	85	85	170	170	255	285	370	370	455	565	650
450	500	50	95	95	190	190	285	315	410	410	505	625	720

¹⁾ For bearings with normal clearance, only NA is added to bearing numbers. Example: NU310NA

Table 8.14 Axial internal clearance for double row and duplex tapered roller bearings (metric series)

ı		al bearing				Contact α ≦	27° ( <i>e</i> ≦0.76	i)		
		liameter mm	С	:2	(	CN	(	C3		C4
	Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	18	24	25	75	75	125	125	170	170	220
	24	30	25	75	75	125	145	195	195	245
	30	40	25	95	95	165	165	235	210	280
	40	50	20	85	85	150	175	240	240	305
	50	65	20	85	110	175	195	260	280	350
	65	80	20	110	130	220	240	325	325	410
	80	100	45	150	150	260	280	390	390	500
	100	120	45	175	175	305	350	480	455	585
	120	140	45	175	175	305	390	520	500	630
	140	160	60	200	200	340	400	540	520	660
	160	180	80	220	240	380	440	580	600	740
	180	200	100	260	260	420	500	660	660	820
	200	225	120	300	300	480	560	740	720	900
	225	250	160	360	360	560	620	820	820	1 020
	250	280	180	400	400	620	700	920	920	1 140
	280	315	200	440	440	680	780	1 020	1 020	1 260
	315	355	220	480	500	760	860	1 120	1 120	1 380
	355	400	260	560	560	860	980	1 280	1 280	1 580
	400	500	300	600	620	920	1 100	1 400	1 440	1 740
	500	560	350	650	750	1 050	1 250	1 550	1 650	1 950
	560	630	400	700	850	1 150	1 400	1 700	1 850	2 150

Note: 1. This table applies to bearings contained in the catalog. For information concerning other bearings or bearings using US customary units, please contact NTN Engineering.

Tapered bore bearing	Nominal bearing

	Tapered bore bearing												
C91	NA ²⁾	C0	NA ²⁾	C1	.NA	C2	NA	N	<b>A</b> ¹⁾	СЗ	NA		<b>ameter</b> mm
Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Over	Incl.
5 5 5	5 10 10	7 7 7	17 17 17	10 10 10	20 20 20	20 20 20	30 30 30	35 35 35	45 45 45	45 45 45	55 55 55	10 18	10 18 24
5	10	10	20	10	25	25	35	40	50	50	60	24	30
5	12	10	20	12	25	25	40	45	55	55	70	30	40
5	15	10	20	15	30	30	45	50	65	65	80	40	50
5	15	10	20	15	35	35	50	55	75	75	90	50	65
10	20	15	30	20	40	40	60	70	90	90	110	65	80
10	25	20	35	25	45	45	70	80	105	105	125	80	100
10	25	20	35	25	50	50	80	95	120	120	145	100	120
15	30	25	40	30	60	60	90	105	135	135	160	120	140
15	35	30	45	35	65	65	100	115	150	150	180	140	160
15	35	30	45	35	75	75	110	125	165	165	200	160	180
20	40	30	50	40	80	80	120	140	180	180	220	180	200
20	45	35	55	45	90	90	135	155	200	200	240	200	225
25	50	40	65	50	100	100	150	170	215	215	265	225	250
25	55	40	65	55	110	110	165	185	240	240	295	250	280
30	60	45	75	60	120	120	180	205	265	265	325	280	315
30	65	45	75	65	135	135	200	225	295	295	360	315	355
35	75	50	90	75	150	150	225	255	330	330	405	355	400
45	85	60	100	85	170	170	255	285	370	370	455	400	450
50	95	70	115	95	190	190	285	315	410	410	505	450	500

²⁾ C9NA, C0NA and C1NA clearances are applied only to precision bearings of JIS Class 5 and higher

	Contact $\alpha > 27^{\circ} (e > 0.76)$ Nominal bearing												
	C2		:N	(			4	bore d	iameter mm				
Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Over	Incl.				
10	30	30	50	50	70	70	90	18	24				
10	30	30	50	60	80	80	100	24	30				
10	40	40	70	70	100	90	120	30	40				
10	40	40	70	80	110	110	140	40	50				
10	40	50	80	90	120	130	160	50	65				
10	50	60	100	110	150	150	190	65	80				
20	70	70	120	130	180	180	230	80	100				
20	70	70	120	150	200	210	260	100	120				
20	70	70	120	160	210	210	260	120	140				
30	100	100	160	180	240	240	300	140	160				
—	—	—	—	—	—	—	—	160	180				
—	—	—	—	—	—	—	—	180	200				
_	_	_	=	_	_	_	_	200	225				
_	_	_		_	_	_	_	225	250				
_	_	_		_	_	_	_	250	280				
_	_	_	_	_	_	_	_	280	315				
_	_	_	_	_	_	_	_	315	355				
_	_	_	_	_	_	_	_	355	400				
_ _ _		_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	400 500 560	500 560 630				

A-96 A-97

^{2.} The correlation of axial internal clearance ( $\Delta$  a) and radial internal clearance ( $\Delta$ r) is expressed as  $\Delta$ r = 0.667 × e ×  $\Delta$ a. e: Constant (see dimensions table)

^{3.} The table does not apply to the bearing series 329X, 330, 322C, and 323C, 303C, and T4CB.



Unit:  $\mu$ m

Table 8.15 Radial internal clearance of spherical roller bearings

	al bearing			•	C		bore bearing	g			
	diameter mm	С	:2	С	N	(	C3	(	C4	(	C5
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
14	18	10	20	20	35	35	45	45	60	60	75
18	24	10	20	20	35	35	45	45	60	60	75
24	30	15	25	25	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	35	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	180
80	100	35	60	60	100	100	135	135	180	180	225
100	120	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	750
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1 000
560	630	170	310	310	480	480	650	650	850	850	1 100
630	710	190	350	350	530	530	700	700	920	920	1 190
710	800	210	390	390	580	580	770	770	1 010	1 010	1 300
800	900	230	430	430	650	650	860	860	1 120	1 120	1 440
900	1 000	260	480	480	710	710	930	930	1 220	1 220	1 570
1 000	1 120	290	530	530	780	780	1 020	1 020	1 330	1 330	1 720
1 120	1 250	320	580	580	860	860	1 120	1 120	1 460	1 460	1 870
1 250	1 400	350	640	640	950	950	1 240	1 240	1 620	1 620	2 080

Table 8.16 Axial internal clearance of four points contact ball bearings

Nominal bearing bore diameter		C	2	C	CN	C	:3	C	24
d Over	mm Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
17	40	26	66	56	106	96	146	136	186
40	60	36	86	76	126	116	166	156	206
60	80	46	96	86	136	126	176	166	226
80	100	56	106	96	156	136	196	186	246
100	140	66	126	116	176	156	216	206	266
140	180	76	156	136	196	176	236	226	296
180	220	96	176	156	216	196	256	246	316

Unit: μm

	Tapered bore bearing											
C2		CN		C3		C4		C5		iameter mm		
Min. Max	. Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Over	Incl.		
 15	_ 25 30	— 35 40	- 35 40	 45 55	 45 55	 60 75	 60 75	— 75 95	14 18 24	18 24 30		
25 35	35	50	50	65	65	85	85	105	30	40		
30 45	45	60	60	80	80	100	100	130	40	50		
40 55	55	75	75	95	95	120	120	160	50	65		
50 70	70	95	95	120	120	150	150	200	65	80		
55 80	80	110	110	140	140	180	180	230	80	100		
65 100	100	135	135	170	170	220	220	280	100	120		
80 120	120	160	160	200	200	260	260	330	120	140		
90 130	130	180	180	230	230	300	300	380	140	160		
100 140	140	200	200	260	260	340	340	430	160	180		
110 160	160	220	220	290	290	370	370	470	180	200		
120 180	180	250	250	320	320	410	410	520	200	225		
140 200	200	270	270	350	350	450	450	570	225	250		
150 220	220	300	300	390	390	490	490	620	250	280		
170 240	240	330	330	430	430	540	540	680	280	315		
190 270	270	360	360	470	470	590	590	740	315	355		
210 300	300	400	400	520	520	650	650	820	355	400		
230 330	330	440	440	570	570	720	720	910	400	450		
260 370	370	490	490	630	630	790	790	1 000	450	500		
290 410	410	540	540	680	680	870	870	1 100	500	560		
320 460	460	600	600	760	760	980	980	1 230	560	630		
350 510	510	670	670	850	850	1 090	1 090	1 360	630	710		
390 570	570	750	750	960	960	1 220	1 220	1 500	710	800		
440 640	640	840	840	1 070	1 070	1 370	1 370	1 690	800	900		
490 710	710	930	930	1 190	1 190	1 520	1 520	1 860	900	1 000		
530 770	770	1 030	1 030	1 300	1 300	1 670	1 670	2 050	1 000	1 120		
570 830	830	1 120	1 120	1 420	1 420	1 830	1 830	2 250	1 120	1 250		
620 910	910	1 230	1 230	1 560	1 560	2 000	2 000	2 470	1 250	1 400		

A-98 A-99

NTN



#### 8.3 Preload

Normally, bearings are used with a slight internal clearance under operating conditions. However, in some applications, bearings are given an initial load; this means that the bearings' internal clearance is negative before operation. This is called "preload" and is commonly applied to angular ball bearings and tapered roller bearings.

#### 8.3.1 Purpose of preload

The following results are obtained by constant elastic compressive force applied to the contact points of rolling elements and raceway by providing preload.

(1) Bearing's rigidity increases, internal clearance tends not to be produced even

- when heavy load is applied.
- (2) The particular frequency of the bearing increases and is suitable for high-speed rotation.
- (3) Shaft runout is suppressed; **rotation and position precision are enhanced**.
- (4) Vibration and noise are controlled.
- (5) Sliding of rolling elements by turning, spinning, or pivoting, is controlled and smearing is reduced.
- (6) **Fretting** produced by external vibration is **prevented**.

Applying excessive preload could result in reduction of life, abnormal heating, or increase in turning torque. You should therefore consider the objectives before determining the amount of preload.

Table 8.17 Preloading methods and characteristics

Method	Basic pattern	Applicable bearings	Object	Methods and characteristics	Applications
Fixed position preload		Angular contact ball bearing	Maintaining accuracy of rotating shaft, preventing vibration, increasing rigidity	Preloading is accomplished by a predetermined offset of the rings or by using spacers. For the standard preload see Table 8.18.	Grinding machines Lathes Milling machines Measuring instruments
Fixed posi		Tapered roller bearing Thrust ball bearing Angular contact ball bearing	Increasing bearing rigidity	Preload is accomplished by adjusting a threaded screw. The amount of preload is set by measuring the starting torque or axial displacement.	Lathes Milling machines Differential gears of automotives Printing machines Wheels
re preload		Angular contact ball bearing Deep groove ball bearing Tapered roller bearing (high speed)	Maintaining accuracy and preventing vibration and noise with a constant amount of preload without being affected by loads or temperature	Preloading is accomplished by using coil or belleville springs. For deep groove ball bearings: 4 to 10 d N d: shaft diameter (mm) For angular contact ball bearings: see <b>Table 8.18</b> .	Internal grinding machines Electric motors High speed shafts in small machines Tension reels
Constant pressure preload	Self-aligning roller thrust bearing Cylindrical roller thrust bearing Thrust ball bearing		Preload is primarily used to prevent smearing of opposite axial load side when bearing an axial load.	Preload is accomplished by using coil or belleville springs. Recommended preloads for thrust ball bearings: (larger value of the formulas below is adopted) $T_1 = 0.42  (mC_{0a})^{1.9} \times 10^{-13}  \text{N}$ $T_2 = 0.00083  C_{0a}  \text{N}$ Self-aligning roller thrust bearing, Cylindrical roller thrust bearing $T = 0.025  C^{0.8}  \text{N}$	Rolling mills Extruding machines

Remarks T : preload, N

n : Rotational speed min-1

Coa: Basic static axial load rating, N

## 8.3.2 Preloading methods and amounts

The most common method of applying preload on a bearing is to change the relative position of the inner and outer rings of the bearing in the axial direction while applying an axial load between bearings on opposing sides. There are two types of preload: fixed position preload and constant pressure preload.

The basic pattern, purpose and characteristics of bearing preloads are shown in **Table 8.17**.

#### Fixed position preload

- Fixed position preload is effective for positioning the two bearings and also for increasing the rigidity.
- 2) The amount of preload will change due to axial displacement caused by temperature differences between the shaft and housing and the inner and outer rings. Preload will also change as a result of displacement due to loads.

#### Constant pressure preload

- Due to the use of a spring for the constant pressure preload, the preloading amount can be kept constant, even when the distance between the two bearings fluctuates under the influence of operating heat and load.
- 2) Axial loads cannot be applied in the direction in which springs are contracted.

Also, the standard preloading amount for the paired angular contact ball bearings is shown in **Table 8.18**. Light and normal preload is applied to prevent general vibration, and medium and heavy preload is applied especially when rigidity is required.

#### 8.3.3 Preload and rigidity

The increased rigidity effect preloading has on bearings is shown in Fig. 8.2 to Fig. 8.4. When the offset inner rings of the two paired angular contact ball bearings are pressed together, each inner ring is displaced axially by the amount  $\delta_0$ and is thus given a preload,  $F_0$ , in the direction. Under this condition, when external axial load  $F_a$  is applied, bearing I will have an increased displacement by the amount  $\delta_a$  and bearing I will have a decreased displacement. At this time the loads applied to bearing I and II are F I and F I, respectively. Under the condition of no preload, bearing I will be displaced by the amount  $\delta_b$  when axial load  $F_a$  is applied. Since the amount of displacement,  $\delta_a$ , is less than  $\delta_{\rm b}$ , it indicates a higher rigidity for  $\delta_{\rm a}$ .

If a large axial load is to be applied, care must be taken because the preload may be released, causing problems such as heat generation, vibration, and rigidity decrease.

Three-row combinations and two-row combinations are different and have unique right and left displacement diagrams. **Figure 8.3** uses a two-row diagram for bearing I, and **Figure 8.4** uses a two-row diagram for bearing I. When preload  $F_0$  is applied, bearing I is displaced by  $\delta_{01}$  and bearing I is displaced by  $\delta_{02}$ . Under this condition, when axial load  $F_a$  is additionally applied, bearing I will have an increased displacement by the amount  $\delta_a$  and bearing I will have a decreased displacement.

A-100 A-101





Fig. 8.2 Fixed position preload model diagram and preload diagram



Fig. 8.3 Preload diagram of DBT combination (DT side load)



Fig. 8.4 Preload diagram of DBT combination (DB side load)

Unit: N

Table 8.18 The normal preload of duplex angular contact ball bearings

Nominal									bearing
<b>bore dia</b> d mr			7	9			7	0	
Over	Incl.	Light preload GL	Normal preload GN	Medium preload GM	Heavy preload GH	Light preload GL	Normal preload GN	Medium preload GM	Heavy preload GH
_	12	_	39	78	147	29	78	147	196
12	18	-	49	147	196	29	78	147	294
18	32	29	98	196	294	49	147	294	490
32	40	49	147	294	590	78	294	590	885
40	50	49	196	390	685	78	294	590	980
50	65	78	245	490	785	147	490	880	1 470
65	80	98	390	785	1 180	147	590	1 470	1 960
80	90	147	490	980	1 470	196	885	1 960	2 940
90	95	147	490	980	1 470	196	885	1 960	2 940
95	100	196	685	1 270	1 960	196	885	1 960	2 940
100	105	196	685	1 270	1 960	294	980	2 450	3 900
105	110	196	685	1 270	1 960	294	980	2 450	3 900
110	120	245	885	1 780	2 940	294	980	2 450	3 900
120	140	294	980	1 960	3 450	490	1 470	3 450	5 900
140	150	390	1 270	2 450	4 400	490	1 470	3 450	5 900
150	160	390	1 270	2 450	4 400	685	2 450	4 900	8 850
160	170	390	1 270	2 450	4 400	685	2 450	4 900	8 850
170	180	490	1 770	3 450	5 900	685	2 450	4 900	8 850
180	190	490	1 770	3 450	5 900	885	3 450	6 850	9 800
190	200	685	2 450	4 900	7 850	885	3 450	6 850	9 800

#### 8.4 Necessary minimum load

In general, when a bearing is operated under no load or a very light load, slippage may occur between the rolling element and the raceway (see "8.3.1 Purpose of preload"). In the case of high-speed rotation, a gyro slip or a cage slip may cause early damage such as smearing. In this case it is necessary to apply a minimum load to prevent slippage during bearing operation.

A rough standard for the necessary minimum radial loads for radial bearings is shown below.

 $\begin{array}{lll} \text{Ball bearings (except self-aligning} \\ \text{ball bearings):} & : 0.023 \ \textit{C}_{\text{Or}} \\ \text{Self-aligning ball bearings:} & : 0.018 \ \textit{C}_{\text{Or}} \\ \text{Roller bearings} & : 0.040 \ \textit{C}_{\text{Or}} \\ \text{Where, $\textit{C}_{\text{Or}}$:} & \text{Basic static rating load (N)} \end{array}$ 

Series							
	72, 7	72B			73	, 73B	
Light preload GL	Normal preload GN	Medium preload GM	Heavy preload GH	Light preload GL	Normal preload GN	Medium preload GM	Heavy preload GH
29	98	196	294	49	147	294	390
29	98	294	390	49	147	390	490
78	196	490	785	98	294	590	980
98	390	885	1 470	147	490	980	1 960
147	590	980	1 960	196	785	1 470	2 450
196	785	1 470	2 940	294	980	2 450	3 900
294	980	2 450	3 900	390	1 470	3 450	4 900
490	1 470	2 940	4 900	590	1 960	3 900	5 900
490	1 960	3 900	5 900	590	2 450	4 900	6 850
490	1 960	3 900	5 900	590	2 450	4 900	6 850
590	2 450	4 900	7 850	685	2 940	5 900	8 850
590	2 450	4 900	7 850	685	2 940	5 900	8 850
590	2 450	4 900	7 850	685	2 940	5 900	8 850
785	2 940	5 900	9 800	885	3 900	7 850	11 800
785	2 940	5 900	9 800	885	3 900	7 850	11 800
885	3 900	7 850	11 800	980	4 400	8 800	13 700
885	3 900	7 850	11 800	980	4 400	8 800	13 700
885	3 900	7 850	11 800	980	4 400	8 800	13 700
980	4 400	8 850	13 700	1 470	5 900	11 800	15 700
980	4 400	8 850	13 700	1 470	5 900	11 800	15 700

A-104 A-105

^{*}Consult with **NTN** for the necessary minimum axial loads for thrust bearings.

#### 9.1 Constant speed rotation

As the rotational speed of the bearing increases, the temperature of the bearing also rises due to heat generation inside the bearing due to friction. This may result in damage to the bearing, such as seizure, and the bearing will be unable to continue stable operation. Therefore, the maximum speed at which it is possible for the bearing to continuously operate without the generation of excessive heat beyond specified limits is called the **allowable speed** (min⁻¹). The allowable speed of a bearing depends on the type of bearing, bearing dimensions, type of cage, load, lubrication conditions, and cooling conditions.

The bearing dimensional table gives approximate allowable rotational speeds for grease and oil lubrication.

- The bearing must have the proper internal clearance prescribed in the NTN Engineering standard design specifications and must be properly installed.
- A quality lubricant must be used. The lubricant must be replenished and changed when necessary.
- The bearing must be operated at normal operating temperature under ordinary load conditions ( $P \le 0.08 C_{\rm f}$ ,  $F_{\rm a}/F_{\rm f} \le 0.3$ ).

If the load is below the minimum necessary load (see section "8. Bearing Internal Clearance and Preload 8.4"), rolling elements may not turn smoothly. If so, please contact **NTN** Engineering for more information. **Allowable rotation for deep groove ball bearings with contact seal (LLU type) or low-torque seal (LLH type) is determined according to the circumferential speed of the seal. For bearings to be used under heavier than normal load conditions, the allowable speed values listed in the bearing tables must be multiplied by an adjustment factor. The adjustment factors f_L and f_C are given in <b>Figs. 9.1** and **9.2**.

Also, when radial bearings are mounted on vertical shafts, retention of lubricant and cage guidance are less favorable when compared to horizontal shaft mounting. Therefore, the allowable speed should be reduced to approximately 80% of the listed speed. For speeds other than those mentioned above, and for which data is incomplete, please consult NTN Engineering.

If rotational speed is to exceed allowable rotational speed given in the dimensions table, it will require special considerations, such as using a bearing for which cage specifications, internal clearance and precision have been thoroughly checked. It may require adopting forced circulation, jet oil or mist oil lubrication as the lubrication method.

Under such high speed operating conditions, when special care is taken, the standard allowable speeds given in the bearing tables can be adjusted upward. The maximum speed adjustment values,  $f_{\rm B}$ , by which the bearing table speeds can be multiplied, are shown in **Table 9.1**. However, for any application requiring speeds in excess of the standard allowable speed, please consult **NTN** Engineering.

Polylube bearings (see section 11.4) have their original allowable rotational speed provision. For details, see the special catalogs "Polylube bearing (CAT. No. 3022/E)" and "Polylube needle bearing (CAT. No. 3605/J)."



Fig. 9.1 Value of adjustment factor  $f_L$  depends on bearing load



Fig. 9.2 Value of adjustment factor  $f_c$  depends on combined load

Table 9.1 Adjustment factor, ∫B, for allowable number of revolutions

Bearing type	Adjustment factor $f_{B}$
Deep groove ball bearing	3.0
Angular contact ball bearing	2.0
Cylindrical roller bearing	2.5
Tapered roller bearing	2.0

## 9.2 Low-speed rotation and rapid acceleration/deceleration

When the bearing rotational speed is particularly low (the product of the rotational speed n (min⁻¹) and the rolling element pitch diameter  $D_{\rm PW}$  (mm) is  $D_{\rm PW}$  n < 10 000), an elastohydrodynamic lubrication oil film may not be formed at the contact surface between the rolling element and the raceway surface.

Under such conditions, lubricant containing an extreme-pressure additive (EP additive) should be used.

When rapid acceleration/deceleration is included in the operating conditions, the cage may break.

Please contact **NTN** Engineering because the allowable rotational speed needs to be examined individually.

#### 9.3 Oscillating applications

In small oscillating movement, the rotation direction changes before the bearing makes one rotation.

The moment when the rotation method forwards and reverses, the rotational speed becomes zero. At this time, a lubrication oil film in the fluid mechanics may not be formed or maintained.

Under such conditions, lubricant containing an extreme-pressure additive (EP additive) should be used.

Suitable preload may be applied to reduce the sliding of rolling elements.

When the oscillation angle is extremely small, an oil film is unlikely to be formed on the contact surface between the raceway surface and the rolling element, and fretting (slight abrasion) may occur.

Please contact **NTN** Engineering because the allowable rotational speed needs to be examined individually.

A-106 A-107

#### 9.4 Heat rating rotational speed

The heat rating rotational speed is an index standardized in JIS B 1550:2010 (ISO 15312:2003) that uses bearing operating temperature as reference.

This standard refers to the rotational speed of the inner ring of the bearing when the heat generation amount due to the bearing internal friction becomes equivalent to the heat radiation amount of the shaft and housing for mounting the bearing in the case where the bearing is operated at the reference condition below.

Reference conditions are shown below.

- (1) Reference temperature
  Reference temperature of static outer ring
  (housing raceway washer): 70°C
  Reference ambient temperature around
  bearing: 20°C
- (2) Reference load
  Radial bearing (0°  $\leq \alpha \leq 45^{\circ}$ ):
  Pure radial load of 0.05 × C_{0r}
  Thrust roller bearing (45°  $\leq \alpha \leq 90^{\circ}$ ):
  Pure axial load of 0.02 × C_{0a}
- (3) Lubricant

The lubricant must be mineral oil that is free of an extreme-pressure additive and have viscosity  $\nu$  below the following values at 70°C.

Radial bearing:

 $\nu = 12 \text{ mm}^2\text{/s} \text{ (equivalent to ISO VG32)}$ 

Thrust roller bearing:

 $\nu = 24 \text{ mm}^2/\text{s}$  (equivalent to ISO VG68)

(4) Lubrication method In oil bath lubrication, the oil level is the center of the rolling element that is at the lowermost position.

Refer to JIS B 1550:2010 (ISO 15312:2003) for further details.

## 10. Friction and temperature rise

#### 10.1 Friction

One of the main functions required of a bearing is that it must have low friction. Under normal operating conditions rolling bearings have a much **smaller friction coefficient** than sliding bearings, especially when comparing **starting friction**.

The friction coefficient for rolling bearings is expressed by formula (10.1).

$$\mu = \frac{2M}{Pd} \quad \dots \quad (10.1)$$

Where:

 $\mu\,$  : Friction coefficient

M: Friction moment,  $N \cdot mm$ 

P: Load, N

d: Bearing bore, mm

The dynamic friction coefficient for rolling bearings varies with the type of bearing, load, lubrication, speed, and other factors. For normal operating conditions, the approximate friction coefficients for various bearing types are listed in **Table 10.1**.

Table 10.1 Friction coefficient for bearings (reference)

Bearing type	Friction coefficient $\mu \times 10^{-3}$
Deep groove ball bearings	1.0~1.5
Angular contact ball bearings	1.2~1.8
Self-aligning ball bearings	0.8~1.2
Cylindrical roller bearings	1.0~1.5
Needle roller bearings	2.0~3.0
Tapered roller bearings	1.7~2.5
Self-aligning roller bearings	2.0~2.5
Thrust ball bearings	1.0~1.5
Thrust roller bearings	2.0~3.0

## 10.2 Temperature rise

Almost all friction loss in a bearing is transformed into heat within the bearing itself and causes the temperature of the bearing to rise. The amount of thermal generation caused by the friction moment can be calculated using formula (10.2).

$$Q = 0.105 \times 10^{-6} M \times n$$
 .....(10.2) Where:

Q: Thermal value, kW

 $\mathit{M}\,$  : Friction moment, N  $\cdot$  mm

 $n \; : {\sf Rotational\ speed,\ min^{-1}}$ 

Bearing operating temperature is determined by the equilibrium or balance between the amount of heat generated by the bearing and the amount of heat conducted away from the bearing. In most cases the temperature rises sharply during initial operation, then increases slowly until it reaches a stable condition and then remains constant. The time it takes to reach this steady state depends on the amount of heat produced, heat capacity/diffusion of the shaft and housing, amount of lubricant and method of lubrication. If the temperature continues to rise and does not become constant, it must be assumed that there is some improper function.

When any **abnormal temperature rise** is observed, examine the equipment. Remove the bearing for inspection if necessary. Some possible causes of abnormal temperature rises would be as follows.

- Bearing misalignment (due to moment load or incorrect installation)
- · Insufficient internal clearance
- Excessive preload
- Amount of lubricant too small or large
- Unsuitable lubricant
- · Heat generated from sealing mechanism
- Excessive load
- · Rapid acceleration and deceleration
- Heat conducted from external sources

A-108 A-109

#### 10.3 Starting torque calculation

The starting torque refers to the torque generated at the time of initial bearing rotation, and the torque generation factor differs between ball bearings and roller bearings. For ball bearings, this calculation is shown below with an angular contact ball bearing. For roller bearings, a tapered roller bearing is used as an example.

Even if the actual starting torque value is the same number, the torque calculation value is a reference value because there is measurement variation for each bearing.

#### 1) Preload and staring torque of angular contact ball bearings

Bearings having a contact angle such as angular contact ball bearings and tapered roller bearings cannot be used by themselves. Two bearings must face each other or be used in combination. In this case, the bearings are often used by applying a preload, and the larger the preload is, the larger the friction torque of the bearing becomes. The starting torque of the angular contact ball bearing when a preload is applied generates the majority of the spin slip and the rolling friction torque.

The relationship between the preload and the starting torque of angular contact ball bearings is not a simple proportional relationship, and the calculation is complicated; therefore, please contact **NTN** Engineering.

## 2) Preload and starting torque of tapered roller bearings

The starting torque of tapered roller bearings are influenced by the following factors.

- (1) Sliding friction between roller large end surface and inner ring large rib surface
- (2) Rolling friction of rolling surface
- (3) Sliding friction of roller and cage

(4) Stirring resistance of lubricant However, (2) to (4) are extremely small

compared with (1); therefore, the starting torque of tapered roller bearings is calculated by (1).

Starting torque M of tapered roller bearings is represented by formula (10.3).

 $M = \mu \cdot e \cdot \cos(\beta/2) \cdot F_a$  N·mm ···(10.3)

M: Starting torque, N·mm

 $\mu$ : Friction coefficient

e : Contact position between roller and inner ring rib, mm (see Figure 10.1)

 $\beta$ : Roller angle, ° (see Figure 10.1)

 $F_a$ : Preload, N



Figure 10.2 shows calculation examples. For details, please contact NTN Engineering.



Figure 10.2 Preload and starting torque of tapered roller bearings

## 11. Lubrication

#### 11.1 Purpose of lubrication

The purpose of rolling bearing lubrication is to prevent direct metallic contact between the various rolling and sliding elements. This is accomplished through the formation of a thin oil (or grease) film on the contact surfaces. Lubricant is necessary for operating rolling bearings. For rolling bearings, lubrication has the following advantages:

## (1) Reduction of friction and wear It prevents direct metallic contact between the rolling and sliding elements of bearing components and reduces friction and wear

## (2) Prolonged bearing life The rolling fatigue life is prolonged by forming an oil film on the rolling contact surface part.

- (3) Friction heat dissipation and cooling circulating lubrication can dissipate heat generated from friction or conducted from the outside.
- (4) Others

It prevents foreign materials from entering inside the bearing and suppresses corrosion (rust) by covering the bearing surface with oil.

In order to exhibit these effects, a lubrication method that matches service conditions is required. In addition to this, a quality lubricant must be selected, the proper amount of lubricant must be used and the bearing must be designed to prevent foreign matter from getting in or lubricant from leaking out. If lubrication is insufficient, friction is not reduced, causing excessive rise in bearing temperature or abnormal wear. Therefore, an appropriate lubrication and lubrication method should be selected.

Fig. 11.1 shows the relationship between oil volume, friction loss, and temperature rise. **Table 11.1** details the characteristics of this relationship.



Fig. 11.1

Table 11.1 Oil volume, friction loss, and temperature increase (See Fig. 11.1)

Range	Characteristics	Lubrication method
А	When oil volume is extremely low, direct metallic contact occurs in places between the rolling elements and raceway surfaces. Bearing abrasion and seizing may occur.	_
В	A thin oil film develops over all surfaces, friction is minimal and bearing temperature is low.	Grease lubrication Oil mist Air-oil lubrication
С	As oil volume increases, heat buildup is balanced by cooling.	Circulating lubrication
D	Regardless of oil volume, temperature increases at a fixed rate.	Circulating lubrication
As oil volume increases, cooling dominates and bearing temperature decreases.		Forced circulation lubrication Oil jet lubrication

A-110 A-111

## 11.2 Lubrication methods and characteristics

Lubrication methods for bearings can be roughly divided into **grease** and **oil lubrication**. Each of these has its own features, so the lubrication method that best offers the required function must be selected.

Characteristics of each method are shown in **Table 11.2**.

Table 11.2 Comparison of grease lubrication and oil lubrication characteristics

Method	Grease lubrication	Oil lubrication
Handling	0	Δ
Reliability	0	0
Cooling effect	×	○ (Circulation necessary)
Seal structure	0	Δ
Power loss	0	0
Environment contamination	0	Δ
High speed rotation	×	0

 $\bigcirc$ : Very good  $\bigcirc$ : Good  $\triangle$ : Fair  $\times$ : Poor

#### 11.3 Grease lubrication

Grease lubricants are relatively easy to handle and require only the simplest sealing devices. For these reasons, grease is the most widely used lubricant for rolling bearings. It is used in a bearing that is pre-sealed with grease (sealed/shielded bearing), or if using an unsealed bearing, fill the bearing and housing with the proper amount of grease, and replenish or change the grease regularly.

With sealed bearings, the proper grease amount does not cause leakage; however, under use conditions including a lot of vibrations, which cause grease to flow easily, or under high-speed outer ring rotation, in which large centrifugal force is applied on the grease, the grease may purge (in rare cases). Please consult **NTN** Engineering.

## 11.3.1 Types and characteristics of grease

Lubricating grease is composed of either a mineral base oil or a synthetic base oil. To this base a thickener and other additives are added. The properties of all greases are mainly determined by the kind of base oil used and by the combination of thickening agent and various additives. Table 11.5 shows general grease varieties and characteristics, and Table 11.6 shows grease brand names and their characteristics. (See pages A-116 and A-117.) As performance characteristics of even the same type of grease will vary widely from brand to brand, it is necessary to check the manufacturers' data when selecting grease.

(1) Base oil

Mineral oil or synthetics such as ester oil, synthetic hydrocarbon oil, or ether oil are used as the base of greases.

Generally, greases with low viscosity base oils are best suited for low temperatures and high speeds; grease using high-viscosity base oil has superior high-temperature and high-load characteristics.

#### (2) Thickening agents

Thickening agents are compounded with base oils to maintain the semi-solid state of the grease. Thickening agents consist of two types of bases: metallic soaps and non-soaps. Metallic soap thickeners include: lithium, sodium, calcium, etc. Non-soap base thickeners are divided into two groups: inorganic (silica gel, bentonite, etc.) and organic (polyurea, fluorocarbon, etc.). The various special characteristics of a grease, such as limiting temperature range, mechanical stability, water resistance, etc. depend largely on the type of **thickening agent** used. For example, a sodium based grease is generally poor in water resistance properties, while greases with bentone, poly-urea and other non-metallic soaps as the thickening agent are generally superior in high temperature properties.

#### (3) Additives

Various additives are added to grease depending on the purpose. Typical additives include anti-oxidants, high-pressure additives (EP additives), rust preventives, and anti-corrosives. For bearings subject to heavy loads and/or shock loads, grease containing high-pressure additives should be used. Anti-oxidants are added to grease used in most types of rolling bearings.

(4) Consistency

Consistency is an index that indicates hardness and fluidity of grease. The higher the NLGI number, the HARDER the grease is. For the lubrication of rolling bearings, greases with the NLGI consistency numbers of 1, 2, and 3 are used. General relationships between consistency and application of grease are shown in Table 11.3.

Table 11.3 Consistency of grease

NLGI consistency No.	JIS(ASTM) 60 times blend consistency	Application
0	355 to 385	For centralized greasing use
1	310 to 340	For centralized greasing use
2	265 to 295	For general use and sealed bearing use
3	220 to 250	For general use, high temperature use, and sealed bearing use
4	175 to 205	For special use

(5) Mixing different types of greases
When greases of different kinds are mixed together, the consistency of the greases will change (usually softer), the operating temperature range will be lowered, and other changes in characteristics will occur.

As a rule, grease should not be mixed with grease of any other brand. However, if different greases must be mixed, at least greases with the same base oil and thickening agent should be selected.

A-112 A-113

### 11.3.2 Amount of grease

The amount of grease used in any given situation will depend on many factors relating to the size and shape of the housing, space limitations, bearing's rotating speed and type of grease used. As a rule of thumb, bearings should be filled to 30 to 40% of their space and housing should be filled 30 to 60%. Where speeds are high and temperature rises need to be kept to a minimum, a reduced amount of grease should be used. Excessive amounts of grease cause temperature rises which in turn cause the grease to soften and may allow leakage. Oxidation and deterioration of excessive grease fills may cause the lubricating efficiency to be lowered. Moreover, the standard bearing space can be found by formula (11.1)

 $V = K \cdot W \cdot \cdots \cdot (11.1)$  where,

V: Quantity of bearing space open type (approx.), cm³

K: Bearing space factor (see value of K in Table 11.4)

 ${\it W}$  : Mass of bearing, kg

A predetermine amount of grease is filled in the bearing with a grease gun or a syringe. After sealing it is not possible to spread the grease by hand - only by rotating the bearing by hand.

Table 11.4 Bearing space factor K

	Bearing type ¹⁾		Cage type	K
D	eep groove ball bearing ²⁾	Pressed cage	61	
			Pressed cage	54
An	gular contact ball bearing		Machined cage	33
			Molded resin cage	33
	NU type ³⁾		Pressed cage	50
	NO type-/		Machined cage	36
	N 5)		Pressed cage	55
Cylindrical roller	N type ⁵⁾		Machined cage	37
bearing	ULTAGE series(EA type) E type	NU type ⁴⁾	Machined cage	33
			Molded resin cage	33
		N. 4)	Machined cage	34
	N type ⁴⁾		Molded resin cage	35
	Tapered roller bearing		Pressed cage	46
	Type C		Pressed cage	35
Spherical roller	Type B Type 213		Machined cage	28
bearing	ULTAGE series	Type EA	Pressed cage	33
	ULTAGE Series	Type EM	Machined cage	31

¹⁾ Does not apply to model numbers that are not specified in the catalog.

²⁾ Does not apply top 160 series bearings. 3) Does not apply to NU4 series.

⁴⁾ Applies to G1 machined cages only. 5) Does not apply to N4 series.

Table 11.5 Grease varieties and characteristics 1)

	Soap-based					
		Calcium (Ca) grease				
Thickening agent ²⁾		Li soap			Ca soap (cup grease)	
Base oil 3) Mineral oil Ester oil Silicone oil		Mineral oil	Mineral oil			
<b>Dropping point °C</b> 170 to 190 170 to 190 200 to 210		>250	80 to 100			
Operating temperature range °C	-30 to 120	-50 to 130	-50 to 160	-30 to 130	-20 to 70	
Mechanical stability	Good	Good	Good	Good	OK	
Pressure resistance	Good	Good	Poor	Good	OK	
Water resistance	Good	Good	Good	Good	Good	
Characteristics/ application	Balanced performance with less disadvantages All purpose grease	Excellent low temperature and wear characteristics Suitable for small sized and miniature bearings	Excellent characteristics at low and high temperatures Poor load resistance	Balanced performance with less disadvantages Usable for relatively high temperature	Used for low speed and light loads Unusable for high temperature	

 ¹⁾ Use the grease performance as rough standards because it differs depending on the manufacturer's additive formation.
 2) Na soap-based grease may be emulsified by water and high humidity conditions.
 Urea-based grease may deteriorate polyfluorocarbons and rubber.

Table 11.6 Grease brands and their nature

				Base oil visc	osity mm²/s
Brand	Code Thickener		Base oil	40°C	100°C
Alvania Grease S2	2AS	Li soap	Mineral oil	131	12.2
Alvania Grease S3	3AS	Li soap	Mineral oil	131	12.2
Alvania EP Grease 2	8A	Li soap	Mineral oil	220	15.9
Multemp PS No. 2	1K	Li soap	Ester + PAO	15.9	_
Multemp SRL	5K	Li soap	Ester	24.1	_
SH33L	3L	Li soap	Silicone	70	27
SH44M	4M	Li soap	Silicone	80	19
ISOFLEX NBU15	15K	Ba complexed soap	Diester + mineral oil	23	5
SHC POLYREX 462	L791	Urea	PAO	460	40
SE-1	L749	Urea	PAO + ester	22	5
ME-1	L700	Urea	Ester + PAO	61.3	9.3
EP-1	L542	Urea	PAO	46.8	_
NA103A	L756	Urea	PAO + ether	53.5	_
MP-1	L448	Urea	Synthetic oil	40.6	7.1
Grease J	L353	Urea	Ester	75	10
Cosmo Wide Grease WR3	2M	Na terephthalate	Diester + mineral oil	31.6	6
Mobilgrease 28	9B	Bentonite	PAO	30	5.7
Aeroshell Grease 7	5S	Microgel	Diester	10.3	3.1

Note: 1. Representative values are shown for the base oil viscosity, consistency, and dropping point.

Soap-based		Non-soap-based				
Calcium (Ca) grease	Sodium (Na) grease	Organic			Inorganic	
Ca complexed soap	Na soap	Urea	Urea	PTFE	Silica gel	
Mineral oil	Mineral oil	Mineral oil	Synthetic oil	Fluorinated	Ester oil	
200 to 280	170 to 200	>260	>260	None	>260	
-20 to 130	-20 to 130	-30 to 140	-40 to 180	-40 to 250	-70 to 150	
Good	Good	Good to Excellent	Good to Excellent	OK to Good	Good	
Good to Excellent	Good	Good to Excellent	Good to Excellent	Good	Good	
Good	Poor	Good to Excellent	Good to Excellent	Good	Good	
Excellent pressure resistance	Some emulsification when water is introduced	Excellent water resistance and oxidation stability	Excellent water resistance and oxidation stability	Excellent chemical resistance	Excellent characteristics at low temperature	
	Usable for relatively high temperature		Used for high temperature and high speed applications	Used for high temperature applications		

³⁾ Ester oil-based grease may swell acrylic materials, and silicone-based grease may swell silicone materials.

Some silicone-based greases and fluorine-based greases have poor noise performance and rustproofing performance.

60 times blend	consistency		Operating		
Representative value	NLGI No	Dropping point °C	temperature range °C	Characteristics	
283	2	181	-25 to 120	All-purpose (standard grease for deep grease ball bearings)	
242	3	182	-20 to 135	All-purpose (standard grease for ball bearings of bearing units)	
284	2	184	-20 to 110	All-purpose for high loads	
270	2	190	-50 to 130	For low temperature and low torque	
250	2 to 3	192	-40 to 150	For low temperature to high temperature, all-purpose (standard grease for miniature/small diameter ball bearings)	
320	1 to 2	220	-70 to 140	For low temperature	
260	2 to 3	204	-40 to 160	For high temperature	
280	2	220 or above	-40 to 130	For high speed	
280	2	270	-20 to 170	For food machinery	
265	2	220 or above	-50 to 120	For high speed	
231	3	250 or above	-30 to 160	For high temperature and high speed	
220	2	260 or above	-40 to 160	For high temperature and high speed	
270	2	260 or above	-40 to 180	Brittle separation	
243	3	250 or above	-40 to 150	For high temperature and high speed	
305	1 to 2	280 or above	-20 to 180	For high temperature	
238	3	230 or above	-40 to 150	For low temperature to high temperature, all-purpose	
293	1 to 2	307	-54 to 177	MIL-PRF-81322 For low temperature to high temperature	
296	1 to 2	260 or above	-73 to 149	MIL-PRF-23827C	

A-116 A-117

The upper and lower limits of the operating temperature range differ depending on the usage environment and requirement specifications. Please consult with NTN Engineering.

#### 11.3.3 Grease replenishment

As the lubricating performance of grease declines with the time, grease must be filled in proper intervals.

The replenishment interval depends on the type of bearing, dimensions, bearing's rotating speed, bearing temperature, and type of grease. An easy reference chart for calculating grease replenishment interval is shown in Fig. 11.2. This chart indicates the replenishment interval

for standard rolling bearing grease when used under normal operating conditions. As operating temperatures increase, the grease interval should be shortened accordingly. Generally, for every 10°C increase in bearing temperature above 80°C, the grease interval period is shortened to "2/3".

For grease replenishment interval of the ULTAGE series, please contact **NTN** Engineering.



Fig. 11.2 Diagram for grease interval

(Example) Find the grease relubrication time limit for deep groove ball bearing 6206, with a radial load of 2.0 kN operating at 3 600 min⁻¹

From Fig. 9.1  $C_r/P_r = 21.6/2.0 \text{ kN} = 10.8$ ,  $f_L = 0.96$ . Allowable rotational speed from the dimensions tables for bearing 6206 is 11 000  $min^{-1}$ . Allowable rotational speed  $n_0$  for 2.0 kN radial load is:

$$n_0 = 0.96 \times 11\ 000 = 10\ 560 \text{min}^{-1}$$
  
Therefore,  $\frac{n_0}{n} = \frac{10\ 560}{3\ 600} = 2.93$ 

The point where vertical line I intersects a horizontal line drawn from the point equivalent of d = 30 for the radial ball bearing shown in Fig. 11.2 shall be point A. Find intersection point C where vertical line III intersects the straight line formed by joining point B ( $n_0 / n = 2.93$ ) with A by a straight line II. It shows that grease life in this case is approximately 5,500 hours.

## 11.3.4 Grease life estimation of sealed ball bearings

There is a method of estimating the grease life of single row sealed and greased ball bearings.

The estimated grease life changes depending on the grease type, temperature, shaft rotational speed, and load; therefore, please contact NTN Engineering for details.

#### 11.4 Solid grease

"Solid grease" is a lubricant composed mainly of lubricating grease and ultra-high polymer polyethylene. Solid grease begins as grease that has the same viscosity as a more traditional grease. After being heated and cooled, a process known a "calcination", the grease hardens while maintaining a large quantity of lubricant within the polymer structure. The result of this solidification is that the grease does not easily leak from the bearing, even when the bearing is subjected to strong vibrations or centrifugal force.

Bearings with solid grease are available in two types: the spot-pack type in which solid grease is injected into the cage, and the full-pack type in which all free space around the rolling elements is completely filled with solid grease.

Spot-pack solid grease is available for deep groove ball bearings, small diameter ball bearings, and bearing units. Full-pack solid grease is available for self-aligning ball bearings, spherical roller bearings, and needle roller bearings.

Primary advantages:

- (1) Minimal grease leakage
- (2) Low bearing torque with spot-pack type solid grease

For more details, please refer to the special catalog "Bearings with solid grease (CAT. No. 3022/E)."



Fig. 11.3 Deep groove ball bearing with spot-pack solid grease (Z shield) (Available for deep groove ball bearings)



Fig. 11.4 Spherical roller bearing with full-pack solid grease (Available for spherical roller bearings)

A-118

#### 11.5. Oil lubrication

Oil lubrication is suitable for applications requiring that bearing-generated heat or heat applied to the bearing from other sources be

carried away from the bearing and dissipated to the outside.

**Table 11.7** shows the main methods of oil lubrication.

#### Table 11.7 Oil lubrication methods

Lubrication method	Example	Lubrication method	Example
(Oil bath lubrication)  Oil bath lubrication is the most generally used method of lubrication, and is widely used for low to moderate rotational speed applications. For horizontal shaft applications, oil level should be maintained at approximately the center of the lowest rolling element, according to the oil gauge, when the bearing is at rest. For vertical shafts at low speeds, oil level should be maintained at 50 - 80% submergence of the rolling elements.		(Disc lubrication)  In this method, a partially submerged disc rotates and pulls oil up into a reservoir from which it then drains down through the bearing, lubricating it.	
(Oil spray lubrication) • In this method, an impeller or similar device mounted on the shaft draws up oil and sprays it onto the bearing. This method can be used at considerably high speeds.		(Oil mist lubrication)  Using pressurized air, lubricating oil is atomized before passing through the bearing.  Due to the low lubricant resistance, this method is well suited to high speed applications.	
(Drip lubrication) • In this method, oil is collected above the bearing and allowed to drip down into the housing where it becomes a lubricating mist as it strikes the rolling elements. Another version allows only slight amounts of oil to pass through the bearing. • Used at relatively high speeds for light to moderate load applications. • In most cases, oil volume is a few drops per minute.		(Air-oil lubrication) In this method, the required minimum amount of lubricating oil is measured and fed to each bearing at ideal intervals using compressed air. Fresh lubricating oil is constantly fed. Because the required oil quantity is very small, the working environment can be kept clean.	Mist Separator Air Oil Filter Air Pressure switch
(Circulating lubrication)  Used for bearing cooling or for automatic oil supply systems in which the oil supply is centrally located.  One of the advantages of this method is that oil cooling devices and filters to maintain oil purity can be installed within the system.  In order for oil to thoroughly lubricate the bearing, oil inlets and outlets must be provided on opposite sides of the bearing.		(Oil jet lubrication)  This method lubricates by injecting oil under high pressure directly into the side of the bearing. This is a reliable system for high speed, high temperature or otherwise severe conditions. Used for lubricating the bearings in jet engines, gas turbines, and other high speed equipment. Under-race lubrication is one example of this type of lubrication.	

#### 11.5.1 Selection of lubricating oil

Under normal operating conditions, machine oil, turbine oil, and other mineral oils are widely used for the lubrication of rolling bearings. However, for temperatures below -30°C or above 150°C, synthetic oils such as ester oil, silicone oil, and fluorinated oil are used.

For lubricating oils, viscosity is one of the most important properties and determines an oil's lubricating efficiency. If viscosity is too low, formation of the oil film will be insufficient, and damage to the rolling surface will occur. If viscosity is too high, viscous resistance will also be great, resulting in temperature increase and friction loss. In general, for higher speed applications, a lower viscosity oil should be used; for heavier load applications, a higher viscosity oil should be used.

Lubrication of rolling bearings requires viscosity shown in **Table 11.8**, which is dependent on the use conditions. **Fig 11.5** shows the relation between lubricating oil viscosity and temperature. This is used to select a lubrication oil with viscosity characteristics appropriate for the operating temperature.

For reference, **Table 11.9** lists the selection standards for lubricating oil viscosity based on bearing operating conditions.

Table 11.8 Required lubricating oil viscosity for bearings

ı	Bearing type	Dynamic viscosity mm ² /s
	Ball bearings, Cylindrical roller bearings, Needle roller bearings	13 or above
	Spherical roller bearings, Tapered roller bearings, Needle roller thrust bearings	20 or above
	Self-aligning roller thrust bearing	30 or above



Fig 11.5 Relation between lubricating oil viscosity and temperature

A-120 A-121

Bearing operating	∂n value ¹⁾	Lubricating oi	I ISO viscosity grade (VG)	Cuitable bearing	
temperature °C	an vaiue⁻⁵	Normal load	Heavy load or shock load	Suitable bearing	
-30 to 0	Up to allowable rotational speed	22, 32	46	All types	
	Up to 15 000	46, 68	100	All types	
	15 000 to 80 000	32, 46	68	All types	
0 to 60	80 000 to 150 000	22, 32	32	All types but thrust ball bearings	
	150 000 to 500 000	10	22, 32	Single row radial ball bearings, cylindrical roller bearings	
	Up to 15 000	150	220	All types	
	15 000 to 80 000	100	150	All types	
60 to 100	80 000 to 150 000	68	100, 150	All types but thrust ball bearings	
	150 000 to 500 000	32	68	Single row radial ball bearings, cylindrical roller bearings	
100 to 150	Up to allowable rotational speed	320		All types	
0 to 60	Up to allowable rotational speed	46, 68		Colf aligning roller bearing	
60 to 100	Up to allowable rotational speed		150	Self-aligning roller bearing	

1) dn value: [dn = bearing bore diameter <math>d (mm)  $\times$  rotational speed n (mm⁻¹)]

Note: 1. Applied when lubrication method is either oil bath or circulating lubrication.

2. Please consult NTN Engineering in cases where operating conditions fall outside the range covered by this table.

#### 11.5.2 Oiling amount

When a bearing is to be supplied with oil forcibly, the amount of heat generated from the bearing is equal to the sum of the amount of heat dissipated from the housing and the amount of heat carried away by the oil.

The oiling amount that serves as a rough indication when a standard housing is used can be obtained by formula (11.2).

$$Q = K \cdot q$$
 ······(11.2) where,

Q: oiling amount per bearing (cm³/min)

K: coefficient determined by allowable temperature rise of oil (**Table 11.10**)

q: oiling amount obtained by diagram (cm³/min) (Fig. 11.6)

The heat dissipation amount differs depending on the housing type. Therefore, in the actual operation, it is desirable to obtain the oiling amount suitable for the actual machine by adjusting the amount obtained by formula (11.2) to 1.5 to 2 times.

In addition, when calculating the oiling amount assuming that no heat is dissipated from the housing and the generated heat

amount is completely carried away by the oil, use the shaft diameter in the diagram as d = 0.

Table 11.10 Value of K

Expelled oil temp minus supplied oil temp $^{\circ}\text{C}$	K
10	1.5
15	1
20	0.75
25	0.6

**(Example)** For tapered roller bearing **30220U** mounted on a flywheel shaft with a radial load of 9.5 kN, operating at 1 800 min⁻¹, what is the amount of lubricating oil Q required to keep the bearing temperature rise below 15°C?

$$d = 100$$
mm.

$$dn = 100 \times 1800 = 18 \times 10^4$$

From **Fig. 11.6**  $q = 180 \text{cm}^3 / \text{min}$ 

Assume the bearing temperature is approximately equal to the expelled oil temperature,

from **Table 11.10**, since 
$$K = 1$$
  
 $Q = K \times q = 1 \times 180 = 180 \text{cm}^3 / \text{min}$ 



Fig. 11.6 Oil quantity guidelines

#### 11.5.3 Relubrication intervals

The intervals at which lubricating oil should be changed varies depending upon operating conditions, oil quantity, and type of oil used. In general, for oil bath lubrication where the operating temperature is 50°C or less, oil should be replaced once a year. When the operating temperature is between 80°C - 100°C, oil should be replaced at least once every three months. For important equipment, it is advisable that lubricating efficiency and oil purity deterioration be checked regularly to determine when oil replacement is necessary.

## 12. External bearing sealing devices

External seals have two main functions: to prevent lubricating oil from leaking out of the bearing, and to prevent dust, water, and other contaminants from entering inside the bearing. When selecting a seal, the following factors should be considered, in addition to the application's operating conditions: Type of lubricant (oil or grease), seal lip speed, shaft misalignment, space limitations, seal friction and heat generation, and cost.

Sealing devices for rolling bearings fall into two main classifications: non-contact seals and contact seals.

Non-contact seals: Non-contact seals utilize
 a small clearance between the shaft and the
 housing, or between the shaft and sealing
 apparatus. Therefore friction is negligible,
 making them suitable for high speed
 applications.

In order to improve sealing capability, the gaps between the shaft and sealing apparatus are often filled with lubricant.

• Contact seals: A contact seal is a seal in which a molded synthetic rubber lip on a steel plate is pressed against the shaft. Contact seals are generally far superior to non-contact seals in sealing effectiveness, although their friction torque and temperature rise coefficients are higher. Furthermore, because the lip portion of a contact seal slides while in contact with the shaft, the allowable lip speed may vary based on the seal design.

The surface at which the seal lip contacts the shaft must be lubricated. Ordinary bearing lubricant can also be used for this purpose.

**Table 12.1** lists the special characteristics of seals and other points to be considered when choosing an appropriate seal.

#### Table 12.1 Seal characteristics and selection considerations

Туре	Seal construction	Designation	Seal characteristics and selection considerations			
		Clearance seal	This is an simple seal design with a small radial clearance between the shaft and housing.	Cautionary points regarding selection  In order to improve sealing effectiveness, clearances between the shaft and housing should be minimized. However, care should be taken to confirm shaft/bearing rigidity and other factors to avoid direct contact between the shaft and housing during operation.		
		0:1		Oil groove clearance (approx.)		
		Oil groove seal (oil grooves on	Several concentric oil grooves are provided on the housing	Shaft diameter mm Clearance mm		
	0000	housing side)	inner diameter to improve the sealing effectiveness. When the grooves are filled with	Up to 50 0.2~0.4 50 or larger 0.5~1.0		
Non-contact seals	+.4	Oil groove seal (oil grooves on shaft side and housing side)	Ubricant, the ingress of external contaminants is prevented.  Oil grooves are provided on both the shaft outer diameter and housing inner diameter for a seal with even greater sealing effectiveness.	Oil groove width, depth (reference) Width: 2 to 5 mm Depth: 4 to 5 mm Three or more oil grooves should be provided. Sealing effectiveness can be further improved by filling the oil groove portion with grease of which ASTM worked penetration is 150 to 200. Grease is generally used as the lubricant for labyrinth seals, and, except in low speed applications, is commonly used together with other sealing devices.		
Non-co		Axial labyrinth seal	This seal has a labyrinth passageway on the axial side	Cautionary points regarding selection  · In order to improve sealing effectiveness,		
		Radial labyrinth seal	of the housing.  A labyrinth passageway is located on the radial side of the housing. For use with split housings. This offers better sealing effectiveness than axial labyrinth seals.	labyrinth passageway clearances should be minimized. However, care should be taken to confirm shaft/bearing rigidity, fit, internal clearances and other factors to avoid direct contact between labyrinth projections during operation.  Labyrinth clearance (approx.)  Shaft Clearance mm Radial direction Axial direction $- \sim 50  0.2 \sim 0.4  1.0 \sim 2.0 \\ 50 \sim 200  0.5 \sim 1.0  3.0 \sim 5.0$		
		Aligning type labyrinth seal	The seal's labyrinth passageway is slanted and has sufficient clearance to prevent contact between the housing projections and the shaft, even as the shaft realigns.	Sealing effectiveness can be further improved by filling the labyrinth passageway with grease of which ASTM worked penetration is 150 to 200.     Labyrinth seals are suitable for high speed applications.		

A-124 A-125

## NTN



Туре	Seal construction	Designation	Seal characteristics and selection considerations
eals		Z-seal + Labyrinth seal	This is an example of an axial labyrinth seal which has been combined with a Z seal to increase its sealing effectiveness. The axial labyrinth seal is affixed to the shaft with a setting bolt or other method.  In the diagram on the left, both the direction of the Z-seal and the labyrinth seal are oriented to keep dust and other contaminants out of the bearing.  Because a Z-seal has been incorporated, the allowable peripheral speed should not exceed 6 m/s.
Combination seals		Labyrinth seal + Oil groove seal + Slinger	This is an example of a combination of three different non-contact seals.  It has the advantage of preventing both lubricant leakage from inside the bearing and infiltration of dust and other contaminants from the outside.  It is widely used on mining equipment and as a sealing system with plummer blocks in extremely dusty application conditions.
		Oil groove seal + Slinger + Z-seal	This is an example where an oil groove seal and slinger have been combined with a Z-seal to increase its sealing efficiency. In the diagram on the left, all three seals have been oriented to keep dust and other contaminants out of the bearing. It is widely used on mining equipment and as a sealing system with plummer blocks in extremely dusty application conditions.

A-126 A-127

#### 13.1 Raceway and rolling element

While the contact surfaces of a bearing's raceways and rolling elements are subjected to repeated heavy stress, they must also maintain high precision and rotational accuracy.

To accomplish this, the raceways and rolling elements must be made of a material that has high hardness, is resistant to rolling fatigue, is wear resistant, and has good dimensional stability. The most common cause of fatigue in bearings is the inclusion of non-metallic inclusions in the steel. Nonmetallic inclusions contain hard oxides that can cause fatigue cracks. Clean steel with minimal non-metallic inclusions must therefore be used.

All **NTN** bearings use steel that is low in oxygen content and nonmetallic impurities, refined by a vacuum degassing process and outside hearth smelting. For bearings requiring especially high reliability and long life, steels of even higher in purity, such as vacuum melted steel (VIM / VAR) and electro-slag melted steel (ESR), are used.

## 13.1.1 Raceway and rolling element materials1) High/mid carbon alloy steel

In general, steel types capable of being "through hardened" below the material surface are employed for raceways and rolling elements. Foremost among these is high carbon chromium bearing steel, which is widely used. For large type bearings and bearings with large cross sectional dimensions, induction hardened bearing steel is used, which incorporates manganese(Mn) or molybdenum(Mo). Midcarbon chromium steel incorporating silicon(Si) and manganese may also be used, which gives it hardening properties comparable to high carbon chromium steel.

Table 13.1 (A-140) gives the chemical composition of representative high carbon chrome bearing steels that meet JIS G 4805. SUJ2 is frequently used. SUJ3, with enhanced hardening characteristics containing a large quantity of Mn, is used for large bearings. SUJ5 is SUJ3 to which Mo has been added to further enhance hardening characteristics, and is used for oversized bearings or bearings with thick walls.

**Table 13.1** (A-140) lists the chemical composition of the primary materials that are equivalent or similar to these JIS high carbon chrome bearing steels. The chemical composition of JIS SUJ2 is nearly equivalent to that of AISI, SAE standard 52100, German DIN standard 100Cr6, and Chinese GB standard GCr15.

#### 2) Carburizing (case hardened) steel

Carburizing hardens the steel from the surface to the proper depth, leaving a relatively soft core. This provides hardness and toughness, making the material suitable for impact loads. NTN uses carburizing (case hardened) steel for most of its tapered roller bearings. In terms of case hardened steel for NTN's other bearings, chromium steel and chrome molybdenum steel are used for small to medium sized bearings, and nickel chrome molybdenum steel is used for large sized bearings. Table 13.2 (A-141) shows the chemical composition of representative carburizing steels of JIS.

The table lists the chemical composition of similar materials. The chemical composition of JIS SCM420 is nearly equivalent to that of AISI, SAE standard 4118, German DIN standard 20CrMo4 or 25CrMo4. Chinese GB standard has a slightly different amount of Cr and Mo compared with G20CrMo.

#### 3) High temperature capable bearing steel

When bearings made of ordinary high carbon chromium steel which have undergone standard heat treatment are used for long durations at high temperatures, unacceptably large dimensional changes can occur as described in section 13.1.2. For this reason, a dimension stabilizing treatment (TS treatment) has been devised for very high temperature applications. This treatment however reduces the hardness of the material, thereby reducing rolling fatigue life. (See section "3.3.2 Bearing characteristics factor a2" on page A-22.) Note that dimensional changes can occur in normal use too.

Standard high temperature bearings for use at temperatures from 150°C - 200°C, add silicon to the steel to improve heat resistance. This results in a bearing with excellent rolling fatigue life with minimal dimensional change or softening at high temperatures.

A variety of heat resistant steels are also incorporated in bearings to minimize softening and dimensional changes when used at high temperatures. Two of these are high-speed molybdenum steel and high-speed tungsten steel. For bearings requiring heat resistance in high speed applications, there is also heat resistant case hardened molybdenum steel (see Table 13.3 on A-142).

#### 4) Corrosion resistant bearing steel

For applications requiring high corrosion resistance, **stainless steel** is used. To achieve this corrosion resistance, a large proportion of the alloying element chrome is added to martensitic stainless steel (**Table 13.4** on A-142).

#### 5) Induction hardened steel

Besides the use of surface hardening steel, induction hardening is also utilized for bearing raceway surfaces, and for this purpose **mid-carbon steel** is mainly used for its lower carbon content instead of through hardening steel.

Table 13.5 (A-142) shows the chemical composition of the primary materials that are similar to the representative medium carbon steels (machine structural carbon steels) of JIS used for small products. For deep hardened layers required for larger bearings and bearings with large surface dimensions, midcarbon steel is fortified with chromium and molybdenum.

#### 6) Other bearing materials

For ultra high speed applications and applications requiring very high level corrosion resistance, ceramic bearing materials such as Si₃N₄ are also available.

A-128 A-129

### 13.1.2 Properties and characteristics of bearing Materials

## 1) Physical and mechanical properties of bearing materials (besides resin)

Table 13.6 and Table 13.7 (A-143) show physical and mechanical properties of the representative materials used for raceways, rolling elements, and cages.

#### 2) Dimensional change of bearings

Dimensions of bearings used for a long time may change depending on the use condition. This phenomenon is called dimensional change.

#### <Mechanism of dimensional change>

A standard bearing steel structure contains a small amount of austenite in the matrix of hard martensite. This austenite is partially retained austenite without being transformed into martensite in the cooling process of the bearing steel quenching process, and is called residual austenite.

Since the residual austenite is an unstable structure, it is transformed into a stable structure (martensite) when the bearing is being used. This structure transformation is the cause of the dimensional change of bearings.

Fig. 13.1 shows measured values of dimensional change of a standard bearing held at 120°C over an extended period of time.



Fig. 13.1 Example of dimensional change rate of standard bearings that are held at 120°C for a long time (measured values)

The dimensional change rate becomes larger as the elapsed time or the temperature of exposure increases.

Depending on the use condition, dimensional change may occur with bearings made of general bearing steel that did not reach 100°C, which is the normal limit.

Bearings that underwent dimension stabilization treatment (TS treatment) have a significantly lower dimensional change. For details, please contact NTN Engineering.

#### <Dimensional change problems and countermeasures>

Among dimensional change, particular attention should be paid to inner ring expansion. When the inner ring expands by dimensional change, the interference between the inner ring and the shaft decreases, and the bearing may be heavily damaged by creeping or axial movement. Therefore, when a bearing is to be used for a long time, the bearing specifications and fixing method must be determined with the interference decrease due to dimensional change taken into consideration. For example, the interference can be increased (see section "7. Bearing fits") or fixing in the axial direction can be reinforced (see section "14. Shaft and housing design").

#### <Situations to monitor dimensional change>

The dimensional change of bearings is expressed by the bearing dimension × dimensional change rate. Therefore, under a given temperature and elapsed time, larger bearings show greater dimensional change. Pay particular attention to the amount of dimensional change when large bearings are to be used with fits with small interference.

In addition, dimensional change does not occur during the rotation inspection immediately following bearing installation. It is observed after a long-period operation. Therefore, for machines and parts used for a long time, periodic inspection is effective for preventing problems. For detailed consideration, please consult **NTN** beforehand.

#### 13.2 Cage

Bearing cage materials must have the strength to withstand rotational vibrations and shock loads. These materials must also have a low friction coefficient, be lightweight, and be able to withstand bearing operating temperatures.

#### 13.2.1 Metal materials

For small and medium sized bearings, pressed steel cages of cold or hot rolled material with a low carbon content of approx. 0.1% are used. However, depending on the application, austenitic stainless steel is also used. Machined cages are generally used for large bearings. Carbon steel for machine structures or highstrength cast brass is frequently used for the cages, but other materials such as aluminum alloy are also used. Table 13.8 and Table 13.9 (A-143) show the chemical composition of the representative cage materials.

Besides high-strength brass, medium carbon nickel, chrome and molybdenum steel that has been hardened and tempered at high temperatures are also used for bearings used in aircraft. The materials are often **plated with** silver to enhance lubrication characteristics.

#### 13.2.2 Resin materials

Recently resin cages are used in place of metals because the material is lightweight and easy to mold into complicated shapes. On the other hand, resins have disadvantages such as lower strength and heat resistance. Therefore, it is important to select resin materials that take advantage of their characteristics. Table 13.10 (A-144) shows the characteristics of the representative cage resin materials. These materials are rarely used without being filled, and are usually reinforced with glass fiber (GF) or carbon fiber (CF).

## [Characteristics of resin materials]

### (Advantages)

- · Lightweight · High corrosion resistance
- · High self-lubricating performance with less abrasion powder
- · Low noise
- · Can easily be molded into complicated shapes and various designs
- High productivity

#### (Disadvantages)

- · Lower strength compared with metal
- · Lower heat resistance compared with metal
- · The strength and elastic modulus largely vary widely with temperature.
- The physical properties (strength) may change when resins are exposed to high temperatures for a long period.
- · The strength may deteriorate when resins are exposed to certain types of chemical or oils.
- The thermal expansion coefficient is high, and the dimensional change is larger compared with metal.

#### << Polyamide (PA): 66, 46>>

Polyamide is suitable for general cage materials because it is low cost and has high strength, heat resistance, wear resistance, and formability. This material has disadvantages such as high water absorbency, physical property deterioration and dimensional change due to water absorption. On the other hand, water absorption increases flexibility and toughness, enhancing the ease of assembly and shock resistance of cages. However, the physical property (strength) may deteriorate rapidly at high temperatures when polyamide is exposed to lubricating oil containing an S (suflur) type or P (phosphorus) type extreme pressure additive.

Polyamide 66 reinforced with glass fibers is the most used material because it has excellent performance as a cage material.

#### << Polyphenylene sulfide (PPS)>>

Polyphenylene sulfide has high heat resistance (continuous operating temperature: 220 to 240°C), chemical resistance, melt fluidity, and formability.

#### << Polyetheretherketone (PEEK)>>

Polyetheretherketone has the highest heat resistance among thermoplastic resins (continuous operating temperature: 240 to 260°C). It has excellent self-lubricating

A-130 A-131

performance, shock resistance, and chemical resistance, but it is very expensive. It is mainly used for cages of high-speed bearings for machine tools.

#### << Fabric reinforced phenolic resin>>

Phenolic resin is a thermosetting resin. It overcomes the disadvantages of hard and brittle phenolic resin having low shock resistance using fabric reinforcement. It is lightweight and has high lubricity and good mechanical properties. Injection molding cannot be performed because of the thermosetting property, so cages are made by machining. It is mainly used for cages of high-speed angular contact ball bearings for machine tools.

#### 13.3 Rubber seal materials

Synthetic rubbers with high heat resistance and oil resistance are used as materials for seals. Different rubber is used depending on the degree of heat resistance.

Table 13.11 (A-144) shows the representative characteristics of the rubber materials.

#### <<Nitrile rubber (NBR)>>

Nitrile rubber has high oil resistance, heat resistance, and wear resistance, and is widely used as a general material for seals. The operating temperature range is -20 to 120°C.

#### <<Acrylic rubber (ACM)>>

Acrylic rubber has high heat resistance and can be used above the application temperature of NBR. It has excellent oil resistance but swells in ester oil. An ester oil resistant grade is also available. The operating temperature range is -15 to 150°C.

#### <<Fluorinated rubber (FKM)>>

Fluorinated rubber is a rubber material having excellent heat resistance, oil resistance, and chemical resistance. It is deteriorated by amine, so attention needs to be paid when combining fluorinated rubber with urea grease that precipitates amine at high temperatures. The

operating temperature range is -30 to 230°C.

#### 13.4 Periphery of bearing (shaft, housing)

**Table 13.12** (A-145) and **Table 13.13** (A-145) show physical and mechanical properties of representative materials used for shafts and housings. Heat treatment is applied to bearing materials that are used under large loads. Steel with enhanced bending strength and wear resistance (fretting strength) is used. For such applications, bearing materials (Table 13.6 and Table 13.7 on A-143) may also be used as shaft materials.

For housing materials that are used under large loads, heat treatment is applied, and materials with enhanced wear resistance (fretting strength) are used. For lightweight applications, aluminum alloy is widely used.

#### 13.5 NTN bearings with prolonged life

**NTN** is promoting approaches and research and development from various perspectives with respect to long operating life of bearings. Two examples of approaches for bearing materials and heat treatment, (1) TAB/ETA/EA bearings and (2) FA tapered roller bearings will be introduced in the following sections.

#### 13.5.1 TAB/ETA/EA bearing series 1) Characteristics

## (1) Effective for lubrication conditions with

## foreign matter having high hardness

The main cause of the damage of transmission bearings of automobiles is foreign matter in the lubricating oil. TAB/ETA/EA bearings can be used to prolong the operating life of machines under such contaminated lubricating oil conditions.

#### (2) High peeling strength

Peeling damage is often caused by deterioration of lubrication conditions during use. The limit life can be prolonged by enhancing the bearing's peeling resistance.

#### 2) Mechanism of prolonged bearing life

Bearing damage is often seen on the raceway surface. By applying heat treatment and selecting appropriate materials, the surface structure has enhanced toughness and improved resilience without impairing the surface hardness. In addition, for tapered roller bearings, crowning is also optimized. These suppress suppresses the occurrence of small cracks that might become the starting point of peeling and damage, prolonging the operating

#### (1) Crack resistance and stress releasing effect

The residual austenite, which is softer than the martensitic parent phase, has an effect of relieving stress concentrations acting on the periphery of the dent formed by foreign matter on the rolling contact surface under lubrication conditions with foreign matter mixed into the oil, thereby suppressing the occurrence of cracks.

As shown in Fig. 13.2, all the residual stress on the top surface of the dent part is shifted to the tensile side. The standard heat-treated product of through hardened steel has residual tensile stress. When a specially heat-treated product and a standard heat-treated product are compared, the special heat treated material has less shifting of stresses to the tensile side, which can be harmful, and a stress release action is observed.

#### (2) Reason for long operating life

ETA and EA bearings have a structure with an

appropriate amount of residual austenite and carbide dispersed on the surface region, and the structure is thermally stabilized by the special heat-treatment mentioned above.

The qualities of the material (residual stress, hardness, micro-structure) of a raceway surface generally change due to heat generation and shearing stress action during rolling contact, leading to fatigue cracks. Therefore, improving resistance to temper softening is effective to prevent surface-initiated damage. The residual austenite obtained by ordinary carburizing can suppress generation and progress of cracks and is work-hardened during use (the strength increases). Therefore, by using an appropriate amount of it, the material becomes tough. However, it is unstable against heat. On the other hand, when nitrogen is introduced and diffused under an appropriate condition, a matrix of residual austenite and matensite parent phase that is stable against heat is formed, and the material becomes resilient against quality changes.

#### 3) Supported bearing sizes

#### Table 13.15

●Deep groove ball series	●Tapered roller series		
TAB000 to TAB020	All types that have bearing		
TAB200 to TAB217	diameter to be equal to or		
TAB300 to TAB311	lower than <i>ф</i> 600		

For other types besides the above, please contact NTN Engineering.

Table 13.14 Comparison of dent shapes of each material

Material		Surface hardness [HRC]	Residual austenite amount [%]	Dent diameter [mm]	Dent depth [µm]	Protrusion amount [µm]
Through	Standard bearing	62.0	10	2.40	80	5
hardened steel	TAB bearing	62.0	28	2.45	83	4
Carburizing	Standard bearing	61.0	25	2.80	102.5	1
steel	ETA bearing	62.5	29	2.63	97.5	1
Example of dent shape		Dent diameter 2.40mm Protrusion amount 5 \( \mu\) Dent depth  (Example of through hardened steel bearing)				

A-132 A-133



Fig. 13.2 Residual stress within a dent

## 4) Operating life test

The life test results of a standard bearing, a TAB bearing, and an ETA bearing are shown, but the data is for reference because it varies depending on the type of foreign matter under the contaminated lubricant condition.

## (1) Tested bearings and test conditions Table 13.16 shows tested bearings, and

Table 13.17 and Table 13.18 shows the test conditions.

### (2) Operating life data Condition of lubricating oil containing foreign matter (reference)

Fig. 13.3 and Fig. 13.4 show the results of tests conducted under lubrication conditions mixed with NTN standard foreign matter.

Table 13.16 Tested bearings

Bearing name	Boundary dimensions (mm)
Standard 6206	φ30 × φ62 × 16
TAB bearing TAB206	1
Standard 30206	φ30 × φ62 × 17.25
ETA bearing ETA-30206	1

#### Table 13.17 Test condition (6206, TAB206)

Radial load (kN)	6.9
Rotational speed (mm ⁻¹ )	2 000
Lubricating oil	Turbine 56 + <b>NTN</b> standard foreign matter
Lubrication method	Oil bath

#### Table 13.18 Test condition (30206, ETA-30206)

Radial load (kN)	17.64
Rotational speed (mm ⁻¹ )	2 000
Lubricating oil	Turbine 56 + <b>NTN</b> standard foreign matter
Lubrication method	Oil bath



Fig. 13.3 Operating life comparison between TAB deep groove bearing and standard bearing (mixed with foreign matter)



Fig. 13.4 Operating life comparison between ETA tapered roller bearing and standard bearing (mixed with foreign matter)

## 13.5.2 FA tapered roller bearings

NTN developed special heat treatment (FA treatment) for refining crystal grains of bearing steel to half or less the size of the conventional ones by focusing on refining strengthening of crystal grains. (See Fig. 13.5) NTN adopted this technique for "FA tapered roller bearings," thereby improving the indentation resistance and realizing long operating life under the lubrication conditions including foreign matter. Further, by combining optimization techniques for the internal bearing design acquired during development of the ECO-Top series, the seizure resistance is improved and the bearing size can be greatly reduced.

Remarks: FA is an abbreviation of fine austenite strengthening treatment.

#### **FA** treatment (Fine Austenite Strengthening)

- · Longer operating life is realized by crystal grain refinement of bearing steel.
- The crystal grains of bearing steel are refined to half or



Fig. 13.5 Former austenite crystal grain boundary

#### 1) Longer operating life

- · Rolling fatigue life is improved by crystal grain refinement.
- · The residual austenite amount is optimized by carbonitriding, and resistance to surfaceinitiated damage caused by rolling over foreign matter is improved by the crystal grain refinement technique.

A-134 A-135  Special crowning that is designed to obtain optimum surface pressure distribution under light to heavy load conditions is adopted.

Thus, the operating life under the lubrication condition including oil types and foreign matter close to the actual machine was greatly extended compared with the standard product.

#### 2) Optimum oil film formation design

The rib area of a tapered roller bearing has sliding contact, and the quality of the oil film forming capability of this area greatly affects the bearing performance.

In the FA tapered roller bearing, the oil film forming capability of the rib area is improved by optimization techniques involving parameters such as the shape, accuracy, and roughness of the contact area of the flange and the roller acquired during ECO-Top bearing development. Thus, the rotational torque is reduced, and the seizure resistance and the preload loss resistance are improved.

#### 3) Seating of assembly width

When a tapered roller bearing is to be used under preload, it is necessary to give sufficient stable rotation to the bearing and bring the bearing into a proper state in which the roller end surface and the inner ring rib surface are brought into contact with each other.

The smaller the number of stable rotations, the more reliably the preload setting can be achieved, and the assembly work becomes more efficient.

With FA tapered roller bearings, preload can reliably be set in a short time by the optimization of the internal bearing design. For example, it may become possible to stop applying gear oil to help achieve early stabilization. The roller becomes stable at a rotation speed equal to that of a conventional bearing by using only rust preventative oil.

#### 4) Improvement in indentation resistance

To make bearings smaller, it is necessary to improve the indentation resistance to prevent safety factor decrease caused by a decrease of the static load rating.

Regarding FA tapered roller bearings, the indentation depth is less than one ten-thousandth of the rolling element diameter even under the static load with a safety factor  $(S_0) = 0.6$ .

#### 5) Test data

#### (1) Operating life

## (Condition of linear contact type operating life test)

Test machine : **NTN** linear contact life

test machine

Test piece :  $\phi$ 12 × L12, R480 The other test piece :  $\phi$ 20 Roller(SUJ2)

Load (kN) : 13.74 Contact stress (Mpa) : 4  $155(P_{\text{max}})$ Lubricating oil : Turbine oil 68

Table 13.19 Result of operating life test under clean lubricating oil condition (Result of comparison test with linear contact type test piece)

Heat treatment method	$L_{10}$ operating life, $\times 10^4$ cycles	L ₁₀ life ratio
4Тор	1 523	1.0
ECO-Top(ETA)	3 140	2.1
FA	4 290	2.8

 $*L_{10}$  life ratio is the comparison when 4Top is 1.0.

## (Condition of bearing operating life test)

Test machine : **NTN** life test machine

Tested bearings : (1)30206

: (2)30306D

Test load :  $(1)F_r = 17.64$ kN,  $F_a = 1.47$ kN

:  $(1)F_r = 19.6kN$ ,  $F_a = 13.72kN$ 

Rotational speed: 2 000min⁻¹

Lubrication : (1)Turbine oil 56 oil bath (30 ml)

: (2)ATF oil bath (50 ml)

Foreign matter : (1)50 $\mu$ m or below : 90wt%  $\Big\}$ 1.0g/l

100~180µm: 10wt% J1.0g/

: (2)50μm or below: 75wt% 100~180μm: 25wt% 0.2g/l

Calculated

operating life : (1)169h (No foreign matter)

: (2)171h (No foreign matter)

Table 13.20 Result of operating life test under lubrication condition including foreign matter (Result of comparison test by bearings)

Test condition		4Тор	ECO-Top(ETA)	FA
Condition	$L_{10}$ operating life (h)	52.4	314.9	415.6
(1)	L ₁₀ life ratio	1.0	6.0	7.9
Condition	$L_{10}$ operating life (h)	22.5	_	309.7
(2)	$L_{10}$ life ratio	1.0	_	13.8

 $*L_{10}$  life ratio is the comparison when 4Top is 1.0.



Fig. 13.6 Condition (1) 30206 operating life test result (lubrication condition including foreign matter)



Fig. 13.7 Condition (2) 30306D operating life test result (lubrication condition including foreign matter)

#### (2) Rotational torque



Fig. 13.8 Result of rotational torque measurement

A-136 A-137

#### (3) Seizure resistance



Fig. 13.9 Results of temperature rise test



Fig. 13.10 Results of PV limit test

#### (4) Preload release resistance



Fig. 13.11 Results of preload release test

#### (5) Seating of assembly width

: 30206 Bearing Axial load : 29.4N

Test method: A bearing is placed in the

configuration shown in the figure, and an axial load (weight) is applied to rotate the inner ring. The drop amount of the inner ring for each rotation is measured to obtain the rotational speed until it is stable.



Fig. 13.12 Measurement method of revolutions to seated bearing width



Fig. 13.13 Measurement result of revolutions to seated bearing width

#### (6) Indentation resistance



Fig. 13.14 Measurement result of dent depth

#### 6) Downsizing with FA tapered roller bearing

Improvement in the bearing life, seizure resistance, and indentation resistance strength allows the compact ratio below by adopting an FA tapered roller bearing (Fig. 13.15).



Fig. 13.15 Example of compact ratio

#### 7) Supported bearing size

The target bearings are bearings with an outer diameter of  $\phi$  145 or below. Contact **NTN** Engineering for details.

#### 13.6 Bearing fatigue analysis technique

In a region subjected to plastic deformation due to rolling fatigue, various X-ray analysis parameters obtained by X-ray stress measurements (residual stress, diffraction half-value with, and residual ausentite) may be observed. There is a technique that estimates the degree of progress of rolling fatigue (degree of fatigue) based on the X-ray stress measurement result using this characteristic (Fig. 13.16). Since the mid-1980s, NTN has been investigating the relationship between the X-ray analysis value (fatigue degree in Fig. 13.16) and the life ratio (a value expressed by the percentage of the operating time in which peeling occurred is 100%) for surface-initiated damage (peeling and early peeling starting from dents), which has been frequently observed in the field. Since the relationship changes depending on various rolling conditions (combination of surface roughness, load, and lubrication condition), the values are used for reference; however, the remaining operating life can be estimated by using this relationship diagram.



Fig. 13.16 Relationship between degree of fatigue and life ratio

Recently, fatigue degree estimation is being studied using variation in X-ray diffraction ring peak intensity with high sensitivity even in the latter stage of fatigue.

A-138 A-139 Table 13.1 Chemical composition of representative high carbon chrome bearing steels

Country			Main chemical composition (%)								Equivalent/
name	Standard name	Code	С	Si	Mn	Р	S	Ni	Cr	Мо	approximate steel of JIS
		SUJ2	0.95 ~1.10	0.15 ~0.35	≦0.50	≦0.025	≦0.025	≦0.25	1.30 ~1.60	≦0.08	
Japan	JIS G 4805	SUJ3	0.95 ~1.10	0.40 ~0.70	0.90 ~1.15	≦0.025	≦0.025	≦0.25	0.90 ~1.20	≦0.08	
зарап	(2008)	SUJ4	0.95 ~1.10	0.15 ~0.35	≦0.50	≦0.025	≦0.025	≦0.25	1.30 ~1.60	0.10 ~0.25	
		SUJ5	0.95 ~1.10	0.40 ~0.70	0.90 ~1.15	≦0.025	≦0.025	≦0.25	0.90 ~1.20	0.10 ~0.25	
	ASTM A1040	50100	0.98 ~1.10	0.15 ~0.35	0.25 ~0.45	≦0.025	≦0.025	≦0.25	0.4 ~0.6	≦0.10	
	(2010)	51100	0.98 ~1.10	0.15 ~0.35	0.25 ~0.45	≦0.025	≦0.025	≦0.25	0.90 ~1.15	≦0.10	
USA	ASTM A295/295M (2014) AISI A295/295M (2014) SAE AMS 6440S (2015)	52100	0.93 ~1.05	0.15 ~0.35	0.25 ~0.45	≦0.025	≦0.015	≦0.25	1.35 ~1.60	≦0.10	SUJ2
	ASTM A485 (2014)	A485 Grade1	0.90 ~1.05	0.45 ~0.75	0.90 ~1.20	≦0.025	≦0.015	≦0.25	0.90 ~1.20	≦0.10	SUJ3
		100Cr6	0.93 ~1.05	0.15 ~0.35	0.25 ~0.45	≦0.025	≦0.015	_	1.35 ~1.60	≦0.10	SUJ2
	NE EN 100 002 47	100CrMnSi4-4	0.93 ~1.05	0.45 ~0.75	0.90 ~1.20	≦0.025	≦0.015	_	0.9 ~1.20	≦0.10	SUJ3
France/	NF EN ISO 683-17 (2014)	100CrMnSi6-4	0.93 ~1.05	0.45 ~0.75	1.00 ~1.20	≦0.025	≦0.015	_	1.40 ~1.65	≦0.10	
Germany	DIN EN ISO 683-17 (2014)	100CrMo7	0.93 ~1.05	0.15 ~0.45	0.25 ~0.45	≦0.025	≦0.015	_	1.65 ~1.95	0.15 ~0.30	
		100CrMo7-3	0.93 ~1.05	0.15 ~0.45	0.60 ~0.80	≦0.025	≦0.015	_	1.65 ~1.95	0.20 ~0.35	
		100CrMnMoSi8- 4-6	0.93 ~1.05	0.40 ~0.60	0.80 ~1.10	≦0.025	≦0.015	_	1.80 ~2.05	0.50 ~0.60	
Germany	DIN	105Cr4	1.00 ~1.10	0.15 ~0.35	0.25 ~0.40	≦0.030	≦0.025	_	0.90 ~1.15	_	
		GCr4	0.95 ~1.05	0.15 ~0.30	0.15 ~0.30	≦0.025	≦0.020	≦0.25	0.35 ~0.50	≦0.08	
		GCr15	0.95 ~1.05	0.15 ~0.35	0.25 ~0.45	≦0.025	≦0.025	≦0.30	1.40 ~1.65	≦0.10	SUJ2
China	GB/T 18254 (2002)	GCr15SiMn	0.95 ~1.05	0.45 ~0.75	0.95 ~1.25	≦0.025	≦0.025	≦0.30	1.40 ~1.65	≦0.10	
	(5332)	GCr15SiMo	0.95 ~1.10	0.65 ~0.85	0.20 ~0.40	≦0.027	≦0.020	≦0.30	1.40 ~1.70	0.30 ~0.40	
		GCr18Mo	0.95 ~1.05	0.20 ~0.40	0.25 ~0.40	≦0.025	≦0.020	≦0.25	1.65 ~1.95	0.15 ~0.25	

Table 13.2 Comparison table of main material components of each country (carburizing steel)

Country	Standard name	Main chemical composition (%)								Equivalent/ approximate	
name	Standard name	Code	С	Si	Mn	Р	S	Ni	Cr	Мо	steel of JIS
		SCr420	0.18 ~0.23	0.15 ~0.35	0.60 ~0.90	≦0.030	≦0.030	≦0.25	0.90 ~1.20	_	
		SCr435	0.33 ~0.38	0.15 ~0.35	0.60 ~0.90	≦0.030	≦0.030	≦0.25	0.90 ~1.20	_	
lanan	JIS G 4053	SCM420	0.18 ~0.23	0.15 ~0.35	0.60 ~0.90	≦0.030	≦0.030	≦0.25	0.90 ~1.20	0.15 ~0.25	
Japan	(2016)	SCM435	0.33 ~0.38	0.15 ~0.35	0.60 ~0.90	≦0.030	≦0.030	≦0.25	0.90 ~1.20	0.15 ~0.30	
		SNCM420	0.17 ~0.23	0.15 ~0.35	0.40 ~0.70	≦0.030	≦0.030	1.60 ~2.00	0.40 ~0.60	0.15 ~0.30	
		SNCM815	0.12 ~0.18	0.15 ~0.35	0.30 ~0.60	≦0.030	≦0.030	4.00 ~4.50	0.70 ~1.00	0.15 ~0.30	
		5120	0.17 ~0.22	0.15 ~0.35	0.70 ~0.90	≦0.035	≦0.040	≦0.25	0.70 ~0.90	≦0.06	SCr420
	AISI A29/29M	4118	0.18 ~0.23	0.15 ~0.35	0.70 ~0.90	≦0.035	≦0.040	≦0.25	0.40 ~0.60	0.08 ~0.15	SCM420
	(2015) SAE J404	4135	0.33 ~0.38	0.15 ~0.35	0.70 ~0.90	≦0.035	≦0.040	≦0.25	0.80 ~1.10	0.15 ~0.25	SCM435
USA	(2009)	4320	0.17 ~0.22	0.15 ~0.35	0.45 ~0.65	≦0.035	≦0.040	1.65 ~2.00	0.40 ~0.60	0.20 ~0.30	SNCM420
		8620	0.17 ~0.22	0.15 ~0.35	0.70 ~0.90	≦0.035	≦0.040	0.40 ~0.60	0.40 ~0.60	0.15 ~0.25	SNCM220
	AISI A29/29M(2015)	5135	0.33 ~0.38	0.15 ~0.35	0.60 ~0.80	≦0.035	≦0.040	≦0.25	0.80 ~1.05	≦0.06	SCr435
	AISI SAE AMS 6263M (2016)	9315	0.11 ~0.17	0.15 ~0.35	0.40 ~0.70	≦0.025	≦0.025	3.00 ~3.50	1.00 ~1.40	0.08 ~0.15	SNCM815
		20Cr4	0.17 ~0.23	≦0.40	0.60 ~0.90	≦0.025	≦0.015	_	0.90 ~1.20	_	SCr420
	NF EN ISO 683-17 (2014)	20CrMo4	0.17 ~0.23	≦0.40	0.60 ~0.90	≦0.025	≦0.015	ı	0.90 ~1.20	0.15 ~0.25	SCM420
	DIN EN ISO 683-17 (2014)	20NiCrMo7	0.17 ~0.23	≦0.40	0.40 ~0.70	≦0.025	≦0.015	1.60 ~2.00	0.35 ~0.65	0.20 ~0.30	
France/		18NiCrMo14-6	0.15 ~0.20	≦0.40	0.40 ~0.70	≦0.025	≦0.015	3.25 ~3.75	1.30 ~1.60	0.15 ~0.25	
Germany	NF EN 10084(2008) DIN EN 10084(2008)	17NiCrMo6-4	0.14 ~0.20	≦0.40	0.60 ~0.90	≦0.025	≦0.035	1.20 ~1.50	0.8 ~1.10	0.15 ~0.25	
	NF EN 10083-1	37Cr4	0.34 ~0.41	≦0.40	0.60 ~0.90	≦0.035	≦0.035	_	0.90 ~1.20	_	SCr435
	(1996) DIN EN 10083-1	25CrMo4	0.22 ~0.29	≦0.40	0.60 ~0.90	≦0.035	≦0.035	_	0.90 ~1.20	0.15 ~0.30	SCM420
	(1996)	34CrMo4	0.30 ~0.37	≦0.40	0.60 ~0.90	≦0.035	≦0.035	_	0.90 ~1.20	0.15 ~0.30	SCM435
		G20CrMo	0.17 ~0.23	0.20 ~0.35	0.65 ~0.95	≦0.030	≦0.030	_	0.35 ~0.65	0.08 ~0.15	
		G20CrNiMo	0.17 ~0.23	0.15 ~0.40	0.60 ~0.90	≦0.030	≦0.030	0.40 ~0.70	0.35 ~0.65	0.15 ~0.30	
China	GB/T 3203	G20CrNi2Mo	0.17 ~0.23	0.15 ~0.40	0.40 ~0.70	≦0.030	≦0.030	1.60 ~2.00	0.35 ~0.65	0.20 ~0.30	SNCM420
Cillia	(1982)	G20Cr2Ni4	0.17 ~0.23	0.15 ~0.40	0.30 ~0.60	≦0.030	≦0.030	3.25 ~3.75	1.25 ~1.75	_	
		G10CrNi3Mo	0.08 ~0.13	0.15 ~0.40	0.40 ~0.70	≦0.030	≦0.030	3.00 ~3.50	1.00 ~1.40	0.08 ~0.15	
		G20Cr2Mn2Mo	0.17 ~0.23	0.15 ~0.40	1.30 ~1.60	≦0.030	≦0.030	≦0.30	1.70 ~2.00	0.20 ~0.30	

A-140

Table 13.3 Chemical composition of high-speed steel

Stand	ard	Chemical composition (%)												
Stanu	aru	С	Si	Mn	Р	S	Cr	Мо	V	Ni	Cu	Со	W	
	6491 (M50)	0.77 to 0.85	Max. 0.25	Max. 0.35	Max. 0.015	Max. 0.015	3.75 to 4.25	4.00 to 4.50	0.90 to 1.10	Max. 0.15	Max. 0.10	Max. 0.25	Max. 0.25	
AMS	5626	0.65 to 0.80	0.20 to 0.40	0.20 to 0.40	Max. 0.030	Max. 0.030	3.75 to 4.50	Max. 1.00	0.90 to 1.30	_	_	_	17.25 to 18.25	
	2315 (M50NiL)	0.11 to 0.15	0.10 to 0.25	0.15 to 0.35	Max. 0.015	Max. 0.010	4.00 to 4.25	4.00 to 4.50	1.13 to 1.33	3.20 to 3.60	Max. 0.10	Max. 0.25	Max. 0.25	

Table 13.4 Chemical composition of stainless steel

Standard	Code		Chemical composition (%)										
Standard	Code	С	Si	Mn	Р	S	Cr	Мо					
JIS G 4303	SUS440C	0.95 to 1.20	Max. 1.00	Max. 1.00	Max. 0.040	Max. 0.030	16.00 to 18.00	Max. 0.75					
AISI	440C	0.95 to 1.20	Max. 1.00	Max. 1.00	Max. 0.040	Max. 0.030	16.00 to 18.00	Max. 0.75					

Table 13.5 Comparison table of main material components of each country (machine structural carbon steel)

Country	Standard name	Code	Main chemical composition (%)							Equivalent/ approximate	
name	Standard flame	Code	С	Si	Mn	Р	S	Ni	Cr	Мо	steel of JIS
		S45C	0.42 ~0.48	0.15 ~0.35	0.60 ~0.90	≦0.030	≦0.035	≦0.20	≦0.20	_	
Japan	JIS G 4051 (2016)	S53C	0.50 ~0.56	0.15 ~0.35	0.60 ~0.90	≦0.030	≦0.035	≦0.20	≦0.20	_	
		S55C	0.52 ~0.58	0.15 ~0.35	0.60 ~0.90	≦0.030	≦0.035	≦0.20	≦0.20	_	
		1045	0.43 ~0.50	_	0.60 ~0.90	≦0.040	≦0.050	-	_	_	S45C
	AISI A29/29M	1046	0.43 ~0.50	_	0.70 ~1.00	≦0.040	≦0.050	-	_	_	S45C
USA	(2015) SAE J403	1050	0.48 ~0.53	_	0.60 ~0.90	≦0.040	≦0.050	-	_	_	S50C
	(2014)	1053	0.48 ~0.55	_	0.70 ~1.00	≦0.040	≦0.050	-	_	_	S53C
	1055	0.50 ~0.60	_	0.60 ~0.90	≦0.040	≦0.050	-	_	_	S55C	
		C45	0.42 ~0.50	≦0.40	0.50 ~0.80	≦0.045	≦0.045	≦0.40	≦0.40	≦0.10	S45C
		C45E	0.42 ~0.50	≦0.40	0.50 ~0.80	≦0.035	≦0.035	≦0.40	≦0.40	≦0.10	S45C
France/	NF EN 10083-1,2 (2006)	C45R	0.42 ~0.50	≦0.40	0.50 ~0.80	≦0.035	0.02 ~0.04	≦0.40	≦0.40	≦0.10	S45C
Germany	DIN EN 10083-1,2 (2006)	C55	0.52 ~0.60	≦0.40	0.60 ~0.90	≦0.045	≦0.045	≦0.40	≦0.40	≦0.10	S55C
		C55E	0.52 ~0.60	≦0.40	0.60 ~0.90	≦0.03	≦0.035	≦0.40	≦0.40	≦0.10	S55C
		C55R	0.52 ~0.60	≦0.40	0.60 ~0.90	≦0.03	0.02 ~0.04	≦0.40	≦0.40	≦0.10	S55C
	GB/T 24595 (2009)	45	0.42 ~0.50	0.17 ~0.37	0.50 ~0.80	≦0.025	≦0.025	≦0.30	≦0.25	≦0.10	S45C
China	GB/T 699	50Mn	0.48 ~0.56	0.17 ~0.37	0.70 ~1.00	≦0.035	≦0.035	≦0.30	≦0.25	_	S53C
	(2015)	55	0.52 ~0.60	0.17 ~0.37	0.50 ~0.80	≦0.035	≦0.035	≦0.30	≦0.25	_	S55C

Table 13.6 Physical property values of bearing materials

Steel type	Density $\rho$ (g/cm ³ )	Longitudinal elasticity factor E(GPa)	Linear expansion coefficient (×10 ⁻⁶ /°C)	Thermal conductivity (W/m·°C)	Specific heat (J/kg·°C)	Remarks
SUJ2	7.83	208	12.5	46	468	Quenching and tempering
SCr420	7.84	208	12.6	47	(470)	Quenching and tempering
SCM420	7.85	208	12.5	45	(470)	Quenching and tempering
SNCM420	7.85	208	12.0	44	(470)	Quenching and tempering
M50	7.85	210	11.4	25.0	460	Quenching and tempering
SUS440C	7.75	205	10.6	24.2	460	Quenching and tempering
SPCC	7.86	206	11.5	59	470	Annealing (not hard)
SUS304	7.93	193	17.3	16.3	500	Annealing
Chrome steel	7.84	206	11.2	42~50	465	0.09~0.25C, 0.55~1.5Cr
Special extra-mild steel	7.86	209	11.6	58.2	473	C<0.08
Extra-mild steel	7.86	206	11.4	58.7	475	0.08~0.12C
Mild steel	7.86	207	11.2	55.2	477	0.12~0.2C
Semi-hard steel	7.85	207	10.8	46.5	485	0.3~0.45C
Hard steel	7.84	205	10.7	44.1	489	0.4~0.5C
High carbon steel	7.82	201	10.2	40.1	510	0.8~1.6C
Mid carbon steel	7.8	202	10.7	38	460	0.5C
Silicon nitride	3.24	308	3.0	20	680	Si ₃ N ₄
Six-four brass	8.4~8.8	103~105	18.4~20.8	81~121	377~381	(Equivalent to CAC301)

Note: ( ) indicates reference values.

Table 13.7 Mechanical property values of bearing materials

rdness (HV) 0~750 0~340 5~370 0~395 0~395	Yield point (MPa) (≥1176)  - (≥700) -	Tensile strength (MPa)  (≥1617)  ≥830  ≥930  ≥980	Elongation (%) ≤0.5 ≥14 ≥14	Reduction of area (%)  —  ≥35 ≥40	Charpy impact value (J/cm ² ) $(5\sim8)$ $\geqq49$	
0~340 5~370 0~395	_	≧830 ≧930	≧14		≧49	Quenching and tempering Quenching and tempering
5~370 0~395	_ (≧700) _	≥930				Quenching and tempering
0~395	(≧700) —		≧14	≥40		
	-	≥980			≥59	Quenching and tempering
0~395		00	≧15	≧40	≧69	Quenching and tempering
	_	≥1050	≧12	≧40	≧69	Quenching and tempering
≦100	_	≥270	≧32~43	_	_	Annealing
≦195 s	Proof stress≧206	≧520	≧40	≧60	=	Annealing
5~160	≧206	≧314	≧33	_	_	900°C furnace cooling
0~190	≥265	≧411	≧27	_	_	850°C furnace cooling
5~240	≧343	≧569	≧20	_	_	Quenching and high- temperature tempering
0~270	≧392	≧647	≧15	_	_	Quenching and high- temperature tempering
1500	_	Bending≧300		_	1	Si ₃ N ₄
0~150	_	≧430	≧20	_	_	(Equivalent to CAC301)
≤1 5~ 0~ 5~	100 195 196 190 190 190 190 240 270	.000 — .95 Proof stress≥206 ~160 ≥206 ~190 ≥265 ~240 ≥343 ~270 ≥392 .00 —	270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270   270	$\begin{array}{c ccccc} 1000 & - & \geq 270 & \geq 32 \sim 43 \\ 195 & & \text{Proof} & \geq 520 & \geq 40 \\ \sim 160 & \geq 206 & \geq 314 & \geq 33 \\ \sim 190 & \geq 265 & \geq 411 & \geq 27 \\ \sim 240 & \geq 343 & \geq 569 & \geq 20 \\ \sim 270 & \geq 392 & \geq 647 & \geq 15 \\ 000 & - & & \text{Bending} \geq 300 & - \\ \end{array}$	1.00     —     ≥270     ≥32~43     —       1.95     Proof stress≥206     ≥520     ≥40     ≥60       ~160     ≥206     ≥314     ≥33     —       ~190     ≥265     ≥411     ≥27     —       ~240     ≥343     ≥569     ≥20     —       ~270     ≥392     ≥647     ≥15     —       00     —     Bending≥300     —     —	1.00     —     ≥270     ≥32~43     —     —       1.95     Proof stress≥206     ≥520     ≥40     ≥60     —       ~160     ≥206     ≥314     ≥33     —     —       ~190     ≥265     ≥411     ≥27     —     —       ~240     ≥343     ≥569     ≥20     —     —       ~270     ≥392     ≥647     ≥15     —     —       00     —     Bending≥300     —     —     —

Note: Mechanical properties are largely influenced by the sample size. ( ) indicates reference values, and - indicates unknown values.

Table 13.8 Chemical composition of steel plate for pressed cages and carbon steel for machined cages

	Standard	Code		(	Chemical com	position (%)			
	Standard	Code	С	Si	Mn	Р	S	Ni	Cr
	JIS G 3141	SPCC	_	_	_	_	_	_	-
Pressed steel	JIS G 3131	SPHC	_	_	_	Max. 0.050	Max. 0.050	_	_
cage	BAS 361	SPB2	0.13~0.20	Max. 0.04	0.25~0.60	Max. 0.030	Max. 0.030	_	_
, and the second	JIS G 4305	SUS304	Max. 0.08	Max. 1.00	Max.2.00	Max. 0.045	Max. 0.030	8.00~10.50	18.00~20.00
Machined cage	JIS G 4051	S25C	0.22~0.28	0.15~0.35	0.30~0.60	Max. 0.030	Max. 0.035	_	

Table 13.9 Chemical composition of high-strength cast brass for machined cages

				_	_			_		
Standard	Code			Chemic	al composit	ion (%)			Impu	rities
Standard Code	Code	Cu	Zn	Mn	Fe	Al	Sn	Ni	Pb	Si
JIS H 5120	CAC301	55.0 to 60.0	33.0 to 42.0	0.1 to 1.5	0.5 to 1.5	0.5 to 1.5	Max. 1.0	Max. 1.0	Max. 0.4	Max. 0.1

Table 13.10 Representative characteristics of resins used for cages

		Polya	mide	Polyphenylene sulfide	Polyetheretherketone	Fabric- reinforced
		66	46	PPS	PEEK	phenolic resin
Туре		Crystalline thermoplastics	<b>←</b>	<b>←</b>	<b>←</b>	Thermosetting resin
Melting point °C		265	295	285	343	_
Glassy-transition	temperature °C	66	78	88	143	_
Maximum continuous operating temperature°C		120 150		230	260	_
Price 1 (low) to 5	(high)	1	2	3	5	4
Characteristics	Formability	0	0	0	0	×
	Toughness	0	0	Δ	0	O to △
	Strength	0	0	0	0	Δ
	Oil resistance	O to △	O to △	0	0	0
	Moisture/water absorption	Large	Large	Slight	Slight	Small
Comprehensive of	evaluation	The property is generally stable.	The formability is slightly poor compared with polyamide 66, but the heat resistance is high.	The water absorbency is low, and the oil resistance and heat resistance are high.	Polyetheretherketone has properties necessary for cages but is expensive.	The lubricity is high, but complicated shapes cannot be machined.
Applications		All-purpose	Temperature higher than polyamide 66	Applications that require oil resistance and heat resistance higher than polyamide	High-speed bearings for high-temperature and high-speed machine tools	High-speed angular contact ball bearings for machine tools

Note:  $\bigcirc$  Excellen  $\bigcirc$  Good  $\triangle$  OK  $\times$  Poor

Table 13.11 Representative characteristics of rubber materials used for seals

Rubber type		Nitrile rubber	Acrylic rubber	Fluorinated rubber
Abbreviation		NBR	ACM	FKM
Characteristics	Elongation	0	0	Δ
	Compression set	0	×	0
	Wear resistance	0	0	0
	Aging resistance	0	©	©
	Weather and ozone resistance	Δ	0	0
	Water resistance	0	Δ	0
Operating temperature range °C		-20 to 140	-15 to 150	-30 to 230
Comprehensive evaluation		The oil resistance, heat resistance, and wear resistance are high. It is widely used as rubber seals.	It is used at application temperature higher than that of NBR. It is easily swollen in ester oil. An ester-oil resistant grade is also available.	It is expensive. It has excellent heat resistance and chemical resistance but easily affected by urea grease.

Table 13.12 Physical properties of shaft and housing materials

Parts	Material	Density ρ (g/cm ³ )	Hardness (HV)	Longitudinal elasticity factor E(GPa)	Linear expansion coefficient (×10 ⁻⁶ /°C)	Thermal conductivity  (W/m·°C)	Specific heat (J/kg·°C)	Remarks
	S25C	7.86	130	212	11.1	53	470	Annealing
	S45C	7.85	230	205	(11.9)	(41)	460	Thermal refining
	SS400	7.86	_	205	11.3	50	460	
Shaft	SCM415	7.85	300	200	11.0	42	460	Thermal refining
	SCM425	7.85	320	208	12.8	45	470	Thermal refining
	SCM440	7.85	340	205	12.0	41	460	Thermal refining
	SNCM439	7.85	340	208	12.0	44	470	Thermal refining
	FC200	7.2	≧240	100	10~11	43	530	Gray cast iron
	FC250	7.3	≧250	100	10~11	41	530	Gray Cast Iron
	FCD450	7.2	150~220	154	12.0	34	620	
	FCD500	7.2	160~240	154	11.0	30	_	Spherical graphite cast iron
	FCD700	7.2	190~320	154	10.0	26	_	cast iron
Housing	ADC12	2.7	(HRB54)	71	21.0	96	(900)	Al-Si-Cu alloy
	SUS304	8.0	≦200	197	17.3	16	500	Austenitic stainless steel
	SUS410	7.8	≧170	204	10.8	(25)	460	Martensitic stainless steel
	SUS410L	7.8	(200)	204	10.8	(25)	_	Ferritic stainless steel

Note: Inequality signs indicate standard values. (  $\,\,$  ) indicates reference values.

Table 13.13 Mechanical properties of shaft and housing materials

Parts	Material	Hardness (HV)	Yield point (MPa)	Tensile strength (MPa)	Elongation (%)	Remarks
	S25C	180	≧270	≧440	≧27	Normalizing
	S45C	240	≧345	≥570	≧20	Normalizing
Shaft	SS400	_	(215)	≧400	≧17	Structural rolled steel
Silait	SCM425	320	670	800	15	Thermal refining
	SCM440	340	835	980	17	Thermal refining
	SNCM439	340	900	980	18	Thermal refining
	FC200	≦235	_	≥200		Separate casting sample
	FC250	≦250	-	≧250	1	Gray cast iron
	FCD350-22	≦160	≧220	≧350	≧22	
	FCD450-10	150~220	≧250	≧450	≧10	Spherical graphite cast iron
Lousing	FCD500-7	160~240	≧320	≧500	≧7	Separate casting sample
Housing	FCD700-2	190~320	≧420	≧700	≧2	
	ADC12	(HRB54)	150	310	3.5	Al-Si-Cu alloy
	SUS304	≦200	(205)	(520)	≧40	Austenitic stainless steel
	SUS410	≧170	(345)	(540)	≧25	Martensitic stainless steel
	SUS410L	≦200	(195)	(400)	≧20	Ferritic stainless steel

Note: Inequality signs indicate standard values. ( ) indicates reference values.

A-144 A-145

#### 14. Shaft and housing design

Depending upon the design of a shaft or housing, the shaft may be influenced by an unbalanced load or other factors which can then cause large fluctuations in bearing efficiency. For example, depending on the dimensional accuracy and shape accuracy of the shaft and housing, there could be insufficient interference fit with the bearing, leading to material creep during operation. When the machining accuracy of the shaft or the housing is insufficient or when there is an error in the installation, the inner ring or the outer ring of the bearing can become misaligned. Operation under this condition may cause excessive loading at the edges of the inner and outer rings as well as rolling elements, deteriorating the fatigue life. Furthermore, chipping damage may occur on the flange face of roller bearings due to heavy contact with the rolling element end surface while operating under misalignment. A speed deferential between the rolling elements and cage may apply abnormal force to the cage, causing damage. For this reason, it is necessary to pay attention to the following when designing shaft and housing:

- (1) Bearing arrangement; most effective fixing method for bearing arrangement.
- (2) Selection of shoulder height and fillet radius of housing and shaft.
- (3) Shape precision and fitting dimensions; runout tolerance of shoulder area.
- (4) Machining precision and mounting error of housing and shaft suitable for allowable alignment angle and permissible misalignment of bearing.

When the housing rigidity is insufficient, excessive deformation of the inner and outer rings may lead to poor distribution of loading among rolling elements, causing abnormal noise and deterioration of fatigue life. Therefore, the housing requires sufficient rigidity.

When two or more bearings are to be attached to a shaft, one typically serves as a fixed end bearing and the other serves as a floating end bearing to compensate for axial mounting error and allow for thermal expansion. In addition, when two or more bearings are to be attached to a housing, the design must allow through hole machining to improve the accuracy of the housing.

#### 14.1 Fixing of bearings

When a bearing that receives axial loads and preloads is to be attached to a shaft or a housing, an axial fixing method that is sufficient to withstand the axial loading such as a tightening nut, bolts, or snap rings should be selected because a serious problem may be caused when the raceway moves in the axial direction.

In addition, solid type needle roller bearings

(with inner ring) and cylindrical roller bearings (NU and N types) that are to be mainly used as floating side bearings also need to be fixed in the axial direction because the raceway may move in the axial direction when the shaft is bent by a moment load, damaging the bearing.

**Table 14.1** shows general bearing fixing methods, and **Table 14.2** shows fixing methods for bearings with tapered bores. See section "15. Bearing handling" for more information about bearing installation and removal.

Table 14.1 General bearing fixing methods

Inner ring clamp	Outer ring clamp	Snap ring
The most common method of fi clamping nuts or bolts to hold ti against the ring end face. The ti, be fixed so that they will not be vibration when the bearing is be	ne shaft or housing abutment ghtening nuts and bolts must loosened by axial loads or	Use of snap rings regulated under JIS B 2804, B 2805, and B 2806, makes for a very simple construction.  However, interference with chamfers, bearing installation dimensions, and other related specifications must be considered carefully.  Snap rings are not suitable for applications requiring high accuracy or where the snap ring receives large axial loads.

Table 14.2 Fixing methods-bearings with tapered bores

Adapter sleeve mounting	Withdrawal sleeve mounting	Split ring mounting
When installing bearings on cyli or withdrawal sleeves can be us axially. The adapter sleeve is fas force between the shaft and inn	ed to fix bearings in place stened in place by frictional	For installation of tapered bore bearings directly on tapered shafts, the bearing is held in place by a split ring inserted into a groove on the shaft, and is fixed in place with a split ring nut or screw.

A-146 A-147

#### 14.2 Bearing fitting dimensions

#### 14.2.1 Abutment height and fillet radius

The shaft and housing abutment height (h) should be larger than the bearings' maximum allowable chamfer dimensions  $(r_{S \text{ max}})$ , such that the abutment directly contacts the flat part of the bearing end face. The fillet radius  $(r_a)$  must be smaller than the bearing's minimum allowable chamfer dimension  $(r_{S \text{ min}})$  so that it does not interfere with bearing seating.

**Table 14.3** lists abutment height ( $\hbar$ ) and fillet radius ( $r_a$ ). For bearings to be subjected to very large axial loads, shaft abutments ( $\hbar$ ) should be higher than the values in the table.

Table 14.3 Fillet radius and abutment height

Unit: mm

00	20	h (N	1in.)		
rs min	ras max	Normal use ¹⁾	Special use ²⁾		
0.05	0.05	0.	3		
0.08	0.08	0.	3		
0.1	0.1	0.	4		
0.15	0.15	0.	6		
0.2	0.2	0.	8		
0.3	0.3	1.25	1		
0.6	0.6	2.25	2		
1	1	2.75	2.5		
1.1	1	3.5	3.25		
1.5	1.5	4.25	4		
2	2	5	4.5		
2.1	2 2	6	5.5		
2.5		6	5.5		
3	2.5	7	6.5		
4	3	9	8		
5	4	11	10		
6	5	14	12		
7.5	6	18	16		
9.5	8	22	20		
12	10	27	24		
15	12	32	29		
19	15	42	38		

If a bearing supports a large axial load, the height of the shoulder must exceed the value given here.

#### 14.2.2 For spacer and ground undercut

In cases where a fillet radius ( $r_{a \text{ max}}$ ) larger than the bearing chamfer dimension is required to strengthen the shaft or to relieve stress concentration (**Fig. 14.1a**), or abutment height is too low to afford adequate contact surface with the bearing (**Fig. 14.1b**), the use of a spacer may be beneficial.

Relief dimensions for ground shaft and housing fitting surfaces are given in **Table 14.4**.



Fig. 14.1 Bearing mounting with spacer

Table 14.4 Relief dimensions for ground shaft

$r_{ m s}$ min	Relie	Relief dimensions								
, 5111111	b	t	$r_{c}$							
1	2	0.2	1.3							
1.1	2.4	0.3	1.5							
1.5	3.2	0.4	2							
2	4	0.5	2.5							
2.1	4	0.5	2.5							
2.5	4	0.5	2.5							
3	4.7	0.5	3							
4	5.9	0.5	4							
5	7.4	0.6	5							
6	8.6	0.6	6							
7.5	10	0.6	7							





#### 14.2.3 Fitting dimensions for thrust bearings

For thrust bearings, it is necessary to make the raceway washer back face sufficiently wide in relation to load and rigidity. Consequently, fitting dimensions from the dimension tables should be adopted. (Figs. 14.2 and 14.3)

For this reason, **shaft and abutment heights** will be larger than for radial bearings. (Refer to dimension tables for all thrust bearing fitting dimensions.)



Fig. 14.2

Fig. 14.3

#### 14.3 Shaft and housing accuracy

**Table 14.5** shows the required accuracies for shaft and housing fitting surface dimensions and configurations, as well as fitting surface roughness and abutment squareness for normal operating conditions.

Table 14.5 Shaft and housing accuracy

	Concern	Shaft	Housing								
Dimensional a	ccuracy	IT6 (IT5)	IT7 (IT5)								
Roundness (m Cylindricity	iax.)	IT3	IT4								
Abutment squ	areness	IT3	IT3								
Fitting surface	Small size bearings	0.8	1.6								
	Mid-large size bearings	1.6	3.2								

Note: For precision bearings (P4, P5 accuracy), it is necessary to improve the circularity and cylindricity accuracies in this table to approximately 50% of these values. For more specific information, please consult the Precision rolling bearing catalog (CAT. No. 2260/E).

# 14.4 Bearing permitted inclination/ allowable alignment angle

A certain amount of misalignment of a bearing's inner and outer rings occurs as a result of shaft flexure, shaft or housing finishing irregularities, and minor installation error. In situations where the degree of misalignment is liable to be relatively large, self-aligning ball bearings, spherical roller bearings, bearing units and other bearings with aligning characteristics are advisable. Although permitted inclination and allowable alignment angle will vary according to bearing type, load conditions, internal clearances, etc., Table 14.6 lists some general misalignment standards for normal applications. In order to avoid shorter bearing life and cage failure, it is necessary to maintain levels of misalignment below these standard levels.

See section 3.7 (A-29) for the relationship between "Inclination angle (installation error) and life"

Table 14.6 Bearing types and allowable misalignment/allowable alignment angle

Allowable misalignment											
Deep groove ball bearings	1/1 000 to 1/300	Tapered roller bearings 1)									
Angular ball bearings 1)		Single row standard 1/2 000									
Single row	1/1 000	Single row ULTAGE 1/600									
		Needle roller bearings 1/2 000									
Cylindrical roller bearings											
Bearing series 10, 2, 3, 4	1/1 000										
Bearing series 22, 23	1/2 000										
ULTAGE	1/500										
Double row 2)	1/2 000										
The allowable misalign	nment of combin	ned bearings is influenced									

 The allowable misalignment of combined bearings is influenced by the load center position, so please consult NTN Engineering.

Does not include high precision bearings for machine tool main shaft applications.

Note: For thrust bearings, please contact NTN Engineering.

Allowable alignment angle											
Self-aligning ball bearings	Normal load	1/15	Thrust spherical roller bearings Normal load 1/60 to 1/30 Bearing units 3) 1/60 to 1/30								
Self-aligning roller bearings		1/115									
	Light load	1/30									

3) For bearing units, see section "F. Bearing units" on page F-12.

A-148 A-149

²⁾ Used when an axial load is light. These values are not suitable for tapered roller bearings, angular ball bearings and spherical roller bearings. Note: Tas max indicates maximum allowable fillet radius.

#### 15.1 General information

Bearings are precision parts and in order to preserve their accuracy and reliability, care must be exercised in their handling. In particular, bearing cleanliness must be maintained, sharp impacts avoided, and rust prevented.

Bearings are vulnerable to impact. Do not hit them with a hammer directly or drop them on the floor. (Fig. 15.1)

In addition, bearings are sensitive to foreign particle contamination. When foreign particles enters the bearing during rotation, denting and/or scratches may occur, resulting in objectionable noise and vibration levels and rough bearing rotation (**Fig. 15.2**). Therefore, when handling bearings, it is necessary to keep the periphery clean.



Fig. 15.1 Damage caused by impact



Fig. 15.2 Damage caused by foreign particle contamination

For optimal bearing performance, proper bearing handling methods must be used. The handling methods described herein are general guidelines. Depending on the type and size of bearing needed, special handling "methods" may be necessary. For more detailed information, please consult **NTN** Engineering.

Using proper protective equipment and tools

are also essential when installing or removing bearings, to avoid damage to the machinery and ensure the safety of the technician. Further information on proper installation and removal procedures is detailed in the following sections.

#### 15.2 Bearing storage

Most rolling bearings are coated with a rust preventive oil before being packed and shipped. Please observe the following guidelines when storing bearings.

- Ideally, bearings should be stored indoors at room temperature with a relative humidity of less than 60%. Avoid places in direct sunlight or in contact with outer walls because excessive temperature fluctuation or humidity rise may cause condensation.
- 2. Bearings should not be stored directly on the ground. Instead, they should be placed on a shelf or pallet at least 20 cm above the ground. The maximum number of shipping boxes to be stacked for storage should limited to four whenever possible (Fig. 15.3).
- Precision rolling bearings, large rolling bearings and thin ring or race rolling bearings must be laid down horizontally for storage (Fig. 15.4). Storing them standing vertically may cause raceway deformation.

To avoid damage during transportation such as fretting or false brinelling, ensure that the individual bearing boxes are packed laying down horizontally within the shipping box. Fill remaining space with dunnage(Fig. 15.5).

Some products have a  $\uparrow$  symbol on the shipping box to prevent improper storage placement. Follow the indication on the box in this case (**Fig. 15.6**).



Fig. 15.3 Storing bearings on a shelf



Fig. 15.4 Storing one-bearing boxes on a shelf



Fig. 15.5 Transportation and storage by shipping box



Fig. 15.6 Horizontally placing box prohibited

A-150 A-151

#### 15.3 Bearing installation

A jig, a measuring instrument, a lubricant, and a clean and dry workshop will be needed for bearing installation. Further, if possible, it is desirable to install miniature/small ball bearings and precision rolling bearings in a clean room because intrusion of dirt and foreign matter significantly affects bearing performance.

Improper installation of bearings may cause marks from the rolling elements on the raceways, adversely affecting the bearing life. For the recommendations on machining accuracy and mounting accuracy of bearings, shafts, and housings, see section "14. Design of shafts and housings."

#### 15.3.1 Installation preparations

#### (1) Fitting surface of shafts and housings

When a bearing is installed on a shaft or in a housing with surfaces containing burrs or dents, the bearing may not seat properly, causing vibration and noise during operation (see Figs. 15.7 and 15.8).



Fig. 15.7 Burrs and dents



Fig. 15.8 Example of improper bearing installation

Therefore, before mounting bearings, remove any burrs, raised material near dents, rust, or dirt on the shaft, housing, or accessories. (Fig. 15.9)

The shaft and housing fitting surfaces should also be checked for roughness, dimensional and design accuracy, and to ensure that they are within allowable tolerance limits. Further, when the bearing is to be press-fitted, using an antifretting agent on the fitting surface improves the ease of assembly.



Fig. 15.9 Example of working procedure

#### (2) Mounting jig

The jig to be used for mounting must have a size suitable for the bearing and be free of dirt or damage.

#### (3) Opening of bearing

Bearings should be unpackaged directly before use to avoid introducing foreign particle contaminates or condensation which would lead to rust. Gloves should also be worn when handling bearings to avoid rust generation.

#### (4) Removal of rust preventative oil

In general, bearings with grease lubrication may be installed without cleaning the rust preventative oil.

However, for bearings using oil lubricant, or when lubrication efficiency would be compromised by mixing the grease and rust preventive oil, the rust preventive oil should be removed by washing with a cleaning solvent and dried before installation. The shield type bearings and the seal type bearings filled with grease must not be cleaned.

# **15.3.2** Installing cylindrical bore bearings 15.3.2.1 Press-fitting

Press-fitting is the most common mounting method and is widely used for small bearings small bearings. Bearings having a relatively small interference can be press-fitted by using a sleeve and applying force to the raceway at room temperature.

When press-fitting a bearing by applying impact with a hammer, use a resin or copper hammer rather than an iron one. To uniformly press the bearing onto the shaft or into the housing, use a sleeve. (Use of a mounting tool kit as shown in Fig. 15.40, A-168 is recommended.) Do not directly apply impact to bearing rings or press-fit them by using a punch because the bearings will not be press-fitted uniformly, causing bearing damage (Fig. 15.10).



Fig. 15.10 Using hammer for press-fitting

When a large number of bearings are to be installed at one time, a dedicated jig or a hydraulic press may be used.

#### (1) Press-fitting bearing into shaft

Uniformly apply force by applying a sleeve to the inner ring width surface when press-fitting a bearing onto a shaft. Do not apply force to the outer ring as this will transfer the press force through the rolling elements which may cause dents or scratches on the raceway surface (**Fig. 15.11**).

When press-fitting self-aligning bearings, using a ring-shaped block as shown in **Fig. 15.13** improves ease of installation.



Fig. 15.11 Press-fitting bearing into shaft

#### (2) Press-fitting bearing into housing

Uniformly apply force by applying a sleeve to the outer ring width surface to press-fit a bearing into a housing. Do not apply force to the inner ring as this will transfer the press force through the rolling elements which may cause dents or scratches on the raceway surface (Fig. 15.12).



Fig. 15.12 Press-fitting bearing into housing

A-152 A-153

#### (3) Simultaneous press-fitting

When press-fitting a non-separable bearing such as a deep groove ball bearing onto the shaft and into the housing at the same time, use a ring-shaped block and uniformly apply force to inner and outer rings simultaneously. Do not apply force on either the inner or outer ring individually because it may cause dents or scratches on the raceway surface (Fig. 15.13).



Fig. 15.13 Simultaneous press-fitting

#### [Caution]

- Excessive interference during installation may cause cracks and excessively small bearing internal clearance, resulting in seizure. For further detail, see section "7. Bearing fits."
- Excessive impact at the time of installation may cause dents and damage.
- No foreign matter should enter the fitting surface during installation.
- For large interference fits and medium/large size bearings, consider other installation methods besides press-fitting at room temperature.

#### 15.3.2.2 Heat fitting (shrink fitting)

When the inner ring interference is large or the bearing is large, press-fitting the inner ring onto the shaft at room temperature requires significant force. Heating the bearing and expanding the inner ring before installation makes the installation onto the shaft easier.

The inner ring expansion amount necessary for heat fitting can be obtained from the interference of the fitting surface between the inner ring and the shaft and the temperature difference before and after the bearing is heated (Fig. 15.14).



Fig. 15.14 Temperature required for heatfitting inner ring

For heat fitting, any bearing that did not undergo dimension stabilization treatment must not be heated above 120°C to avoid permanent bearing damaged and shortened operating life. For sealed bearings, the seal temperature rating must not be exceeded.

In addition, heat torches and heat guns should not be used for heating bearings because the bearings may be heated non-uniformly and temperature control is difficult (Fig. 15.15).



Fig. 15.15 Heating bearings by heat torch

The main methods used to heat bearings uniformly are (1) oil bath, (2) constant temperature oven, and (3) fast therm induction heater.

#### (1) Heating bearings in oil bath

One bearing heating method is immersing a bearing in a heated clean oil (Fig. 15.16). Foreign particles are often found on the bottom of the oil bath; therefore, do not directly place bearings on the bottom of the oil bath. Instead, place the bearings on a wire rack or suspend it in the oil and then heat it. Shielded bearings and sealed bearings filled with grease must not be heated in the oil bath (Fig. 15.17).



Fig. 15.16 Heating bearings in oil bath



Fig. 15.17 Heating grease filled bearings in oil bath prohibited

# (2) Heating bearings in constant temperature oven

With a constant temperature oven, bearings can be heated in a dry state (Fig. 15.18).



Fig. 15.18 Heating bearings in constant temperature oven

A-154 A-155

# (3) Heating bearings with fast therm induction heater

With a fast therm induction heater, bearings can be heated safely, cleanly, and quickly in a dry state. Heating bearings by induction heating makes the bearings magnetic; therefore, it is necessary to demagnetize bearings after heating. The NTN fast therm induction heater (Fig. 15.42, A-168) has an automatic demagnetization function.

#### [Caution]

- Use heat-resistant gloves for safety when handling a heated bearing. NTN heatresistant gloves optimal for bearing handling are available (Fig. 15.43, A-168).
- It is important to complete heat fitting quickly. If the bearing cannot be inserted onto the shaft during heat fitting, stop the process and consider removing the bearing.
- When heat fitting is performed, the inner ring contracts in the axial direction during cooling, creating a clearance between the bearing and the shaft shoulder (Fig. 15.19).
   Therefore, it is necessary to tighten the bearing with a nut until it is completely cooled or apply a force in the axial direction while the bearing cools, to bring the bearing into close contact with the shoulder of the shaft.



Fig. 15.19 Bearing contraction after heating

#### 15.3.3 Installation of tapered bore bearing

Small tapered bore bearings are installed by inserting a bearing a predetermined amount with locknuts and by using a tapered bore or an adapter sleeve/withdrawal sleeve. Locknuts are tightened by a hook spanner wrench (Fig. 15.20).



Fig. 15.20 Installation methods using locknuts

Large size bearings require considerable fitting force and must be installed hydraulically.

In **Fig. 15.21** the fitting surface friction and nut tightening torque needed to install bearings with tapered bores directly onto tapered shafts are decreased by injecting high pressure oil between the fitting surfaces.



Fig. 15.21 Bearing installation using oil pressure

Fig. 15.22 (a) shows a method of installation where a hydraulic nut is used to drive the bearing onto a tapered shaft. Fig. 15.19 (b) and (c) show installation methods using a hydraulic nut with adapter sleeves and withdrawal sleeves.



Fig. 15.22 Installation using hydraulic nut

**Fig. 15.23** shows an installation method using a hydraulic withdrawal sleeve.



Fig. 15.23 Installation using hydraulic withdrawal sleeve

With tapered bore bearings, as the inner ring is driven axially onto the shaft, adapter or withdrawal sleeve, the interference increases so that the bearing radial internal clearance will decrease. Interference can be estimated by measuring the decrease in radial internal clearance. As shown in Fig. 15.24, the radial internal clearance between the rollers and outer ring of spherical roller bearings should be measured with a thickness gauge under no load while the rollers are held in the correct position. Measure the radial internal clearance on both rows, and check that the values are equivalent. Instead of using the decrease in amount of radial internal clearance to estimate the interference. it is possible to estimate the mounted radial internal clearance by measuring the distance the bearing has been driven onto the shaft.



Fig. 15.24 Internal clearance measurement method for spherical roller bearings

A-156

For spherical roller bearings, **Table 15.1** (applied to ULTAGE series) and **Table 15.2** (applied to other bearings besides ULTAGE series) indicates the predetermined interference which will be achieved as a result of the radial internal clearance decrease, or the distance the bearing has been driven onto the shaft.

For conditions such as heavy loads, high speeds, or when there is a large temperature differential between inner and outer rings, etc. which require large interference fits, bearings with a minimum radial internal clearance of C3 or greater should be used. **Table 15.1** and **Table 15.2** list the maximum values for radial internal clearance decrease and axial displacement. The remaining clearance in mounted bearings with tapered bores must be greater than the minimum allowable residual clearance listed in **Table 15.1** or **Table 15.2**.

For self-aligning ball bearings, a predetermined interference can be obtained by tightening the nut until the radial internal clearance becomes about half the size before the fitting. After installation, check that the bearing lightly and smoothly rotates.

Table 15.1 Tapered bore spherical roller bearings (ULTAGE series installation)

Unit: mm

Ī	Nominal bearing bore diameter		Reduction of radial internal		Axial displacement drive up			Nut ro	tation ar	ngle ° (ap	prox.)	Minimum residual radial internal clearance			
	d n			ance	Taper	, 1:12	Taper	, 1:30	Taper	, 1:12	Taper	, 1:30	radial ir	nternal cl	earance
	Over	Inc.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	CN	C3	C4
	24	30	0.010	0.015	0.15	0.20	_	_	36	48	_	_	0.015	0.025	0.040
	30	40	0.015	0.020	0.25	0.30	_	_	60	72	_	_	0.015	0.030	0.045
	40	50	0.020	0.025	0.35	0.40	_	_	84	96	_	_	0.020	0.035	0.055
	50	65	0.025	0.030	0.40	0.45	-	_	72	81	_	_	0.025	0.045	0.065
	65	80	0.035	0.040	0.50	0.60	-	_	90	108	_	_	0.030	0.055	0.080
	80	100	0.040	0.050	0.60	0.70	_	_	108	126	_	_	0.030	0.060	0.090
	100	120	0.055	0.065	0.80	0.90	1.80	2.30	144	162	324	414	0.035	0.070	0.105
	120	140	0.065	0.075	0.90	1.00	1.95	2.70	162	180	351	486	0.045	0.085	0.125
	140	150	0.075	0.090	1.00	1.20	2.35	3.10	180	216	423	558	0.040	0.090	0.140
	150	160	0.075	0.090	1.00	1.20	2.35	3.10	120	144	282	372	0.040	0.090	0.140
	160	180	0.080	0.100	1.10	1.40	2.80	3.55	132	168	336	426	0.040	0.100	0.160
	180	200	0.090	0.110	1.20	1.50	3.20	3.95	144	180	384	474	0.050	0.110	0.180
	200	225	0.110	0.130	1.50	1.80	3.85	4.60	135	162	347	414	0.050	0.120	0.190
	225	250	0.120	0.140	1.60	1.90	4.20	4.95	144	171	378	446	0.060	0.130	0.210
	250	280	0.130	0.160	1.60	2.10	4.25	5.40	144	189	383	486	0.060	0.140	0.230
	280	305	0.150	0.180	1.90	2.40	4.45	5.70	171	216	401	513	0.060	0.150	0.250
	305	315	0.150	0.180	1.90	2.40	4.45	5.70	137	173	320	410	0.060	0.150	0.250
	315	355	0.160	0.190	2.10	2.50	5.10	6.10	151	180	367	439	0.080	0.170	0.280
	355	400	0.180	0.220	2.30	3.00	5.75	7.50	166	216	414	540	0.080	0.180	0.300
	400	450	0.210	0.250	3.00	3.60	_	_	216	259	_	_	0.080	0.190	0.320

Note: The nut rotation angle may only be applied when a nut having the same inner diameter code as the bearing is used.

Table 15.2 Tapered bore spherical roller bearings (installation of other series besides ULTAGE) Unit: mm

Nominal bearing bore diameter			tion of nternal	Axial	Axial displacement drive up			Nut ro	tation ar	ngle ° (ap	oprox.)	Minimum residual radial internal clearance		
d r			ance	Taper	, 1:12	Taper	, 1:30	Taper	, 1:12	Tape	r, 1:30			
Over	Inc.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	CN	C3	C4
30	40	0.020	0.025	0.35	0.40	_	_	84	96	_	_	0.010	0.025	0.040
40	50	0.025	0.030	0.40	0.45	_	_	96	108	_	_	0.015	0.030	0.050
50	65	0.030	0.035	0.45	0.60	_	_	81	108	_	_	0.020	0.040	0.060
65	80	0.040	0.045	0.60	0.70	_	_	108	126	_	_	0.025	0.050	0.075
80	100	0.045	0.055	0.70	0.80	1.75	2.25	126	144	315	405	0.025	0.055	0.085
100	120	0.050	0.060	0.75	0.90	1.90	2.25	135	162	342	405	0.040	0.075	0.110
120	140	0.065	0.075	1.10	1.20	2.75	3.00	198	216	495	540	0.045	0.085	0.130
140	150	0.075	0.090	1.20	1.40	3.00	3.75	216	252	540	675	0.040	0.090	0.140
150	160	0.075	0.090	1.20	1.40	3.00	3.75	144	168	360	450	0.040	0.090	0.140
160	180	0.080	0.100	1.30	1.60	3.25	4.00	156	192	390	480	0.040	0.100	0.160
180	200	0.090	0.110	1.40	1.70	3.50	4.25	168	204	420	510	0.050	0.110	0.180
200	225	0.100	0.120	1.60	1.90	4.00	4.75	144	171	360	428	0.060	0.130	0.200
225	250	0.110	0.130	1.70	2.00	4.25	5.00	153	180	383	450	0.070	0.140	0.220
250	280	0.120	0.150	1.90	2.40	4.75	6.00	171	216	428	540	0.070	0.150	0.240
280	305	0.130	0.160	2.00	2.50	5.00	6.25	180	225	450	563	0.080	0.170	0.270
305	315	0.130	0.160	2.00	2.50	5.00	6.25	144	180	360	450	0.080	0.170	0.270
315	355	0.150	0.180	2.40	2.80	6.00	7.00	173	202	432	504	0.090	0.180	0.290
355	400	0.170	0.210	2.60	3.30	6.50	8.25	187	238	468	594	0.090	0.190	0.310
400	450	0.200	0.240	3.10	3.70	7.75	9.25	223	266	558	666	0.090	0.200	0.330
450	500	0.210	0.260	3.30	4.00	8.25	10.0	238	288	594	720	0.110	0.230	0.370
500	560	0.240	0.300	3.70	4.60	9.25	11.5	222	276	555	690	0.110	0.240	0.380
560	630	0.260	0.330	4.00	5.10	10.0	12.5	240	306	600	750	0.130	0.270	0.430
630	670	0.300	0.370	4.60	5.70	11.5	14.5	276	342	690	870	0.140	0.300	0.480
670	710	0.300	0.370	4.60	5.70	11.5	14.5	237	293	591	746	0.140	0.300	0.480
710	800	0.340	0.430	5.30	6.70	13.3	16.5	273	345	684	849	0.140	0.320	0.530
800	900	0.370	0.470	5.70	7.30	14.3	18.5	293	375	735	951	0.170	0.370	0.600
900	1 000	0.410	0.530	6.30	8.20	15.8	20.5	284	369	711	923	0.180	0.400	0.660
1 000	1 120	0.450	0.580	6.80	8.70	17.0	22.5	306	392	765	1 013	0.190	0.450	0.720
1 120	1 250	0.490	0.630	7.40	9.40	18.5	24.5	_	_	_	_	0.200	0.490	0.790
N T.				- 1:										

 $Note: The \ nut\ rotation\ angle\ may\ only\ be\ applied\ when\ a\ nut\ having\ the\ same\ inner\ diameter\ code\ as\ the\ bearing\ is\ used.$ 

A-158 A-159

#### 15.3.4 Installation of outer ring

With tight interference fits, the outer rings of small type bearings can be installed with a hydraulic press at room temperature. Alternately, the housing can be heated and expanded before installing the outer ring, or the outer ring can be cooled with a freezer, etc. before installing. If a freezer or another cooling agent is used, moisture will condense on bearing surfaces. Therefore appropriate rust preventative measures are necessary before cooling the bearing.

#### 15.3.5 Internal clearance adjustment

As shown in **Fig. 15.25**, for angular contact ball bearings and tapered roller bearings the required amount of axial internal clearance can be set at the time of installation by tightening or loosening the adjustment nut.

To adjust the suitable axial internal clearance or amount of bearing preload, the internal clearance can be measured while tightening the adjusting nut as shown in **Fig. 15.26**. Another method is to check rotational torque by rotating the shaft or housing while adjusting the nut.



Fig. 15.25 Axial internal clearance adjustment



Fig. 15.26 Axial internal clearance measurement

A shim with appropriate thickness may also be used for adjusting the bearing internal clearance. **Fig. 15.27** shows the case in which angular contact ball bearings are used in a faceto-face arrangment on the fixed side. A shim is inserted between the housing front cover and the housing shown by an arrow to change the fixed position of the outer ring.



Fig. 15.27 Internal clearance adjustment using shims

#### 15.4 Lubricant enclosure

An appropriate amount of lubricant that is suitable for the use condition of the bearing should be applied if the bearings are not prefilled with grease. For details, see section "11. Lubrication."

#### 15.5 Post installation running test

To check that the bearing has been properly installed, a running test is performed after installation is completed. The shaft or housing is first rotated by hand and if no problems are observed at low speed, a no-load power test should then be performed. If no abnormalities are observed, the load and speed are gradually increased to operating conditions. During the test if any unusual noise, vibration, or temperature rise is observed, the test should be stopped and the equipment should be examined. If necessary, the bearing should be disassembled for inspection.

#### 15.6 Bearing disassembly

Bearings are often removed as part of periodic inspection procedures or during the replacement of other parts. However, the shaft and housing are almost always reinstalled, and in more than a few cases the bearings themselves are reused. These bearings, shafts, housings, and other related parts must be designed to prevent damage during disassembly procedures, and the proper disassembly tools must be employed. When removing bearing rings with interference, pulling force should be applied to the press fit bearing ring only. Do not remove the raceway through the rolling elements.

#### [Caution]

Bearings and jigs used for disassembly may fall off when the bearing is removed from the shaft or the housing.

# 15.6.1 Disassembly of bearings with cylindrical bores

For small sized bearings, pullers shown in Fig. 15.28 (a) and (b) or the press method shown in Fig. 15.29 can be used for disassembly. When used properly, these methods can improve disassembly efficiency and prevent damage to bearings.



Fig. 15.28 Puller disassembly



Fig. 15.29 Press disassembly

A-160 A-161

To facilitate disassembly procedures, attention should be given to planning the designs of shafts and housings, such as providing extraction grooves on the shaft and housing for puller claws as shown in Figs. 15.30 and 15.31. Threaded bolt holes could also be provided in housings to facilitate the pressing out of outer rings as shown in Fig. 15.32.



Fig. 15.30 Extracting grooves (example of three positions in circumferential direction)



Fig. 15.31 Extraction groove for outer ring disassembly



Fig. 15.32 Outer ring disassembly bolt

Large bearings, installed with tight fits, that have been in service for a long period of time, will likely have developed fretting on fitting surfaces and will require considerable dismounting force. In such instances, dismounting friction can be reduced by injecting oil under high pressure between the shaft and inner ring surfaces as shown in **Fig. 15.33**.



Fig. 15.33 Removal of bearing by hydraulic pressure

Induction heating can be used for removing the inner ring of cylindrical roller bearings having no flange on the inner ring such as NU type and NJ type bearings. With this method, the inner ring is heated until it expands, and can be removed (Fig. 15.34).

The bearing becomes magnetized by induction heating; therefore, it is necessary to demagnetize the bearing after heating.



Fig. 15.34 Removal by induction heating

# 15.6.2 Disassembly of bearings with tapered bores

Small bearings installed using an adapter are removed by loosening the locknut, placing a block on the edge of the inner ring as shown in Fig. 15.35 (a) or the edge of the lock nut as shown in Fig. 15.35 (b), and tapping it with a hammer. In such a case, use a resin or copper hammer instead of an iron one. Bearings which have been installed with withdrawal sleeves can be disassembled by tightening down the lock nut as shown in Fig. 15.36.



Fig. 15.35 Removal of bearing with adapter



Fig. 15.36 Disassembly of bearing with withdrawal sleeve

For large type bearings on tapered shafts, adapters, or withdrawal sleeves, disassembly is greatly facilitated by hydraulic methods.

Fig. 15.37 shows the case where the bearing is

removed by applying hydraulic pressure on the fitting surface of a bearing installed on a tapered shaft.



Fig. 15.37 Bearing disassembly using oil pressure

**Fig. 15.38** shows two methods of disassembling bearings with adapters or withdrawal sleeves using a hydraulic nut.

**Fig. 15.39** shows a disassembly method using a hydraulic withdrawal sleeve where high pressure oil is injected between fitting surfaces and a lock nut is then employed to remove the sleeve.



Fig. 15.38 Disassembly using hydraulic nut



Fig. 15.39 Disassembly using hydraulic withdrawal sleeve

A-163

A-162

#### 15.7 Bearing maintenance and inspection

Managing the condition of the machine during operation is important for preventing bearing failure. The following items are the general maintenance management methods.

#### (1) Inspection of machine while running

The interval for replenishing and replacing lubricant is determined by a study of lubricant properties and checking the bearing temperature, noise and vibration.

#### (2) Observation of bearing after use

Take note of any problem that may appear after the bearing is used or when performing routine inspections, and take measures for preventing reoccurrence of any damage discovered.

Maintenance management requires that the frequency for performing routine inspections be determined according to the importance of the device or machine.

# **15.7.1** Inspection of machine while running 15.7.1.1 Bearing temperature

In general, the bearing temperature increases after the start of operation and becomes steady at a slightly lower temperature after a certain time elapses (usually 10 to 40°C higher than the room temperature). The time until the temperature becomes steady differs depending on the bearing size, type, rotational speed, lubrication method, and heat dissipation condition of the bearing surroundings. It varies from 20 minutes to several hours.

When the bearing temperature does not become steady and rises excessively, the following may be the cause. Stop the operation and take measures.

#### <Main causes of abnormal temperature rise>

- Amount of lubricant too small or large
- Improper bearing installation
- Bearing internal clearance too small, or load too large
- Friction of sealing mechanism too large
- Unsuitable lubricant
- Creeping of fitting surface

The bearing temperature should not be too high to maintain suitable bearing operation and prevent the deterioration of lubricant. In general, it is best to use bearings at 100°C or below.

#### 15.7.1.2 Bearing noise

To check bearing running noise, the sound can be checked and the type of noise can be ascertained with a listening instrument placed against the housing. A clear, smooth and continuous running sound is normal; however, determining the exact noise requires significant experience. Although it is difficult to express noise with words and it is different depending on the person, **Table 15.3** shows the characteristics and cause of the typical abnormal noises of bearings.

Table 15.3 Characteristics and cause of typical abnormal noise of bearings

Noise	Characteristics	Cause (probable)					
Buzzing noise	_	Entrance of foreign matter     Roughness of the surfaces of raceway, ball, roller     Scratches on the surfaces of raceway, ball, roller					
Whoosh (small size bearings)	_	• Roughness of the surfaces of raceway, ball, roller					
Short whoosh noise	The noise is generated intermittently and regularly.	Contact with labyrinth part     Contact of case and seal					
Rubbing noise/ rumbling noise	<ul> <li>The noise magnitude and pitch change when the rotational speed is changed. The noise becomes loud at a certain rotational speed. The noise becomes loud and quiet. The noise sometimes resembles the sound of sirens and whistles (howling noise).</li> </ul>	Sympathetic vibration, fitting failure (shaft shape failure)     Deformation of raceway     Chattering noise of raceway, ball, roller (a little noise for large size bearings is normal)					
Scraping noise/ crunchy noise	Roughness felt when the bearing is rotated by hand	Scratches on the raceway surface (regular)     Scratches on the ball or roller (irregular)     Dirt, deformation of raceway (partial negative clearance)					
Grumbling noise	Continuous noise in high speed rotation	Scratches on the surfaces of raceway, ball, roller					
Whirling noise	The noise stops the moment the power is turned off.	Electromagnetic sound of motor					
Clinking noise (mainly with small size bearings)	Irregular     The noise does not change when the rotational speed is changed.	Entrance of foreign matter					
Jingling noise (tapered roller bearings) Chattering noise (large size bearings) Flapping noise (small size bearings)	The noise is regular and becomes continuous in high speed rotation. Clear cage sound is normal.	Unsuitable lubricant (use soft grease for low temperature)     Cage pocket abrasion, insufficient lubricant, insufficient bearing load operation					
Ticking noise/ clacking noise/ clattering noise	Conspicuous in low speed rotation     Continuous noise in high speed rotation	Collision noise from cage pocket, insufficient lubrication. The noise stops by preloading or by making the internal clearance smaller.     Collision noise of rollers for the full component type					
Clanging noise	Loud metallic collision noise     Low-speed thin large size bearings	Deformation of raceway					
Sliding noise/ squeaky noise splashing sound	Mainly with cylindrical roller bearings, the noise changes when the rotational speed is changed. Large noise sounds like metallic sound. The noise temporarily stops when grease is supplied.	Lubricant (grease) consistency too high     Radial internal clearance too large     Insufficient lubricant					
Squealing noise/ creaking noise/ whining noise	Metal biting sound     High-pitched sound	Biting between roller and flange surface of roller bearing     Internal clearance too small     Insufficient lubricant					
Splashing noise	Occurs irregularly with small size bearings	Sound generated when bubbles in the grease are broken					
Groaning noise/	Irregular squeaky noise	Slippage of fitting part     Squeakiness of mounting surface					
Indistinguishable loud noise d	uring operation.	Roughness of the surfaces of raceway, ball, roller     Deformation of raceway surface, ball, and roller     caused by abrasion     Too large internal clearance caused by abrasion					

A-164 A-165

#### 15.7.1.3 Bearing vibration

Measuring the machine vibration during operation with a vibration measuring instrument can reveal bearing damage at an early stage. The bearing damage degree can be estimated by quantitatively measuring and analyzing the vibration amplitude and frequency. However, measurement values differ depending on the measurement positions and bearing use conditions. Therefore, it is desirable to accumulate measurement data and set criteria for each machine.

When the bearing is damaged, vibration including specific frequencies that depend on the bearing internal specifications and rotational speed occurs. The bearing vibration frequency can be calculated with the bearing technique calculation tool on the **NTN** website (https://www.ntnglobal.com).

# 15.7.1.4 Leakage/abnormal deterioration of lubricant

The main causes of the leakage/abnormal deterioration of lubricant are as follows. It is necessary to take measures depending on the use conditions and environment.

- Too much lubricant
- Unsuitable lubricant
- Improper installation
- Unsuitable sealing mechanism
- Deterioration caused by use
- Unsuitable operating condition
- Abnormal deterioration

#### 15.7.2 Observation of bearing after use

Carefully observe bearings after use and during periodic inspection, and take appropriate recurrence prevention measures if any damage was found. For details, see section "16. Bearing damage and corrective measures."

A-166 A-167

#### 15.8 Bearing maintenance tools

NTN offers maintenance tools for easily and safely installing/disassembling bearings. NTN also offers a portable abnormality detection device," a small vibration measurement device that has excellent portability and usability for measuring the vibration generated from the machine.

#### 15.8.1 Maintenance tools

Figs. 15.40 through 15.49 show some of the main maintenance tools that are convenient for installing/disassembling bearings. For details, see the special catalog "Maintenance tools (CAT. No. 6600/J)."



The kit allows accurate, safe, and quick bearing installation.

Fig. 15.40 Cold mounting case



The five spanners allow tightening/loosening nuts of 30 different sizes.

Fig. 15.41 Hook spanners



The device allows safe and secure heat fitting work and has an automatic demagnetization function, an overheat prevention function, and a temperature maintaining function.

Fig. 15.42 Induction heater



The protective gloves allow safe handling of high-temperature bearings up to 350°C.

Fig. 15.43 Heatresistant gloves



The tool allows simple and high precision measurement of bearing clearance.

Fig. 15.44 Set of calibrated feeler gauges



The jig allows quick and easy removal of bearings press-fitted into housings by a tight fit.

Fig. 15.45 Bore puller set



that are attached to shafts and difficult to remove.

The jig is a robust and simple tool for easily removing small and medium size bearings.

Fig. 15.46 Back puller Fig. 15.47 Mechanical puller



The jig is efficient for easily and safely removing bearings pressfitted into shafts of large size bearings.

Fig. 15.48 Hydraulic puller



safely and efficiently by using the puller mechanically or hydraulically.

Fig. 15.49 Tri Section Pulling Plates

#### 15.8.2 NTN PORTABLE VIBROSCOPE

NTN offers the "NTN PORTABLE VIBROSCOPE", a small vibration measurement device that has excellent portability and usability for performing FFT(Fast Fourier Transform) analysis and OA(Overall) measurement by wireless communication with tablets and smart devices with a dedicated application installed (Fig. 15.50).



Fig. 15.50 NTN PORTABLE VIBROSCOPE

The FFT analysis clarifies the detailed operational state of the machine. By registering measurement conditions such as bearing part numbers and rotational speed, it is possible to detect the damage inside the bearing and estimate the damaged parts. In addition, selecting measurement conditions allows detecting abnormalities such as unbalance and misalignment of machines having rotating parts. In OA measurement, the acceleration, speed, and displacement can be displayed independently, and the measurement can be used as a general vibrometer.

The raw vibration data and the analysis results can be saved in smart devices for operation and can be downloaded in CSV format as necessary. In addition, the measurement device itself is dust-proof and drip-proof; therefore, the device is suitable for measuring vibration of machines used in various environments.

For the product details, please contact NTN Engineering.

For details, see the special catalog "NTN PORTABLE VIBROSCOPE (CAT. No. 6601/E)."

A-168 A-169

# Bearing Damage and Corrective Measures

NTN

#### 16. Bearing damage and corrective measures

#### 16.1 Bearing damage, main causes of bearing damage, and remedies for correcting the problem

If handled correctly, bearings can generally be used for a long time before reaching their fatigue life. If damage occurs prematurely, the problem could stem from improper bearing selection, handling, or lubrication. If this occurs, take note of the application, operating conditions, and environment. By investigating several possible causes surmised from the type of damage and condition at the time the damage occurred, it is possible to prevent the same kind of damage from reoccurring. **Table 16.1** gives the main causes of bearing damage and remedies for correcting the problem.

For details, see the special catalog "Care and maintenance of bearings (CAT. No. 3017/E)."

# Bearing Damage and Corrective Measures



#### Table 16.1 Bearing damage, main causes of bearing damage and remedies for correcting the problem

#### Phenomenon

#### Spalling (Flaking)

The surface of the raceway and rolling elements peel away in flakes leaving a highly irregular and very poor surface.



- Inner ring of spherical roller bearing
   Flaking on one row of the raceway surface in this case.
- An excessive axial load is the cause.



- Outer ring of angular contact ball bearing
- Flaking on the raceway surface with spacing equal to the distance between halls
- Improper handling is the cause.

- Excessive load, normal fatigue life, improper handling
- Improper installation
- Insufficient accuracy of shaft or housing
- Insufficient clearance
- ContaminationRust
- Insufficient lubrication
- Reduction in hardness due to abnormal temperature rise
- Select a different type or size of bearing.
- Reevaluate the clearance.
- Improve the precision of the shaft and housing.
- Improve assembly method and handling.
- Reevaluate the layout (design) of the area around the bearing.
- Review lubricant type and lubrication methods.

#### Seizure

Extreme thermal conditions eventually resulting in seizure of the bearing.



- Inner ring of double-row tapered roller bearing
- Seizure causes discoloration and softening, producing stepped abrasion on the raceway surface with spacing equal to the distance between the rollers.
- Insufficient lubrication is the cause.



- Inner ring of tapered roller bearing
  Evidence of seizure on the large
- diameter side of raceway surface and large rib surface
- Insufficient lubrication is one possible cause

- Insufficient clearance (including clearances reduced by local deformation)
   Insufficient lubrication or improper
- Insufficient lubrication or imprope lubricant
- Excessive loads (including excessive preload)

   Pollor skowing due to a misaligned.
- Roller skewing due to a misaligned bearing
- Reduction in hardness due to abnormal temperature rise
- High speed or large fluctuating load
- Review lubricant type and quantity.
   Check for proper clearance. (Increase clearances.)
- Take steps to prevent misalignment.
   Improve assembly method and handling.

#### Cracks/chips Localized flaking occurs. Little cracks or notches appear.



- Inner ring of tapered roller bearing
- Chipped large rib.
- Impact due to improper preloading is the cause.



- Outer ring of four-row cylindrical roller
   bossing
- Cracks in the circumferential direction of raceway surface
- These cracks were initiated by flaking.

Excessive shock loads

- Improper handling (use of steel hammer, damage from large particle contamination)
- Formation of decomposed surface layer due to improper lubrication
- Excessive interference
- Flaking
- Friction cracking
- Imprecise mating component (oversized fillet radius)
- Review lubricant (friction crack prevention).
- Select proper interference and review materials.
- Improve assembly method and handling.

A-170 A-171

## Bearing Damage and Corrective Measures

#### Table 16.1 (continued)

#### Phenomenon

#### Cage damage

Rivets break or become loose resulting in cage damage. Fracture of riveted steel cage at the corner radius.



- Cage of angular contact ball bearingBreakage of high strength, machined brass cage
- Insufficient lubrication is the cause.



- · Cage of deep groove ball bearing
- Breakage of riveted steel cage



- Cage of cylindrical roller bearing Breakage of partitions between pockets of high strength, machined brass cage
- Cage of deep groove ball bearing
- Breakage at corner of riveted steel cage

#### Excessive load or moment loading

- High speed or excessive speed fluctuations
- Insufficient lubrication
- Impact with foreign objects
- Excessive vibration
- Improper mounting (mounted misaligned)
- Review lubricant type and lubrication methods.
- Review cage type selection. Investigate shaft and housing
- rigidity.
- Improve assembly method and handling.

• Insufficient accuracy of shaft or

Insufficient shaft or housing rigidity

Shaft whirling caused by excessive

internal bearing clearances

• Reevaluate the clearance.

Improper installation

#### Rolling path skewing Abrasion or an irregular, rolling path skewing due to rolling elements along raceway surfaces.



- Spherical roller bearingUneven contact on inner ring, outer ring,
- Improper installation is the cause.

#### Smearing, Scuffing

The surface becomes rough and some small deposits form. Scuffing generally refers to roughness on the race rib face and the ends of the rollers.



- Inner ring of cylindrical roller bearing
- Scuffing on the rib surface.



- Evidence of uneven contact on rolling
- element surface
- Insufficient lubrication
- Contamination ingress
- Roller skewing due to a misaligned bearing
- Bare spots in the collar oil film due to large axial loading
- Excessive slippage of the rolling elements
- Review lubricant type and lubrication methods.
- Improve sealing performance.
- Review preload.
- Improve assembly method and handling.

# Bearing Damage and Corrective Measures

#### Table 16.1 (continued)

#### Phenomenon

The surface becomes either partially or fully rusted, and occasionally Rust/ rust occurs spaced at equal distances between rolling elements. corrosion



• Inner ring of tapered roller bearing Rust at equal distances between rolling elements on raceway surface.



- Outer ring of deep groove ball bearing
  Rust on the outer diameter surface.

- Poor storage conditions
- Poor packaging
- Insufficient rust inhibitor
- Penetration by water, acid, etc.
- Handling with bare hands
- Take measures to prevent rusting while in storage.
- · Periodically inspect the lubricating
- Improve sealing performance.
- Improve assembly method and handling.

#### Fretting

There are two types of fretting. In one, a rusty wear powder forms on the mating surfaces. In the other, brinelling indentations form on the raceway corresponding to rolling element spacing.



- Inner ring of cylindrical roller bearing
- Ripple-like fretting on the entire circumference of the raceway surface.
- Vibration is the cause.



- Inner ring of deep groove ball bearing
- Fretting on the entire circumference of the raceway surface.
- Vibration is the cause

- Insufficient interference • Small bearing oscillation angle • Insufficient lubrication
- Fluctuating loads
- Vibration during transport, or while
- Review lubricant type and lubrication methods.
- Review the interference fit and apply a coat of lubricant to fitting surface.
- Pack the inner and outer rings
- separately for transport.

The surfaces wear and dimensional deformation results. Wear is often accompanied by roughness and scratches.



- Improve the precision of the shaft and housing.
- Review rigidity of shaft and housing.
- · Inner ring of cylindrical roller bearing
- Stepped wear on the entire circumference of the raceway surface.
- Insufficient lubrication is the cause.



- Cage of cylindrical roller bearing Wear of pocket part of high strength,
- machined brass cage

- Entrapment of foreign particles in the lubricant Inadequate lubrication • Roller skewing due to a misaligned
- Review lubricant type and lubrication methods.
- Improve sealing performance.
- Take steps to prevent misalignment.
- Improve assembly method and handling.

Electrolytic corrosion Pits form on the raceway. The pits gradually grow into ripples.



Inner ring of deep groove ball bearing
Ripple-like electrolytic corrosion on the raceway surface.



- The cross section of the electrolytic corrosion on the roller rolling element surface is enlarged (×400).
- The white layer shows up by nital etching of the cross section.



 Create a bypass circuit for the current

Insulate the bearing.

A-172

• Inner ring of cylindrical roller bearing

• The cause is slippage of rollers due to

• Smearing on the raceway surface.

contaminants.

A-173

NTN

# Bearing Damage and Corrective Measures

#### Table 16.1 (continued)

#### Phenomenon

#### Dents and scratches

Scoring during assembly, gouges due to hard foreign objects, and surface denting due to mechanical shock.



- Roller of cylindrical roller bearing
- Axial direction scratches on the rolling element surface at the time of preloading
- Improper preloading is the cause.



- Inner ring of tapered roller bearing
- Dents on the entire raceway surface Impact with hard foreign objects is the cause.

- Entrapment of hard foreign matter Dropping or other mechanical
- shocks due to careless handling
- Assembled misaligned
- Excessive load or moment loading
- Improve assembly method and handling.
- Improve sealing performance. (to prevent infiltration of foreign matter)
- Check area surrounding bearing. (when caused by metal fragments)

#### Creeping

Surface becomes mirrored due to inner and outer diameter bearing surfaces spinning against the mating shaft or housing surface during operation. May be accompanied by discoloration or scoring.



Inner ring of deep groove ball bearingMirrored bore surface due to creeping on the shaft.



• Inner ring of tapered roller bearing Scuffing on bearing bore surface due to creeping on the shaft.

- Insufficient interference with mating component
- Sleeve not fastened down properly
- Abnormal temperature rise
- Excessive loads
- High speed/rapid acceleration or
- Reevaluate the interference fit.
   Review operating conditions.
   Improve the precision of the shaped pouring. • Improve the precision of the shaft and housing.
  - Fix of the faces of inner/outer ring

Speckles and discoloration

Luster of raceway surfaces is gone; surface is matted, rough, and / or evenly dimpled. Surface covered with minute dents.



- Inner ring of double-row tapered roller bearing
  • Speckles and discoloration on the
- raceway surface.
- Electrolytic corrosion is the cause.



- Ball of deep groove ball bearing Large speckles and discoloration
- · Impact with hard foreign objects and insufficient lubrication are the cause.

- matter
  - Insufficient lubrication



- Review lubricant type and lubrication methods.
   Review sealing mechanisms with the samine lubrication oil purimay be excessively dirty, et • Review sealing mechanisms.
  - · Examine lubrication oil purity. (filter may be excessively dirty, etc.)



Patches of minute flaking or peeling (size, approx.  $10 \mu m$ ). Innumerable hair-line cracks visible though not yet peeling. (This type of damage is frequently seen on roller bearings.)



- Spherical rollers
- Linear peeling on the rolling element surface. Insufficient lubrication is the cause.
- Outer ring of deep groove ball bearing · Peeling on the load zone of the raceway

- - Insufficient lubrication
- Review lubricant type and lubrication methods.
- Improve sealing performance. (to prevent infiltration of foreign matter)
- Perform run-in.

**Table 16.2** gives the main causes of bearing damage. In the table, factors that are likely to be the cause of each damage are marked by O; however, factors without O may be the cause of the damage in special circumstances.

Table 16.2 Bearing damage and causes

								Cau	ses							
		Hand	ling	Beari	ng periph	nery	Lubri	cation	L	oad		Sp	eed			ring ction
Bearing damage	Damaged parts	Poor storage condition/ vibration during transportation	Improper handling/ installation	Insufficient accuracy of shaft/housing	Infiltration of bearing by foreign matter (insufficient sealing performance)	Temperature (heat effect)	Lubricant (insufficient/improper quality)	Lubrication method (insufficient)	Excessively large impact load/preload	Excessively large moment	Excessively small load	High speed/ rapid acceleration and deceleration	Large vibration	Swinging/vibration/ standstill	Excessively large/ small clearance	Excessively large/ small interference
Flaking (separation)	Raceway surface/ rolling element surface		0	0	0	0	0	0	0	0					0	
Seizure	Raceway/ rolling element/cage		0			0	0	0	0	0		0			0	
Cracks/chips	Raceway/rolling element		0	0			0		0	0						0
Cage damage	Rivets break or become loose		0		0		0	0	0	0		0	0			
Rolling path skewing	Raceway surface		0	0											0	
Smearing/ scuffing	Raceway surface/ rolling element surface/ rib surface/ roller end surface		0		0		0	0	0		0					
Rust/ corrosion	Rust on a part of or the entire surface of the rolling element pitch	0	0		0		0	0								
	Red rust on fitting surface		0						0				0			
Fretting	Brinelling indentations form on the raceway of the rolling element pitch	0					0	0						0		0
Wear	Raceway surface/ rolling element surface/ rib surface/ roller end surface		0		0		0	0								
Electrolytic corrosion	Pits form on the raceway. The pits gradually grow into ripples.		0													
Dents and scratches	Raceway surface/ rolling element surface		0		0				0	0						
Creeping	Fitting surface		0	0		0			0							0
Speckles and discoloration	Raceway surface/ rolling element surface				0		0	0								
Peeling	Raceway surface/ rolling element surface				0		0	0								

A-174 A-175



#### 16.2 Rolling paths and how load is applied

When a bearing rotates in response to a load, the raceway surfaces of the inner and outer rings develop a hazy rolling path due to rolling contact with the rolling element. The rolling path on the raceway surface is normal. Evaluation of the rolling path of a used bearing can provide the engineer with useful information regarding the conditions the bearing had been exposed to.

Rolling path observation clarifies if a radial load was applied, an axial load was applied, or a moment load was applied. It can also shows if the bearing experienced a large load or a mounting error. These observations provide extremely important references when determining the cause of bearing damage.

**Figure 16.1** shows rolling paths of point and linear contacts caused under various load conditions.

(1) is a general rolling path generated when a radial load is applied to a bearing with inner ring rotation. The width of the rolling path becomes small at the entrance of the load zone of the outer ring, which is the fixed side. On the other hand, (2) shows a rolling path pattern opposite to (1) when a radial load is applied during outer ring rotation. (3) is a rolling path generated when an axial load in one direction is applied to a bearing, and an example of linear contact on a spherical roller bearing. When a combined load is applied during inner ring rotation, a rolling path pattern such as (4) is caused. As shown in (5), when a radial load is applied to a bearing with significant misalignment due to a moment load, rolling paths are generated at two positions separated by 180 degrees in the load zone of the outer ring, which is the fixed side. (6) shows the case where the housing bore diameter is an ellipse. Rolling paths are left on the fixed side outer ring at two positions but are not misaligned. (5) and (6) indicate improper bearing use, and the bearing life may be shorter because of the adverse effect.



Figure 16.1 Rolling paths and how load is applied

A-176 A-177

*This technical data shows calculated values based on representative values,  $\bf NTN$  does not guarantee these values.

#### 17. Technical data

#### 2

*This technical data shows calculated values based on representative values,

## 17.1.1 Deep groove ball bearings



17.1 Radial internal clearances vs. axial internal clearances

Fig. 17.1.1 Series 68 radial internal/axial internal clearances



Fig. 17.1.2 Series 69 radial internal/axial internal clearances



NTN does not guarantee these values.

Fig. 17.1.3 Series 60 radial internal/axial internal clearances



Fig. 17.1.4 Series 62 radial internal/axial internal clearances

# 

Fig. 17.1.5 Series 63 radial internal/axial internal clearances

0.005 0.01

Radial internal clearance mm

0.05

0.01

0.001

Note: Please consult **NTN** Engineering for other types and sizes.

*This technical data shows calculated values based on representative values, **NTN** does not guarantee these values.

#### 17.1.2 Double-row angular contact ball bearings



Fig. 17.1.6 Series 52S radial internal/axial internal clearances



Fig. 17.1.7 Series 53S radial internal/axial internal clearances



Fig. 17.1.8 Series 52SC radial internal/axial internal clearances



Fig. 17.1.9 Series 53SC radial internal/axial internal clearances

#### 17.1.3 Spherical roller bearings



Fig. 17.1.10 Series 222 radial internal/axial internal clearances



Fig. 17.1.11 Series 223 radial internal/axial internal clearances



Fig. 17.1.12 Series 230 radial internal/axial internal clearances



Fig. 17.1.13 Series 231 radial internal/axial internal clearances

Note: Please consult **NTN** Engineering for other types and

A-180

2.5

2.0

0 -

0.1

0.2

Fig. 17.1.15 Series 239 radial internal/axial internal clearances

Radial internal clearance mm

0.3

0.4

Axial internal clearance

*This technical data shows calculated values based on representative values, NTN does not guarantee these values.

#### 17.2 Axial load vs. axial displacement

#### 17.2.1 Angular contact ball bearings



Fig. 17.2.1 Series 79 axial load vs. axial displacement



Fig. 17.2.3 Series 72 axial load vs. axial displacement



Fig. 17.2.2 Series 70 axial load vs. axial displacement



Fig. 17.2.4 Series 72 B axial load vs. axial displacement



Fig. 17.1.14 Series 232 radial internal/axial internal clearances



Note: Please consult **NTN** Engineering for other types and sizes.



Fig. 17.2.5 Series 73 axial load vs. axial displacement

Note: Please consult NTN Engineering for other types and



Fig. 17.2.6 Series 73B axial load vs. axial displacement

#### 17.2.2 Tapered roller bearings



Fig. 17.2.7 Series 320 axial load vs. axial displacement



Fig. 17.2.9 Series 303/303 D axial load vs. axial displacement



Fig. 17.2.8 Series 329 axial load vs. axial displacement



Fig. 17.2.10 Series 330 axial load vs. axial displacement

- Note: 1. Values when the shaft and the housing are rigid bodies.
  2. Axial displacement may increase depending on the shape of the shaft/housing and fitting conditions.
  - 3. Please consult **NTN** Engineering for other types and sizes.

*This technical data shows calculated values based on representative values, NTN does not guarantee these values.

0.04

0.03

0.02

шш

*This technical data shows calculated values based on representative values, NTN does not guarantee these values.

#### 17.3.1 Deep groove ball bearings



Fig. 17.3.1 Allowable axial load for deep groove ball bearings

- Note: 1. Calculation of the allowable axial load uses the median of the radial clearance CN.
  - 2. When an axial load is applied, the allowable axial load is the load whereby the contact ellipse exceeds the shoulder of the raceway.
  - 3. Please consult NTN Engineering for other types and sizes.

17.3 Allowable axial load

0.04



Fig. 17.2.11 Series 302 axial load vs. axial displacement



Fig. 17.2.12 Inch series axial load vs. axial displacement

Note: 1. Values when the shaft and the housing are rigid bodies.

- 2. Axial displacement may increase depending on the shape of the shaft/housing and fitting conditions.
- 3. Please consult NTN Engineering for other types and sizes.

#### 17.3.2 Angular contact ball bearings



Fig. 17.3.2 Allowable axial load for angular contact ball bearings

- Note: 1. When an axial load is applied, the allowable axial load is the load whereby the contact ellipse exceeds the shoulder of the raceway.
  - 2. Please consult NTN Engineering for other types and

#### 17.4 Fitting surface pressure

**Table 17.4.1** lists equations for calculating the pressure and maximum stress between fitting surfaces.

**Table 17.4.2** can be used to determine the approximate average groove diameter for bearing inner and outer rings.

The effective interference, in other words the actual interference  $\Delta$   $_{d}$ eff after fitting, is smaller than the apparent interference  $\Delta$   $_{d}$  derived from the measured values for the bearing bore diameter and shaft. This difference is due to

the roughness or variations of the finished surfaces to be fitted. Due to this, it is necessary to assume the following reductions in effective interference:

For ground shafts: 1.0 to 2.5  $\mu$ m For lathed shafts: 5.0 to 7.0  $\mu$ m

Figure 17.4.1 and Figure 17.4.2 show the root approximate values of the fitting surface pressure and the maximum stress when the solid steel shaft and the inner ring of 0 class bearings  $(d/D_i = 0.8)$  are fit.

Table 17.4.1 Fitting surface pressure and maximum stress

Fit condition		Calculation formula	Symbol (Unit: N, mm)	
	Two cylinders General type	$P = \frac{E_1 E_2}{E_2 \left\{ \frac{(d_1^2 + d_2^2)}{(d_1^2 - d_2^2)} + \nu_1 \right\} + E_1 \left\{ \frac{(d_2^2 + d_3^2)}{(d_2^2 - d_3^2)} - \nu_2 \right\}} \cdot \frac{\Delta de}{dz}$	$P$ : Fitting surface pressure $E_1, E_2$ : Young's modulus of outer and inner cylinders $v_1, v_2$ : Poisson's ratio of outer and inner cylinders $\Delta de$ : Effective interference of two cylinders	
Fitting surface pressure	Solid steel shaft/ inner ring fit	$P = \frac{E}{2} \frac{\Delta_{deff}}{d} \left[ 1 - \left( \frac{d}{D_i} \right)^2 \right]$	d : Shaft diameter, inner ring bore diameter do : Hollow shaft inner diameter Di : Inner ring average groove	
MPa	Hollow steel shaft/ inner ring fit	$P = \frac{E}{2} \frac{\Delta_{\text{deff}}}{d} \frac{[1 - (d/D_i)^2] [1 - (d_0/d)^2]}{[1 - (d_0/D_i)^2]}$	diameter $\Delta_{deff}$ : Effective interference $E$ : Longitudinal elasticity factor = 208,000 MPa	
	Steel housing/ outer ring fit	$P = \frac{E}{2} \frac{\Delta_{Deff}}{D} \frac{[1 - (D_{0}/D)^{2}] [1 - (D/D_{h})^{2}]}{[1 - (D_{0}/D_{h})^{2}]}$	$D$ : Housing inner diameter, bearing outer diameter $D$ : Outer ring average groove diameter $D$ h: Housing outer diameter $\Delta$ $D$ eff: Effective interference	
Maximum stress	Shaft/ inner ring fit	$\sigma_t \max = P \frac{1 + (d/D_i)^2}{1 - (d/D_i)^2}$	Inner ring bore diameter maximum circumferential stress.	
MPa	Housing/ outer ring fit	$\sigma_{t} \max = P \frac{2}{1 - (D_{0}/D)^{2}}$	Outer ring outer diameter maximum circumferential stress.	

Table 17.4.2 Average groove diameter (approximate expression)

Bearing ty	vno.	Average groove diameter		
Dearing ty	·pe	Inner ring	Outer ring	
Deep groove ball bearings	All types	1.05 $\frac{4d + D}{5}$	$0.95 \frac{d + 4D}{5}$	
	12	1.03 $\frac{3d + D}{4}$	$0.97 \frac{d + 2D}{3}$	
Self-aligning ball bearings	13, 22	1.03 $\frac{3d + D}{4}$	$0.97 \frac{d + 3D}{4}$	
	23	1.03 $\frac{4d + D}{5}$	$0.97 \frac{d + 4D}{5}$	
Cylindrical roller bearing 1)	All types	1.05 $\frac{3d+D}{5}$	$0.98 \frac{d + 3D}{4}$	
Spherical roller bearings	Type B, type C, type 213	$\frac{2d+D}{3}$	$0.97 \frac{d + 4D}{5}$	
Sprietical folier bearings	ULTAGE	$\frac{3d+D}{4}$	$0.98 \frac{d + 5D}{6}$	
Tapered roller bearings	All types	$\frac{3d+D}{4}$	$\frac{d+3D}{4}$	

Note: d: inner ring bore diameter (mm) D: outer ring outer diameter (mm)

1) Average groove diameter values shown for double-flange type.



Fig. 17.4.1 Average fit interference as it relates to surface pressure  $P_m$  and maximum stress  $\sigma_{t max}$ 



Fig. 17.4.2 Maximum fit interference as it relates to surface pressure  $P_{\rm m}$  and maximum stress  $\sigma_{\rm t\,max}$ 

Note: For the recommended fitting, see the section of "7.3.2 Recommended fitting."

#### 17.5 Necessary press fit and pullout force

Equations (17.1) and (17.2) below can be used to calculate the necessary pullout force for press fits on inner rings and shafts or outer rings and housings. The force obtained by the equations only serves as an approximation, and a larger load may be required for the actual installation and removal.

For shaft and inner rings:

$$K_d = \mu \cdot P \cdot \pi \cdot d \cdot B \cdot \cdots (17.1)$$

For housing and outer rings:

$$K_D = \mu \cdot P \cdot \pi \cdot D \cdot B \cdot \dots (17.2)$$
 Where:

*K*_d: Inner ring press fit or pullout force N

*K*_D : Outer ring press fit or pullout force N

P: Fitting surface pressure MPa (see **Table 17.4.1**)

d : Shaft diameter, inner ring bore diameter mm

D: Housing inner diameter, outer ring outer diameter mm

 ${\it B}~~:$  Inner or outer ring width  $\,$  mm

 $\mu$ : Sliding friction coefficient (see **Table 17.5.1**)

Table 17.5.1 Press fit and pullout sliding friction coefficient

Concern	μ	
Inner (outer) ring press fit onto cylindrical shaft (bore)	0.12	
Inner (outer) ring pullout from cylindrical shaft (bore)	0.18	
Inner ring press fit onto tapered shaft or sleeve		
Inner ring pullout from tapered shaft	0.14	
Sleeve press fit onto shaft/bearing		
Sleeve pullout from shaft/bearing		

#### 17.6 Bearing technique calculation tool

The following calculations can be performed by using the bearing technique calculation tool on the **NTN** website (https://www.ntnglobal.com).

- Basic rating life calculation of single bearing
- Basic rating life calculation of gear load and bearing
- Basic rating life calculation of bearing load and bearing
- Calculation of operating clearance
- Calculation of bearing vibration frequency

# **Ball and Roller Bearings**



## **INDEX OF BEARING TABLES**

NTN New Generation Bearings (ULTAGE series)	B- 5
Deep Groove Ball Bearings  Deep Groove Ball Bearings 67, 68, 69, 160, 60, 62, 63, 64  Expansion Compensating Bearings EC-60, EC-62, EC-63  AC Bearings AC-60, AC-62, AC-63	B-22 B-40
Miniature and Small Size Ball Bearings  Metric series 67, 68, 69, 60, 62, 63, BC  Inch series R, RA  With snap ring groove and snap ring SC	B-48 B-52
Angular Contact Ball Bearings  Single and Duplex Angular Contact Ball Bearings 79, 70, 72, 72B, 73, 73B  Four-Point Contact Ball Bearings QJ2, QJ3  Double Row Angular Contact Ball Bearings 52, 53	B-60 B-72
Self-Aligning Ball Bearings  12(K), 22(K), 13(K), 23(K)	B-82
Cylindrical Roller Bearings  NU, NJ, NUP, N, NF10, 2, 22, 3, 23, 4  L type collar ring HJ2, 22, 3, 23, 4  Double Row Cylindrical Roller Bearings NN49(K), NNU49(K), NN30(K), NNU30(K)	B-98 B-116

B-2

T	apered Roller Bearings	B-127
	Metric series 329X, 320X, 330, 331, 302, 322, 322C, 332, 303, 303D, 313X, 323, 323	
	Inch series	
	Double Row Tapered Roller Bearings (Back-to-back arrangement) 4130, 4230, 4131,	D-134
	4231, 4302, 4322, 4303, 4303D, 4323	B-192
	Double Row Tapered Roller Bearings (Face-to-face arrangement) 3230, 3231	
c	Inharical Ballor Pagrings	D 211
3	pherical Roller Bearings	
	239(K), 230(K), 240(K30), 231(K), 241(K30), 222(K), 232(K), 213(K), 223(K)	
	Adapters (For spherical roller bearings)	
	Withdrawal Sleeves (For spherical roller bearings)	B-245
Т	hrust Bearings	B-253
	Thrust Ball Bearings 511, 512, 513, 514	
	Thrust Spherical Roller Bearings 292, 293, 294	

# **NTN** New Generation Bearings (ULTAGE Series)



## **Introduction of ULTAGE series**

"ULTAGE" (a name created from the combination of "ultimate," signifying refinement, and "stage," signifying **NTN**'s intention that this series of products be employed in diverse applications) is the general name for **NTN**'s new generation of rolling bearings that are noted for their industry-leading performance. **NTN** is developing and expanding the ULTAGE series of each bearing type. Please see the introductory article on the following pages. The corresponding dimensions are specified in the dimension tables of each bearing type.

For details, see the following **NTN** catalogs.

The following ULTAGE series bearings for special applications are also available. For further details, please refer to the section of "C. Special application bearings."

ULTAGE series sealed four-row tapered roller bearings for rolling mill roll necks
[CROU···LL type]

ULTAGE series sealed spherical roller bearings [WA type]

ULTAGE series spherical roller bearings with high-strength cage [EMA type]

ULTAGE series deep groove ball bearings for high-speed servo motors [MA type]

ULTAGE series precision rolling bearings for machine tools

#### ULTAGE series cylindrical roller bearings are the standard series developed to meet the demands of "long operating life," "improved load capability," and "higher speed" that are required for various industrial machinery.





#### **Features**

#### 1.Industry leading load rating

Higher load capacity and longer operating life have been realized through the optimization of internal specifications.

- (1) Rating life: Up to 1.8 times longer (compared with NTN E type product)
- (2) Basic dynamic load rating: Up to 20% higher (compared with NTN E type product)

#### 2. Allowable misalignment (refer to Fig. 1)

Allowable misalignment: 1/500 (mm/mm)

Optimization of the roller crowning allows a combination of heavy loads (0.20 Cr) and allowable misalignment of 1/500 (mm/mm).

* Necessary minimum load: 0.04 Cor

#### 3. Allowable speed

The allowable speed is increased up to 20% in oil lubrication (compared with NTN E type product).

#### 4. Standard resin cage (refer to Fig. 2)

- (1) Higher speed and longer operating life have been realized through the use of a window type combined PA resin cage.
- (2) Resin cage materials: reinforced PA + GF
- * When machined cages are necessary for high speed and other special applications, consult NTN Engineering.

#### 5. Interchangeability

The boundary dimensions conform to ISO 15, JIS B 1533, and DIN 5412 and are the same as that of the NTN E type products.

#### 6. Allowable axial load

Same as NTN E type product

#### 7. Allowable temperature

Allowable bearing operating temperature: 120°C (instantaneous) 100°C (continuous)

## Surface pressure distribution under load (reference) [Examined condition] Bearing model: NU304EA (ULTAGE product) NU304E (conventional NTN E type product) Load: 0.20Cr Misalignment: 1/500 (mm/mm) Stress concentration reduction at point of crowning transition ULTAGE product NTN E type product Contact :



Fig. 2

Fig. 1

Position along roller length

#### **Bearing number**

#### Cylindrical roller bearing



B-6 B-7

NTN

# Large size tapered roller bearings [ULTAGE metric series]

Large size tapered roller bearings (ULTAGE metric series with an outer diameter of  $\phi$ 270 mm or more) are the standard series developed to meet the demands of "long operating life," "improved load capability," and "higher speed" that are required for various industrial machinery.

#### [Bearing type]









#### **Features**

#### 1. Industry leading reliability

The bearing load carrying capability has been improved by optimizing the roller crowning to reduce edge stress and allow a more uniform pressure distribution across the contact surface (see Fig. 1).

- (1) Rating life: 3 times longer (compared to conventional NTN products)
- (2) Basic dynamic rating load: 30% larger (compared to conventional NTN products)

#### 2. Allowable misalignment

Allowable misalignment (single row): 1/600 Optimization of the roller crowning has allowed a combination of heavy loads (0.27  $C_r$ ) and allowable misalignment of 1/600.

*Necessary minimum load: 0.04 Cor

Fig. 1 shows the contact surface pressure distribution of rollers considering an applied radial load of  $F_r \leq 0.27 C_r$ . By optimizing the roller crowning, the edge stress is greatly reduced and the contact surface pressure is made uniform compared with conventional products.

#### [Examined condition]

Bearing model : ULTAGE product and

conventional NTN product

 $(\phi 80 \times \phi 170 \times 42.5)$ 

Load : 0.27 Cr Allowable misalignment: 1/600

*The allowable misalignment differs depending on the loads and the bearing type. Please consult NTN Engineering.

#### 3. Allowable speed

The allowable speed is improved by up to 10% (compared with the conventional NTN products) by optimizing the sliding contact zone between the roller and the inner ring, thus reducing the rotational torque and temperature rise (see Fig. 2. Fig. 3. and Fig. 4).

#### 4. Dimensional change over time

Dimensional change of bearings over time has been reduced compared with conventional products by applying special heat treatment to bearing steel.

 Reduction in dimension change over time Conventional heat treatment: 1/10 Case hardened steel ratio : 1/4

#### 5. Interchangeability

The boundary dimensions conform to JIS B 1512-3 and ISO 355, and the installation dimensions are the same as that of the conventional NTN products.

In addition, the precision also conforms to JIS B 1514-1 and ISO 492.

B-8 B-9



Fig. 1 Contact surface pressure distribution of rollers



Fig. 2 Optimization of sliding surface between roller and inner ring



Fig. 3 Torque test result



Fig. 4 Temperature rise test result

## **Bearing number**

#### Single row tapered roller bearing



#### Double row back-to-back tapered roller bearing



#### Double row face-to-face tapered roller bearing



B-10 B-11

# Spherical roller bearings [ULTAGE series EA/EM types]

ULTAGE series spherical roller bearings are the standard series developed to meet the demands of "long operating life," "higher speed," and "improved easy handling" that are required for various industrial machinery.

#### Long operating life •Industry leading load rating (adoption of large diameter roller) ●Extension of maintenance period Downsizing and lightweight Heat resistant temperature of 200°C Higher **Improved** speed handling Industry leading allowable speed Optimized pressed steel •Improved cage design that cage design allows lubricating oil to enter ●Use of a guide ring is eliminated and roller guidance ●Easy to fill with grease is achieved via the cage.



#### Features [EA type]

#### 1. Industry leading load rating

Higher load capacity and longer operating life are realized by increasing the roller diameter and maximizing the number of rollers. This allows extension of the maintenance period (see Fig. 1).

- (1) Basic dynamic rating load: Up to 65% higher (compared to conventional products)
- (2) Basic static rating load: Up to 35% higher (compared to conventional products)
- (3) Rating life: Up to 5 times longer (compared to conventional products)

#### 2. Allowable speed of the world's highest level

Higher speed is realized through the adoption of a new pressed steel cage design.

[Allowable speed: 20% higher (compared to conventional products)]

#### 3. Standard use of pressed steel cage

For the pressed steel cage, "window type" with rigidity is adopted, and the roller pocket is provided with four tabs (projections) (see Fig. 2 and Fig. 3).

- (1) Cage back surface used for guidance.
- (2) The four pocket tabs stabilize the position of rollers.
- (3) The new pocket shape allows consistent supply of lubricating oil and grease to the internal bearing surfaces (see Fig. 4).
- (4) Special surface treatment is applied to the entire surface to improve the abrasion resistance.

#### 4. Downsizing and lightweight

High-load capacity has allowed for downsizing and a lighter weight.

#### Comparison example

Bearing number	Rating load (kN)		Boundary dimension (mm)	Bearing volume (cm ³ )	Mass (kg)
	$C_{r}$	$C_{Or}$	(11111)	(CIII-)	
22220B	315	415	φ100×φ180×46	810	4.95
22218EA	385	398	φ90×φ160×40	550	3.28

The volume weight and mass weight can be reduced by about 30%.

#### 5. Improved handling

Adoption of the simple window type new pressed steel cage improved the workability at the time of assembly, disassembly, and grease application.

- (1) Easy to fill with grease to roller surface
- (2) Easy assembly and disassembly due to small roller drop



Fig. 1



Fig. 2



Fig. 3



Fig. 4

B-12 B-13

## **Bearing number**

#### Spherical roller bearing



A combined machined cage (EM type) is recommended for conditions with severe vibration and impact. (EM type and EA type have different inner ring shapes.)



Window type pressed steel cage

#### [Allowable misalignment]

- ullet Normal load or more  $\cdots 1/115$
- Light load ...... 1/30
- *Misalignment beyond the above limits may cause the roller to protrude from the outer ring, causing interference with the peripheral components.



One-piece machined cage Inner ring flange

EM type (large size)

Guide ring One-piece machined cage Inner ring flange

# Deep Groove Ball Bearings









Open type

Shielded type

Sealed type (non-contact)

Expansion compensating bearing

#### 1. Design features and characteristics

Deep groove ball bearings are very widely used. A deep groove is formed on the inner and outer ring of the bearing enabling the bearing to sustain radial and axial loads in either direction as well as the complex loads which result from the combination of these forces. Deep groove ball bearings are suitable for high speed applications.

When two or more deep groove ball bearings are used in combination and mounted adjacent to each other a duplex set (D2) should be used. Duplex bearings (D2) utilize controlled tolerances

to more evenly distribute the loading between the individual bearing rows which improves the overall performance of the assembly.

In addition to unsealed and unlubricated "open" bearings, **NTN** provides deep groove ball bearings that are pre-lubricated with grease and enclosed by seals or shields. See section "11. Lubrication" for a list of some of the greases which can be used.

**Table 1** shows the construction and special characteristics of various sealed deep groove ball bearings.

Table 1 Sealed ball bearings: construction and characteristics

Table 1 Sealed ball bearings: construction and characteristics							
Types and codes		Shielded type	Sealed type				
		Non-contact type ZZ	Non-contact type LLB	Contact type LLU	Low torque type LLH		
Construction							
		Metal shield plate is affixed to the outside ring; the inner ring incorporates a V-groove and labyrinth clearance.	The outer ring incorporates synthetic rubber molded to a steel plate; seal edge is aligned with V-groove along inner ring surface with labyrinth clearance.	The outer ring incorporates synthetic rubber molded to a steel plate; seal edge contacts V-groove along inner ring surface.	Basic construction is the same as LLU type, but a specially designed lip on the edge of the seal prevents foreign matter penetration; low torque construction.		
υ _	Torque	Small	Small	Higher	Medium		
anc	Dust proofing	Good	Better than ZZ-type	Excellent	Much better than LLB-type		
Performance comparison	Water proofing	Poor	Poor	Very good	Good		
Serf	High speed capacity	Same as open type	Same as open type	Limited by contact seals	Much better than LLU-type		
	Allowable temp. range ¹⁾	Depends on lubricant	−25 to 120°C	−25 to 110°C	−25 to 120°C		

1) Please consult NTN Engineering about applications which exceed the allowable temperature range of products listed on this table. Note: This chart lists double shielded and double sealed bearings, but single shielded (Z) and single sealed (LB, LU, LH) are also available. Grease lubrication should be used with single shielded and single sealed bearings.



**Deep Groove Ball Bearings** 

#### 2. Standard cage type

As shown in **Table 2**, pressed steel cages are generally used for most deep groove ball bearings. Larger size deep groove ball bearings, and bearings operating at high rotational speeds often utilize a machined metallic cage.

Table 2 Standard cage for deep groove ball bearings

	bearings						
Cage	Pressed cages	Machined cages					
Bearing series							
67 68 69 160 60 62 63 64	6700~ 6706 6800~ 6834 6900~ 6934 16001~16052 6000~ 6052 6200~ 6244 6300~ 6344 6403~ 6416	6836~ 68./600 6936~ 69./500 16056~16072 6056~ 6084 —					

# 3. Other deep groove ball bearing enhancements

#### 3.1 Bearings with snap rings

A snap ring grove or snap ring grove with snap ring combination are optional enhancements for the outer diameter of most deep groove ball bearings. Snap rings allow for simpler axial positioning and installation in the housing. Snap rings can be utilized with both open type and sealed or shielded deep groove ball bearings. Consult **NTN** Engineering.

# 3.2 Expansion compensating bearings (creep prevention bearings)

NTN

**NTN** offers the innovative Expansion Compensating (EC) feature to help with bearing retention when mounted in light alloy housings which is often a problem at elevated temperatures due to property differences between the bearing steel and the housing. This functionality is achieved by machining circumferential grooves into the outer diameter of an otherwise standard outer ring. These grooves are filled with an optimized polymer which has an expansion rate higher than that of the typical light alloy housing. The net result is a more consistent interference fit across a wide operating temperature range. This more consistent fit condition helps prevent the bearing from rotating within the housing (known as bearing creep) which helps ensure good performance and long life.

#### (1) Allowable load

As a result of having grooves machined in the outer diameter, the ring strength is lower compared with a standard bearing. Thus, in order to prevent outer ring fracture, it is necessary to limit the maximum load applied to the bearing to be equal to or less than the allowable load  $\mathcal{C}_{p}$  (see dimension table).

#### (2) Fit with housing

Table 3 shows the recommended fits for bearings with light metal alloy housings. In cases where the bearing is going to be interference fit with the housing, it is very important not to damage the polymer material. Therefore, it is essential that the lip of the housing diameter be given a 10-15° chamfer as shown in Fig. 2. Furthermore, as shown in Fig. 2, it is also advisable to apply the interference fit using a press in order not to force the bearing into the housing in a misaligned position.

# Table 3 Recommended fits for outer ring and housing bore

Condi	Suitable	Housing bore		
Load type, etc.	Housing material	bearing	tolerance class	
Rotating outer ring load Rotating inner ring load load load load load	Al alloy and	Deep groove ball bearings Cylindrical roller bearings	Н6	
Rotating outer ring load load load load load	such as	Thick-walled type deep groove ball bearings	N6	



Fig. 1. Expansion compensating bearings



Fig. 2. Fitting method and housing inner diameter chamfer

#### (3) Radial internal clearance

Radial internal clearance are the same as those for standard deep groove ball bearings. With standard fit and application conditions, a C3 clearance is used. For more detailed information concerning this bearing and the availability of roller bearings contact **NTN** Engineering.

#### (4) Allowable temperature range

-20 to 120°C

# 3.3 AC bearings (creep prevention bearings)

**NTN** Offers the AC type bearing which performs a similar function to the EC bearing. AC bearings have the same outer diameter dimensions as standard bearings with the addition of two O-rings located in circumferential grooves on the outside diameter of the outer ring. (Fig. 3) While the EC bearing is more beneficial when using a light alloy housing at elevated temperatures, AC bearings are suitable for applications where a "tight fit" is not possible but outer ring creeping exists under rotating load on the outer ring. AC bearing can also be installed as a floating side bearing to accommodate expansion of shaft by heat as it is more axial. Before installing the bearing into the housing, a high viscosity oil (base oil viscosity, 100 mm²/s or more) or grease must be applied to the space between two O-rings. This lubricant forms a thin oil layer on the bearing outer ring which prevents contact between the outer ring and housing, lowers the friction, and can minimize the occurrence of creeping by utilizing the friction force of the O-rings.



Fig. 3. AC bearing

B-18 B-19





As is the case with the EC bearing, the load applied to an AC bearing shall be limited to  $C_{\rm p}$  (see dimension table) in order to ensure the strength limit of the modified outer ring is not exceeded.

# (2) Housing dimensions and shape

**Fig. 4** shows the recommended shape of steel housings, and **Table 4** shows the dimensions.



Fig. 4. Design of housing

# Table 4 Dimensions and design

Housing bore tolerance	G7
Housing bore entrance chamfer	Max. 30°C
Housing bore chamfer undercut	0.006D or larger
Housing bore surface roughness $Ra$	2.5
Housing bore roundness	1/2 of bearing housing dimension tolerance

### (3) Allowable temperature range

-25 to 120°C

B-20 B-21





(ZZ)



(LLB, LLF)



(LLH)



Contact sealed type (LLU)

*d* 10 ∼ 20mm

I	Bour	ndar	y dir	nensi	ions	Basic lo	ad rating		Factor	1	Allowabl			Ве	aring	numbe	er	
							static	load limit		Grease	mir Oil			_				
			mm		$r_{ m NS}$		κN	kN		Open type, ZZ, LLB, LLF		, LLH	LLU	Open type		d or sea ee draw		pe ²⁾
(	d	D	B	$r_{ m smin}^{-1}$		$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	$f_0$	Z, LB, LF		LH	LU				0.	
		15	3	0.1	_	0.950	0.435	0.018	15.7	10 000	12 000	_	_	6700	_	_	_	_
		19	5	0.3	_	2.03	0.925	0.072	14.8	32 000	38 000		24 000	6800	ZZ	LLB		LLU
1	n	22	6	0.3	0.3	2.99	1.27	0.099	14.0	30 000	36 000	25 000	21 000	6900	ZZ	LLB		LLU
•	U	26 30	8	0.3	0.5	5.05 5.65	1.96 2.39	0.138	12.4 13.2		34 000 30 000	25 000 21 000	21 000	6000 6200	ZZ ZZ	LLB		
		35	11	0.6	0.5	9.10	3.50	0.162	11.4		27 000	20 000	18 000 16 000	6300	ZZ	LLB		
		00	''	0.0	0.5	3.10	0.00	0.270	11.7	20 000	27 000	20 000	10 000	0300		LLD	LLII	LLU
		18 21	4 5	0.2	_	1.03	0.530 1.04	0.021	16.2 15.3	8 300 29 000	9 500 35 000	_	20 000	6701 6801	– ZZ	LLF	-	_ LLU
		24	6	0.3	0.3	3.20	1.46	0.000	14.5		32 000	22 000	19 000	6901	ZZ	LLB	_     H	LLU
1	2	28	7	0.3	-	5.65	2.39	0.113	13.2		30 000			16001JR		_		_
•	_	28	8	0.3	_	5.65	2.39	0.182	13.2		30 000	21 000	18 000	6001JRX		LLB	LLH	LLU
		32	10	0.6	0.5	6.75	2.75	0.214	12.7	22 000	26 000	20 000	16 000	6201	ZZ	LLB	LLH	LLU
		37	12	1	0.5	10.8	4.20	0.325	11.1	20 000	24 000	19 000	15 000	6301	ZZ	LLB	LLH	LLU
		21	4	0.2	_	1.04	0.585	0.024	16.5	6 600	7 600	_	_	6702	-	LLF	-	_
		24	5	0.3	_	2.30	1.26	0.091	15.8	26 000	31 000	_	17 000	6802	ZZ	LLB	-	LLU
	_	28	7	0.3	0.3	4.05	2.00	0.157	14.8	24 000	28 000	_	16 000	6902	ZZ	LLB	-	LLU
1	5	32	8	0.3	_	6.20	2.84	0.222		22 000	26 000		<u></u>	16002	_	_		
		32 35	9	0.3	0.3	6.20 8.60	2.84 3.60	0.199 0.279	13.9 12.7	22 000 19 000	26 000 23 000	18 000 18 000	15 000 15 000	6002 6202	ZZ ZZ	LLB		
		42	13	1		12.7	5.45	0.279			21 000		12 000	6302	ZZ	LLB		
		72	10		0.5	12.7	0.40	0.423	12.0	17 000	21 000	13 000	12 000	0302		LLD	LLII	LLU
		23	4	0.2	_	1.11	0.660	0.027	16.3	5 000	6 700	_		6703	_	LLF	-	_
		26	5	0.3	_	2.47	1.46	0.102	16.1	24 000	28 000	_	15 000	6803	ZZ	LLB	-	LLU
		30 35	7 8	0.3	0.3	5.15 7.55	2.58 3.35	0.202	14.7 13.6	22 000 20 000	26 000 24 000	_	14 000	6903JRX 16003	ZZ —	LLB	-	LLU
1	7	35	10	0.3	0.3	7.55	3.35	0.243	13.6	20 000	24 000	16 000	14 000	6003	ZZ	LLB	IIH	LLU
		40	12	0.6		10.6	4.60	0.355	12.8	18 000	21 000	15 000	12 000	6203	ZZ	LLB		
		47	14	1		15.0	6.55	0.510	12.2	16 000	19 000	14 000	11 000	6303	ZZ	LLB		
		62	17	1.1	_	25.2	10.8	0.840	11.1	14 000	16 000	_	_	6403	ZZ	-	-	_
		27	4	0.2	_	1.15	0.730	0.031	16.1	5 000	5 700	_	_	6704	_	LLF	_	_
		32	7	0.3	0.3	4.45	2.47	0.185	15.5	21 000	25 000	_	13 000	6804JR	ZZ	LLB	_	LLU
		37	9	0.3	0.3	7.05	3.70	0.288	14.7	19 000	23 000	_	12 000	6904	ZZ	LLB	-	LLU
2	0	42	8	0.3	_	8.75	4.50	0.350	14.5	18 000	21 000			16004	_	_		
		42	12	0.6		10.4	5.05	0.355	13.9	18 000	21 000	13 000	11 000	6004	ZZ	LLB		
		47	14	1		14.2	6.65	0.505	13.2	16 000	18 000	12 000	10 000	6204	ZZ	LLB		LLU
		52	15	1.1	0.5	17.6	7.90	0.615	12.4	14 000	17 000	12 000	10 000	6304	ZZ	LLB	LLH	LLU

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. B-22





Deep Groove Ball Bearings

$P_{\rm r}=XI$			iciic	iauia	ii ioac
$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_a}{F_r}$	$\leq e$	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00

Static equivalent radial load  $P_{0r}$ = 0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

	aring mber	Sı	nap rin	g groons	ve		p ring nsions		Ins	tallati	on-rela	ted di	mensi	ons		Mass 5)
				ım			nm				m	m				kg
	Snap ring 3 Irawings)	$D_1$	a	b	$r_{\rm o}$	$D_2$	f	,	$d_{\mathrm{a}}$	$D_{\rm a}$	$D_{\rm X}$	$C_{ m V}$	$C_{\mathrm{Z}}$	$r_{\rm as}$	$r_{ m Nas}$	
(0000		Max.	Max.	Min.	Max.	Max.	Max.	Min.	Max.4)	Max.	(approx.)	Max.	Min.	Max.		(approx.)
_	_	_	_	_	_	_	_	10.8		14.2	_	_	_	0.1	_	0.0015
N	NR	20.8	1.05	0.8	0.2	24.8	0.7	12 12	12.5 13	17 20	25.5	1.5	0.7	0.3	— 0.3	0.005 0.009
6)		_	_			_	—	12	13.5	24		_		0.3		0.009
N	NR	28.17	2.06	1.35	0.4	34.7	1.12	14	16	26	35.5	2.9	1.2	0.6	0.5	0.032
N	NR	33.17	2.06	1.35	0.4	39.7	1.12	14	17	31	40.5	2.9	1.2	0.6	0.5	0.053
								40.0	40.0	40.4						
_		_	_	_	_	_	_	13.6 14	13.8 14.5	16.4	_	_	_	0.2	_	0.002 0.006
N	NR	22.8	1.05	0.8	0.2	26.8	0.7	14	15	19 22	27.5	1.5	0.7	0.3	0.3	0.000
	_		_	_	_	_	_	14	_	26	_	_	_	0.3	_	0.011
NX2	NX2RX3	26.44	2.20	0.90	0.3	32.7	0.85	14	16	26	33.4	2.8	0.9	0.3	0.3	0.021
N	NR	30.15	2.06	1.35	0.4	36.7	1.12	16	17	28	37.5	2.9	1.2	0.6	0.5	0.037
N	NR	34.77	2.06	1.35	0.4	41.3	1.12	17	18.5	32	42	2.9	1.2	1	0.5	0.06
_	_	_	_	_	_	_	_	16.6	16.8	19.4	_	_	_	0.2	_	0.0025
_	_	_	_	_	_	_	_	17	17.5	22	_	_	_	0.3	_	0.007
N	NR	26.7	1.3	0.95	0.25	30.8	0.85	17	17.5	26	31.5	1.9	0.9	0.3	0.3	0.016
_	_		_	_		_	_	17	_	30		_	_	0.3	_	0.025
N	NR	30.15	2.06	1.35	0.4	36.7	1.12	17	19	30	37.5	2.9	1.2	0.3	0.3	0.03
N N	NR NR	33.17 39.75	2.06	1.35	0.4	39.7 46.3	1.12	19 20	20 23	31 37	40.5 47	2.9	1.2	0.6 1	0.5	0.045 0.082
14	INIT	38.73	2.00	1.00	0.4	40.5	1.12	20	20	31	47	2.5	1.2	'	0.5	0.002
_	_	_	_	_	_	_	_	18.6	18.8	21.4	_	_	_	0.2	_	0.0025
_	_	_	_	_	_	_	_	19	19.5	24	_	_	_	0.3	_	0.008
N	NR	28.7	1.3	0.95	0.25	32.8	0.85	19	20	28	33.5	1.9	0.9	0.3	0.3	0.018
N	NR	— 33.17	2.06	1.35	0.4	39.7	1.12	19 19	 21	33	— 40.5	2.9	1.2	0.3	0.3	0.032 0.039
N	NR	38.1	2.06	1.35	0.4	44.6	1.12	21	23	36	45.5	2.9	1.2	0.6	0.5	0.039
N	NR	44.6	2.46	1.35	0.4	52.7	1.12	22	25	42	53.5	3.3	1.2	1	0.5	0.000
	_	_	_	_	_	_	_	23.5	30	55.5	_	_		1	_	0.27
_	_		_	_	_	_	_	21.6	22.3	25.4	_	_	_	0.2	_	0.0045
N	NR	30.7	1.3	0.95	0.25	34.8	0.85	22	22.5	30	35.5	1.9	0.9	0.3	0.3	0.019
N	NR	35.7	1.7	0.95	0.25	39.8	0.85	22	24	35	40.5	2.3	0.9	0.3	0.3	0.036
N	NR	39.75	2.06	1.35	0.4	46.3	1.12	22	26	40 38	47	2.9	1.2	0.3	0.5	0.051 0.069
N	NR	44.6	2.46	1.35	0.4	52.7	1.12	25	28	42	53.5	3.3	1.2	1	0.5	0.009
N	NR	49.73	2.46	1.35	0.4	57.9	1.12	26.5	28.5	45.5	58.5	3.3	1.2	1	0.5	0.144

Sealed and shielded bearings are also available.
 This dimension applies to sealed and shielded bearings.
 Does not include bearings with snap rings.
 Sea B-54.
 B-23

1.00









(LLH)



Contact sealed type (LLU)

d 20 ~ 35mm

Во	undaı	ry dii	mensi	ions	Basic lo	oad rating		Factor	I	Allowabl			В	earing I	numbe	r	
J	D	mm		$r_{ m NS}$	Í	c static kN	load limit kN		Grease Open type, ZZ, LLB, LLF		LLH	LLU	pen type		d or sea ee drawi		pe ²⁾
d	D	В	$r_{\mathrm{s}\mathrm{min}^{\mathrm{1}}}$	Mın.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\mathrm{u}}$	$f_0$	Z, LB, LF		LH	LU					
20	72	19	1.1	_	31.5	13.9	1.09	11.4	12 000	14 000	_	_	6404	ZZ	_	_	_
	44	12	0.6	0.5	10.4	5.05	0.395	13.9	17 000	20 000	13 000	10 000	60/22	ZZ	LLB	LLH	LLU
22	50	14	1		14.3	6.80	0.500	13.5	14 000	17 000	12 000	9 700	62/22	ZZ	LLB		
	56	16	1.1	0.5	20.4	9.25	0.725	12.4	13 000	15 000	11 000	9 200	63/22	ZZ	LLB	LLH	LLU
	32	4	0.2	_	1.21	0.840	0.036	15.8	4 000	4 600	_	_	6705	_	LLF	_	_
	37	7	0.3	0.3	4.75	2.95	0.208	16.1	18 000	21 000	_	10 000	6805JR	ZZ	LLB	_	LLU
	42	9	0.3	0.3	7.80	4.55	0.345	15.4	16 000	19 000	11 700	9 800	6905	ZZ	LLB	LLH	LLU
25	47	8	0.3	_	9.25	5.10	0.400	15.1	15 000	18 000	_	_	16005	_	_	_	_
25	47	12	0.6		11.2	5.85	0.380	14.5	15 000	18 000	11 000	9 400	6005	ZZ	LLB		
	52	15	1		15.5	7.85	0.550	13.9	13 000	15 000	11 000	8 900	6205	ZZ	LLB		
	62	17	1.1		23.5	10.9	0.855	12.6	12 000	14 000	9 700	8 100	6305	ZZ	LLB	LLH	LLU
	80	21	1.5	_	38.5	17.5	1.36	11.6	10 000	12 000	_	_	6405	ZZ	_	_	_
	52	12	0.6	0.5	13.8	7.40	0.580	14.5	14 000	16 000	10 000	8 400	60/28	ZZ	LLB	LLH	LLU
28	58	16	1		19.8	9.75	0.720	13.4	12 000	14 000	9 700	8 100	62/28	ZZ	LLB		
	68	18	1.1	0.5	29.6	14.0	1.10	12.4	11 000	13 000	8 900	7 400	63/28	ZZ	LLB	LLH	LLU
	37	4	0.2	_	1.27	0.950	0.041	15.7	3 300	3 800	_	_	6706	_	LLF	_	_
	42	7	0.3	0.3	5.20	3.65	0.244	16.5	15 000	18 000	10 500	8 800	6806JR	ZZ	LLB	LLH	LLU
	47	9	0.3	0.3	8.00	5.00	0.365	15.8	14 000	17 000	10 000	8 400	6906	ZZ	LLB	LLH	LLU
30	55	9	0.3	_	12.5	7.35	0.570		13 000	15 000	_	_	16006	_	_	_	_
30	55	13	1		14.7	8.30	0.650		13 000	15 000	9 200	7 700	6006	ZZ	LLB		
	62	16	1		21.6	11.3	0.795	13.8	11 000	13 000	8 800	7 300	6206	ZZ	LLB		
	72	19	1.1	0.5	29.5	15.0	1.14	13.3	10 000	12 000	7 900	6 600	6306	ZZ	LLB	LLH	LLU
	90	23	1.5	_	48.0	23.9	1.86	12.3	8 800	10 000	_	_	6406	ZZ	_	_	_
	58	13	1		13.1	8.05	0.615		12 000	15 000	8 700	7 200	60/32	ZZ	LLB		
32	65	17	1		23.0	11.6	0.840	13.6	11 000	12 000	8 400	7 100	62/32	ZZ	LLB		
	75	20	1.1	0.5	33.0	16.9	1.30	13.1	9 500	11 000	7 700	6 500	63/32	ZZ	LLB	LLH	LLU
	47	7	0.3	0.3	5.45	4.05	0.268	16.4	13 000	16 000	_	7 600	6807JR	ZZ	LLB	_	LLU
	55	10	0.6	0.5	10.6	6.85	0.495	15.8	12 000	15 000	8 500	7 100	6907	ZZ	LLB	LLH	LLU
	62	9	0.3	_	12.9	8.20	0.605	15.6	12 000	14 000	_	_	16007	_	_	_	_
35	62	14	1		17.7	10.3	0.805	14.8		14 000	8 200	6 800	6007	ZZ	LLB		
	72	17	1.1		28.4	15.3	1.09	13.8	9 800	11 000	7 600	6 300	6207	ZZ	LLB		
	80	21	1.5		37.0	19.1	1.47	13.1	8 800	10 000	7 300	6 000	6307	ZZ	LLB	LLH	LLU
	100	25	1.5	_	61.0	31.0	2.43	12.3	7 800	9 100	_	_	6407	ZZ	_	_	_

(LLB, LLF)



Deep Groove Ball Bearings

Dynamic equivalent radial load  $P_r = XF_r + YF_a$  $f_0 \cdot F_a$ C0r 0.172 0.19 0.345 0.22 2.30 1.99 0.689 0.26 1.71 1.03 0.28 1.55 1.38 0.30 0 0.56 1.45 1 2.07 0.34 1.31 1.15 1.04 3.45 0.38 5.17 0.42

Static equivalent radial load  $P_{0r}$ = 0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

6.89 0.44

	ring nber	Sı	nap rin	g groo nsions	ve		ring nsions		Ins	tallati	on-rela	ted di	mensi	ons		Mass 5)
				nm			nm				m	m				kg
	Snap ring 3 rawings)	$D_1$ Max.	$_{\rm Max.}^{a}$	<i>b</i> Min.	$r_{ m o}$ Max.	$D_2$ Max.	f Max.	Min.	$l_{ m a}$ Max.4)	$D_{\mathrm{a}}$ Max.	$D_{ m X}$ (approx.)	$C_{ m Y}$ Max.	$C_{ m Z}$ Min.	$r_{ m as}$ Max.	$r_{ m Nas}$ Max.	(approx.)
	_	_	_	_	_	_	_	26.5	35.5	65.5	_	_	_	1	_	0.4
N	NR	41.75	2.06	1.35	0.4	48.3	1.12	26	26.5	40	49	2.9	1.2	0.6	0.5	0.074
N	NR	47.6	2.46	1.35	0.4	55.7	1.12	27	29.5	45	56.5	3.3	1.2	1	0.5	0.117
N	NR	53.6	2.46	1.35	0.4	61.7	1.12	28.5	31	49.5	62.5	3.3	1.2	1	0.5	0.176
_	_	_	_	_	_	_	_	26.6	27.3	30.4	_	_	_	0.2	_	0.005
N	NR	35.7	1.3	0.95	0.25	39.8	0.85	27	28	35	40.5	1.9	0.9	0.3	0.3	0.022
N	NR	40.7	1.7	0.95	0.25	44.8	0.85	27	29	40	45.5	2.3	0.9	0.3	0.3	0.042
_	_	_	_	_	_	_	_	27	_	45	_	_	_	0.3	_	0.06
N	NR	44.6	2.06	1.35	0.4	52.7	1.12	29	30.5	43	53.5	2.9	1.2	0.6	0.5	0.08
N	NR	49.73	2.46	1.35	0.4	57.9	1.12	30	32	47	58.5	3.3	1.2	1	0.5	0.128
N	NR	59.61	3.28	1.9	0.6	67.7	1.7	31.5	35	55.5	68.5	4.6	1.7	1	0.5	0.232
_	_	_	_	_	_	_	_	33	41	72	_	_	_	1.5	_	0.53
N	NR	49.73	2.06	1.35	0.4	57.9	1.12	32	34	48	58.5	2.9	1.2	0.6	0.5	0.098
N	NR	55.6	2.46	1.35	0.4	63.7	1.12	33	35.5	53	64.5	3.3	1.2	1	0.5	0.171
N	NR	64.82	3.28	1.9	0.6	74.6	1.7	34.5	38.5	61.5	76	4.6	1.7	1	0.5	0.284
_	_	_	_	_	_	_	_	31.6	32.3	35.4	_	_	_	0.2	_	0.006
N	NR	40.7	1.3	0.95	0.25	44.8	0.85	32	33	40	45.5	1.9	0.9	0.3	0.3	0.026
N	NR	45.7	1.7	0.95	0.25	49.8	0.85	32	34	45	50.5	2.3	0.9	0.3	0.3	0.048
_	_	_	_	_	_	_	_	32	_	53	_	_	_	0.3	_	0.091
N	NR	52.6	2.08	1.35	0.4	60.7	1.12	35	37	50	61.5	2.9	1.2	1	0.5	0.116
N	NR	59.61	3.28	1.9	0.6	67.7	1.7	35	39	57	68.5	4.6	1.7	1	0.5	0.199
N	NR	68.81	3.28	1.9	0.6	78.6	1.7	36.5	43	65.5	80	4.6	1.7	1	0.5	0.36
_	_	_	_	_	_	_	_	38	49	82	_	_	_	1.5	_	0.735
N	NR	55.6	2.08	1.35	0.4	63.7	1.12	37	39	53	64.5	2.9	1.2	1	0.5	0.129
N	NR	62.6	3.28	1.9	0.6	70.7	1.7	37	40	60	71.5	4.6	1.7	1	0.5	0.226
N	NR	71.83	3.28	1.9	0.6	81.6	1.7	38.5	43.5	68.5	83	4.6	1.7	1	0.5	0.382
N	NR	45.7	1.3	0.95	0.25	49.8	0.85	37	38	45	50.5	1.9	0.9	0.3	0.3	0.029
N	NR	53.7	1.7	0.95	0.25	57.8	0.85	39	40	51	58.5	2.3	0.9	0.6	0.5	0.074
_	_	_	_	_	_	_	_	37	_	60	_	_	_	0.3	_	0.11
N	NR	59.61	2.08	1.9	0.6	67.7	1.7	40	42	57	68.5	3.4	1.7	1	0.5	0.155
N	NR	68.81	3.28	1.9	0.6	78.6	1.7	41.5	45	65.5	80	4.6	1.7	1	0.5	0.288
N	NR	76.81	3.28	1.9	0.6	86.6	1.7	43	47	72	88	4.6	1.7	1.5	0.5	0.457
_	_	_	_	_	_	_	_	43	56.5	92	_	_	_	1.5	_	0.952

³⁾ Sealed and shielded bearings are also available. 4) This dimension applies to sealed and shielded bearings. 5) Does not include bearings with snap rings.

B-25

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. B-24







(LLB)



(LLH)



Contact sealed type (LLU)

*d* 40 ∼ 60mm

Во	undar	y dii	mens	ions		oad rating	load	Factor		Allowable min			В	earing r	numbe	er	
,	D	mm		$r_{ m NS}$	Í	ic static kN	limit kN		ŻZ, LĹB	Oil Open type, Z, LB	LLH	LLU	)pen type		d or sea e draw		pe ²⁾
d	D	В	$r_{\rm s  min^{1)}}$	Min	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	$f_0$	Z, LB		LH	LU					
	52	7	0.3	0.3	5.65	4.40	0.291	16.3	12 000	14 000	8 000	6 700	6808JR	ZZ		LLH	
	62	12	0.6	0.5	13.5	8.90	0.645	15.8	11 000	13 000	7 500	6 300	6908 16008	ZZ	LLB	LLH	LLU
40	68 68	9	0.3	0.5	14.0 18.6	9.65 11.5	0.685	16.0 15.2	10 000	12 000 12 000	7 300	6 100	6008	ZZ		LLH	LLU
40	80	18	1.1		32.5	17.8	1.24	14.0	8 700	10 000	6 700	5 600	6208	ZZ		LLH	_
	90	23	1.5	0.5	45.0	24.0	1.83	13.2	7 800	9 200	6 400	5 300	6308	ZZ		LLH	
	110	27	2	0.5	70.5	36.5	2.85	12.3	7 000	8 200	<del></del>	3 300	6408	ZZ	LLD		LLU
	110	21			70.5	50.5	2.00	12.0	7 000	0 200			0400				
	58	7	0.3	0.3	5.95	4.95	0.325	16.1	11 000	12 000	_	5 900	6809JR	ZZ	LLB	_	LLU
	68	12	0.6		14.5	10.4	0.730	16.1	9 800	12 000	_	5 600	6909	ZZ	LLB	_	LLU
	75	10	0.6		14.3	10.5	0.725	16.2	9 200	11 000	_		16009	_			
45	75	16 19	1		23.2	15.1	1.16	15.3	9 200	11 000	6 500	5 400	6009	ZZ ZZ		LLH	
	85 100	25	1.1	0.5	36.0	20.4	1.60	14.1	7 800 7 000	9 200	6 200	5 200	6209	ZZ	LLB		LLU
	120	29	2	0.5	58.5 85.5	32.0 45.0	2.50	13.1	6 300	8 200 7 400	5 600	4 700	6309 6409	ZZ	LLD	LLH	LLU
	120	29	2		65.5	45.0	3.30	12.1	0 300	7 400			0409			_	
	65	7	0.3	0.3	7.30	6.10	0.405	16.1	9 600	11 000		5 300	6810JR	ZZ	LLB	_	LLU
	72	12	0.6	0.5	14.9	11.2	0.765	16.3	8 900	11 000	6 100	5 100	6910	ZZ	LLB	LLH	LLU
	80	10	0.6	_	14.7	11.3	0.760	16.4	8 400	9 800			16010	_			
50	80	16 20	1.1		24.2	16.6	1.24	15.5	8 400	9 800	6 000	5 000	6010	ZZ ZZ		LLH	
	90	27	2		39.0	23.2	1.82	14.4	7 100	8 300	5 700	4 700	6210	ZZ		LLH	
	110 130	31	2.1		68.5 92.0	38.5 49.5	3.85	13.2 12.5	6 400 5 700	7 500 6 700	5 000	4 200	6310 6410	ZZ	LLD	LLH	LLU
	130	31	۷.۱	_	32.0	45.5	3.03	12.5	3 700	0 700			0410	~~			
	72	9	0.3	0.3	9.75	8.10	0.540	16.2	8 700	10 000	_	4 800	6811JR	ZZ	LLB	_	LLU
	80	13	1		17.7	13.3	0.915	16.2	8 200	9 600	5 500	4 600	6911	ZZ	LLB	LLH	LLU
	90	11	0.6	_	20.6	15.3	1.06	16.2	7 700	9 000	_		16011			_	
55	90	18	1.1		31.5	21.2	1.62	15.3	7 700	9 000		4 500	6011	ZZ	LLB	_	LLU
	100	21	1.5		48.0	29.2	2.29	14.3	6 400	7 600	_	4 300	6211	ZZ	LLB	_	LLU
	120	29 33	2		79.5	45.0	3.50	13.2	5 800	6 800	_	3 900	6311	ZZ ZZ	LLB	_	LLU
	140	JJ	2.1	_	98.5	54.0	4.20	12.7	5 200	6 100			6411			_	
	78	10	0.3	0.3		10.6	0.705	16.3	8 000	9 400	_	4 400	6812	ZZ	LLB	_	LLU
	85	13	1	0.5	18.2	14.3	0.965	16.4	7 600	8 900	_	4 300	6912	ZZ	LLB	_	LLU
	95	11	0.6	_	22.1	17.5	1.20	16.3	7 000	8 300	_	_	16012	_	_	_	_
60	95	18	1.1		32.5	23.2	1.73	15.6	7 000	8 300		4 100	6012	ZZ	LLB	_	LLU
	110	22	1.5		58.0	36.0	2.83	14.3	6 000	7 000	4 500	3 800	6212	ZZ	LLB	LLH	LLU
	130	31	2.1		90.5	52.0	4.10	13.2	5 400	6 300	_	3 600	6312	ZZ	LLB	_	LLU
	150	35	2.1	— 1	13	64.5	4.90	12.6	4 800	5 700	_	_	6412	ZZ	_	_	_

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. B-26



With snap ring

Deep Groove Ball Bearings

With snap ring groove

Dynamic equivalent radial load  $P_{r}=XF_{r}+YF_{a}$ 

$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{Fa}{Fr}$	$\leq e$	$\frac{F}{F}$	- > 0
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

	aring mber	Sı	nap rin dime	g groo nsions	ve		p ring nsions		In	stallat	ion-rela	ited di	mensi	ons		Mass 5)
		2)		ım			nm				m	m				kg
	Snap ring rawings)	$D_1$ Max.	$_{\rm Max.}^{a}$	<i>b</i> Min.	$r_{ m o}$ Max.	$D_2$ Max.	f Max.		$l_{ m a}$ Max.	$D_{\rm a}$ Max.	$D_{ m X}$ . (approx.)	$C_{ m Y}$ Max.	$C_{ m Z}$ Min.	$r_{ m as}$ Max.	$r_{ m Nas}$ Max.	(approx.)
N	NR	50.7	1.3	0.95	0.25	54.8	0.85	42	43	50	55.5	1.9	0.9	0.3	0.3	0.033
N	NR	60.7	1.7	0.95	0.25	64.8	0.85	44	45	58	65.5	2.3	0.9	0.6	0.5	0.11
_		_		_	_			42		66		_		0.3	_	0.125
N N	NR	64.82 76.81	2.49 3.28	1.9 1.9	0.6	74.6	1.7	45 46 F	47	63 73.5	76	3.8	1.7	1	0.5	0.19
N	NR NR	86.79	3.28	2.7	0.6	86.6 96.5	1.7 2.46	46.5 48	51 54	82	88 98	4.6 5.4	1.7 2.5	1.5	0.5	0.366 0.63
IN	INU	00.79	3.20	2.1	0.0	90.5	2.40	49	61.5	-	90	5.4	2.5	2.0	U.5	1.23
								43	01.5	101				2.0		1.20
N	NR	56.7	1.3	0.95	0.25	60.8	0.85	47	48	56	61.5	1.9	0.9	0.3	0.3	0.04
N	NR	66.7	1.7	0.95	0.25	70.8	0.85	49	51	64	72	2.3	0.9	0.6	0.5	0.128
_			<del>-</del>	<del>-</del>	<del>-</del> .			49	_	71	_			0.6		0.171
N	NR	71.83	2.49	1.9	0.6	81.6	1.7	50	52.5	70	83	3.8	1.7	1	0.5	0.237
N	NR	81.81	3.28	1.9	0.6	91.6	1.7	51.5	55.5	78.5	93	4.6	1.7	1	0.5	0.398
N	NR	96.8	3.28	2.7	0.6	106.5	2.46	53	61.5 66.5	92	108	5.4	2.5	1.5	0.5	0.814
_	_	_	_	_	_	_		54	00.5	111	_	_	_	2	_	1.53
N	NR	63.7	1.3	0.95	0.25	67.8	0.85	52	54	63	68.5	1.9	0.9	0.3	0.3	0.052
N	NR	70.7	1.7	0.95	0.25	74.8	0.85	54	55.5	68	76	2.3	0.9	0.6	0.5	0.132
_	_	_	_	_	_	_	_	54	_	76	_	_	_	0.6	_	0.18
N	NR	76.81	2.49	1.9	0.6	86.6	1.7	55	57.5	75	88	3.8	1.7	1	0.5	0.261
N	NR	86.79	3.28	2.7	0.6	96.5	2.46	56.5	60	83.5	98	5.4	2.5	1	0.5	0.454
N	NR	106.81	3.28	2.7	0.6	116.6	2.46	59	68.5		118	5.4	2.5	2	0.5	1.07
_	_	_	_	_	_	_	_	61	73.5	119	_	_	_	2	_	1.88
N	NR	70.7	1.7	0.95	0.25	74.8	0.85	57	59	70	76	2.3	0.9	0.3	0.3	0.083
N	NR	77.9	2.1	1.3	0.4	84.4	1.12	60	61.5	75	86	2.9	1.2	1	0.5	0.18
_	_	_	_	_	_	_	_	59	_	86	_	_	_	0.6	_	0.258
N	NR	86.79	2.87	2.7	0.6	96.5	2.46	61.5	64	83.5	98	5	2.5	1	0.5	0.388
N	NR	96.8	3.28	2.7	0.6	106.5	2.46	63	67	92	108	5.4	2.5	1.5	0.5	0.601
N	NR	115.21	4.06	3.1	0.6	129.7	2.82	64	74	111	131.5	6.5	2.9	2	0.5	1.37
_	_	_	_	_	_	_	_	66	80	129	_	_	_	2	_	2.29
N	NR	76.2	1.7	1.3	0.4	82.7	1.12	62	64.5	76	84	2.5	1.2	0.3	0.3	0.106
N	NR	82.9	2.1	1.3	0.4	89.4	1.12	65	66.5	80	91	2.9	1.2	1	0.5	0.193
_	_	_	_	_	_	_	_	64	_	91	_	_	_	0.6	_	0.283
N	NR	91.82	2.87	2.7	0.6	101.6	2.46	66.5	69	88.5		5	2.5	1	0.5	0.414
N		106.81	3.28	2.7	0.6	116.6	2.46	68	75	102	118	5.4	2.5	1.5	0.5	0.783
N	NR	125.22	4.06	3.1	0.6	139.7	2.82	71	80.5		141.5	6.5	2.9	2	0.5	1.73
_	_	_	_	_	_	_	_	71	86	139	_	_	_	2	_	2.77

 ³⁾ Sealed and shielded bearings are also available.
 4) This dimension applies to sealed and shielded bearings.
 5) Does not include bearings with snap rings.

B-27



# d 65 $\sim$ 85mm

	Bound	dary d	limensio	ns	Basic lo	ad rating	Fatigue load	Factor	Allov	wable sp	eed	Bea	ring r	number	•
		mı	m	$r_{ m NS}$		:N	<b>limit</b> kN		Grease Open type, ZZ, LLB	Oil Open type,	LLU	Open type	or s	Shielde sealed t	
d	D	B	$r_{ m s~min^{1)}}$	Min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	$f_0$	Z, LB		LU		(Se	ee draw	ings)
65	85 90 100 100 120 140 160	10 13 11 18 23 33 37	0.6 1 0.6 1.1 1.5 2.1 2.1	0.5 0.5  0.5 0.5 0.5	12.8 19.3 22.7 34.0 63.5 103 123	11.0 16.1 18.7 25.2 40.0 60.0 72.5	0.730 1.07 1.26 1.83 3.15 4.60 5.35	16.2 16.6 16.5 15.8 14.4 13.2 12.7	7 400 7 000 6 500 6 500 5 500 4 900 4 400	8 700 8 200 7 700 7 700 6 500 5 800 5 200	4 100 4 000 — 3 900 3 600 3 300	6813 6913 16013 6013 6213 6313 6413	ZZ ZZ — ZZ ZZ ZZ	LLB LLB LLB LLB	LLU LLU LLU LLU LLU
70	90 100 110 110 125 150 180	10 16 13 20 24 35 42	0.6 1 0.6 1.1 1.5 2.1	0.5 0.5 — 0.5 0.5 0.5	13.4 26.3 27.0 42.0 69.0 115 142	11.9 21.2 22.6 31.0 44.0 68.0 89.5	0.795 1.45 1.52 2.30 3.45 5.10 6.25	16.1 16.3 16.5 15.6 14.5 13.2 12.7	6 900 6 500 6 100 6 100 5 100 4 600 4 100	8 100 7 700 7 100 7 100 6 000 5 400 4 800	3 800 3 700 — 3 600 3 400 3 100 —	6814 6914 16014 6014 6214 6314 6414	ZZ ZZ — ZZ ZZ ZZ —	LLB LLB LLB LLB LLB	LLU LLU LLU LLU LLU
75	95 105 115 115 130 160 190	10 16 13 20 25 37 45	0.6 1 0.6 1.1 1.5 2.1	0.5 0.5  0.5 0.5 0.5	13.9 27.0 27.6 44.0 73.5 126 152	12.9 22.6 24.0 33.5 49.5 77.0 99.0	0.855 1.52 1.60 2.44 3.80 5.55 6.70	16.0 16.5 16.6 15.8 14.7 13.2 12.7	6 400 6 100 5 700 5 700 4 800 4 300 3 800	7 600 7 200 6 700 6 700 5 600 5 000 4 500	3 600 3 500 — 3 300 3 200 2 900	6815 6915 16015 6015 6215 6315 6415	ZZ ZZ ZZ ZZ ZZ	LLB LLB LLB LLB LLB	LLU LLU LLU LLU LLU
80	100 110 125 125 140 170 200	10 16 14 22 26 39 48	0.6 1 0.6 1.1 2 2.1 3	0.5 0.5  0.5 0.5 0.5	14.0 27.6 28.1 53.0 80.5 136 181	13.3 24.0 25.1 40.0 53.0 86.5 125	0.885 1.59 1.64 2.91 3.95 6.05 8.20	16.0 16.6 16.4 15.6 14.6 13.3 12.3	6 000 5 700 5 300 5 300 4 500 4 000 3 600	7 100 6 700 6 200 6 200 5 300 4 700 4 200	3 400 3 200 — 3 100 3 000 2 700 —	6816 6916 16016 6016 6216 6316 6416	ZZ ZZ - ZZ ZZ ZZ -	LLB LLB LLB LLB LLB	LLU LLU LLU LLU LLU
85	110 120 130 130 150 180	13 18 14 22 28 41	1 1.1 0.6 1.1 2 3	0.5 0.5 — 0.5 0.5 0.5	20.7 35.5 28.7 55.0 92.0	19.0 29.6 26.2 43.0 64.0 97.0	1.26 1.99 1.68 3.00 4.60 6.55	16.2 16.4 16.4 15.8 14.7 13.3	5 700 5 400 5 000 5 000 4 200 3 800	6 700 6 300 5 900 5 900 5 000 4 500	3 100 3 000 — 2 900 2 800 2 600	6817 6917 16017 6017 6217 6317	ZZ ZZ — ZZ ZZ ZZ	LLB LLB — LLB LLB	LLU LLU - LLU LLU LLU

# 1) Smallest allowable dimension for chamfer dimension r. 2) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. B-28



With snap ring

Deep Groove Ball Bearings

With snap ring groove

Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_a}{F_r}$	$\leq e$	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

	aring mber	S	nap rin dime	g groo			o ring nsions		ln	stallat	ion-rela	ted di	mensi	ons		Mass 5)
•			m	nm		m	nm				m	m				kg
	/ Snap ring drawings)	$D_1$	a	b	$r_{0}$	$D_2$	f		$d_{\mathrm{a}}$	$D_{\mathbf{a}}$	$D_{\mathrm{X}}$	$C_{\mathrm{Y}}$	$C_{ m Z}$	v	v	
(500	uruwings)	$D_1$ Max.	Max.	Min.		Max.	Max.	Min.	α Max.⁴		. (approx.)	Max.	Min.	$r_{ m as}$ Max.	$r_{ m Nas}$ Max.	(approx.)
											(+FF-1-1-)					(
N	NR	82.9	1.7	1.3	0.4	89.4	1.12	69	70	81	91	2.5	1.2	0.6	0.5	0.128
N	NR	87.9	2.1	1.3	0.4	94.4	1.12	70	71.5	85	96	2.9	1.2	1	0.5	0.206
_	_	_	_	_	_	_	_	69	_	96	_	_	_	0.6	_	0.307
N	NR	96.8	2.87	2.7	0.6	106.5	2.46	71.5	74		108	5	2.5	1	0.5	0.421
N	NR	115.21	4.06	3.1	0.6	129.7	2.82	73	80.5		131.5	6.5	2.9	1.5	0.5	0.99
N	NR	135.23	4.9	3.1	0.6	149.7	2.82	76	86	129	152	7.3	2.9	2	0.5	2.08
	_	_	_	_	_	_	_	76	_	149	_	_	_	2	_	3.3
N	NR	87.9	1.7	1.3	0.4	94.4	1.12	74	75.5	86	96	2.5	1.2	0.6	0.5	0.137
N	NR	97.9	2.5	1.3	0.4	104.4	1.12	75	77.5	95	106	3.3	1.2	1	0.5	0.334
_	_	_	—	_	_	_	_	74	_	106	_	_	_	0.6	_	0.441
N	NR	106.81	2.87	2.7	0.6	116.6	2.46	76.5		103.5		5	2.5	1	0.5	0.604
N		120.22	4.06	3.1	0.6	134.7	2.82	78	85	117	136.5	6.5	2.9	1.5	0.5	1.07
N	NR	145.24	4.9	3.1	0.6	159.7	2.82	81	92.5		162	7.3	2.9	2	0.5	2.52
_	_	_	_	_	_	_	_	83	_	167	_	_	_	2.5	_	4.83
N	NR	92.9	1.7	1.3	0.4	99.4	1.12	79	80	91	101	2.5	1.2	0.6	0.5	0.145
N	NR	102.6	2.5	1.3	0.4	110.7	1.12	80	82.5	100	112	3.3	1.2	1	0.5	0.353
_	_	_	_	_	_	_	_	79	_	111	_	_	_	0.6	_	0.464
N	NR	111.81	2.87	2.7	0.6	121.6	2.46	81.5			123	5	2.5	1	0.5	0.649
N		125.22	4.06	3.1	0.6	139.7	2.82	83	90.5		141.5	6.5	2.9	1.5	0.5	1.18
N	NR	155.22	4.9	3.1	0.6	169.7	2.82	86	99	149	172	7.3	2.9	2	0.5	3.02
_	_	_	_	_	_	_	_	88	_	177	_	_	_	2.5	_	5.72
N	NR	97.9	1.7	1.3	0.4	104.4	1.12	84	85	96	106	2.5	1.2	0.6	0.5	0.154
N	NR	107.6	2.5	1.3	0.4	115.7	1.12	85	88	105	117	3.3	1.2	1	0.5	0.373
_	_	_	_	_	_	_	_	84	_	121	_	_	_	0.6	_	0.597
N	NR	120.22	2.87	3.1	0.6	134.7	2.82	86.5		118.5		5.3	2.9	1	0.5	0.854
N		135.23	4.9	3.1	0.6	149.7	2.82	89	95.5		152	7.3	2.9	2	0.5	1.4
N	NR	163.65	5.69	3.5	0.6	182.9	3.1	91	105	159	185	8.4	3.1	2	0.5	3.59
_	_	_	_	_	_	_	_	93	_	187	_	_	_	2.5	_	6.76
N	NR	107.6	2.1	1.3	0.4	115.7	1.12	90	91	105	117	2.9	1.2	1	0.5	0.27
N	NR	117.6	3.3	1.3	0.4	125.7	1.12	91.5	94	113.5	127	4.1	1.2	1	0.5	0.536
_	_	_	_	_	_	_	_	89	_	126	_	_	_	0.6	_	0.626
N		125.22	2.87	3.1	0.6	139.7	2.82	91.5	97	123.5		5.3	2.9	1	0.5	0.89
N		145.24	4.9	3.1	0.6	159.7	2.82	94	103	141	162	7.3	2.9	2	0.5	1.79
N	NR	173.66	5.69	3.5	0.6	192.9	3.1	98	112	167	195	8.4	3.1	2.5	0.5	4.23

 ³⁾ Sealed and shielded bearings are also available.
 4) This dimension applies to sealed and shielded bearings.
 5) Does not include bearings with snap rings.

B-29





### *d* 90 ∼ 120mm

	Bound	dary d	limensio	ns	Basic lo	ad rating	Fatigue load	Factor	Allow	vable sp min-1	eed	Bea	ring n	umber	
d	D	mr B	n $r_{ m smin}^{ m 1)}$	$r_{ m NS}$ Min.		static $ m  ext{KN} $	limit kN $C_{ m u}$	$f_0$	Grease Open type, ZZ, LLB Z, LB		LLU LU	Open type	or s	Shielde ealed ty e drawi	ype ²⁾
90	115 125 140 140 160 190	13 18 16 24 30 43	1 1.1 1 1.5 2 3	0.5 0.5 — 0.5 0.5 0.5	21.1 36.5 37.0 64.5 106 158	19.7 31.5 33.5 49.5 71.5	1.30 2.05 2.07 3.45 5.00 7.10	16.1 16.5 16.5 15.6 14.5 13.3	5 400 5 100 4 700 4 700 4 000 3 600	6 300 6 000 5 600 5 600 4 700 4 200	3 000 2 900 — 2 800 2 600 2 400	6818 6918 16018 6018 6218 6318	ZZ ZZ — ZZ ZZ ZZ	LLB LLB — LLB LLB	LLU LLU - LLU LLU LLU
95	120 130 145 145 170 200	13 18 16 24 32 45	1 1.1 1 1.5 2.1 3	0.5 0.5 — 0.5 0.5 0.5	21.4 37.5 38.0 67.0 121 169	20.5 33.5 35.0 54.0 82.0	1.31 2.10 2.13 3.55 5.55 7.65	16.1 16.6 16.5 15.8 14.4 13.3	5 000 4 800 4 500 4 500 3 700 3 300	5 900 5 700 5 300 5 300 4 400 3 900	2 800 2 800 — 2 600 2 500 2 300	6819 6919 16019 6019 6219 6319	ZZ ZZ — ZZ ZZ ZZ	LLB LLB LLB LLB	LLU LLU  LLU LLU LLU
100	125 140 150 150 180 215	13 20 16 24 34 47	1 1.1 1 1.5 2.1 3	0.5 0.5 — 0.5 0.5	21.7 45.5 39.0 66.5 135 192	21.2 39.5 36.5 54.0 93.0 141	1.33 2.44 2.18 3.50 6.15 8.75	16.0 16.4 16.4 15.9 14.4 13.2	4 800 4 500 4 200 4 200 3 500 3 200	5 600 5 300 5 000 5 000 4 200 3 700	2 700 2 600 — 2 600 2 300 2 200	6820 6920 16020 6020 6220 6320	ZZ ZZ — ZZ ZZ ZZ	LLB LLB LLB LLB	LLU LLU LLU LLU LLU
105	130 145 160 160 190 225	13 20 18 26 36 49	1 1.1 1 2 2.1 3	0.5 0.5 — 0.5 0.5	22.0 47.0 57.5 80.5 147 204	22.0 42.0 50.5 65.5 105 153	1.35 2.52 3.00 4.15 6.75 9.35	15.9 16.5 16.3 15.8 14.4 13.2	4 600 4 300 4 000 4 000 3 400 3 000	5 400 5 100 4 700 4 700 4 000 3 600	2 500 2 500 — 2 400 2 300 2 100	6821 6921 16021 6021 6221 6321	ZZ ZZ — ZZ ZZ ZZ	LLB LLB LLB	LLU LLU LLU LLU LLU
110	140 150 170 170 200 240	16 20 19 28 38 50	1 1.1 1 2 2.1 3	0.5 0.5 — 0.5 0.5 —	27.5 48.5 63.5 91.0 160 227	28.2 44.5 56.5 73.0 117 179	1.68 2.60 3.25 4.55 7.35 10.5	16.0 16.6 16.3 15.6 14.3 13.1	4 300 4 100 3 800 3 800 3 200 2 900	5 100 4 800 4 500 4 500 3 800 3 400	2 400 2 400 — 2 300 2 200 1 900	6822 6922 16022 6022 6222 6322	ZZ ZZ — ZZ ZZ ZZ	LLB LLB LLB LLB LLB	LLU LLU LLU LLU LLU
120	150 165 180 180	16 22 19 28	1 1.1 1 2	0.5 0.5 — 0.5	32.0 59.0 70.0 94.0	33.0 54.0 63.5 79.5	1.89 3.05 3.50 4.65	16.0 16.5 16.4 15.9	4 000 3 800 3 500 3 500	4 700 4 400 4 100 4 100	2 200 2 100 — 2 100	6824 6924 16024 6024	ZZ ZZ — ZZ	LLB — — LLB	LLU LLU — LLU

# 1) Smallest allowable dimension for chamfer dimension r. 2) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. B-30



Deep Groove Ball Bearings

Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_a}{F_r}$	$\leq e$	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

	ring nber	Sr	nap ring dimer		ve	Snap dimer			In	stallat	ion-rela	ted diı	mensio	ons		Mass 5)
			m			m					m	m				kg
Groove /				1_		D	£		_1	D	D	a	a			
(See u	rawings)	$D_1$ Max.	a Max.	<i>b</i> Min.	$r_{ m o}$ Max.	$D_2$ Max.	f Max.	Min	$d_{ m a}$	$D_{\rm a}$	$D_{ m X}$ (approx.)	$C_{ m Y}$ Max.	$C_{ m Z}$ Min.	$r_{ m as}$ Max.	$r_{ m Nas}$ Max.	(approx.)
		IVIUX.	IVIUX.	IVIIII.	IVIUX.	WIUX.	WIUX.	IVIIII.	WIUX.	· WIUX.	(upprox.)	WIUX.	IVIIII.	WIUX.	IVIUA.	(upprox.)
N	NR	112.6	2.1	1.3	0.4	120.7	1.12	95	96	110	122	2.9	1.2	1	0.5	0.285
N	NR	122.6	3.3	1.3	0.4	130.7	1.12	96.5	99	118.5	132	4.1	1.2	1	0.5	0.554
_	_	_	_	_	_	_	_	95	_	135	_	_	_	1	_	0.848
N		135.23	3.71	3.1	0.6	149.7	2.82	98	102	132	152	6.1	2.9	1.5	0.5	1.02
N		155.22	4.9	3.1	0.6	169.7	2.82	99	109	151	172	7.3	2.9	2	0.5	2.15
N	NR	183.64	5.69	3.5	0.6	202.9	3.1	103	118	177	205	8.4	3.1	2.5	0.5	4.91
N	NR	117.6	2.1	1.3	0.4	125.7	1.12	100	101	115	127	2.9	1.2	1	0.5	0.3
N		127.6	3.3	1.3	0.4	135.7	1.12	101.5		123.5		4.1	1.2	1	0.5	0.579
_	_	_	_	_	_	_	_	100	_	140	_	_	_	1	_	0.885
N	NR	140.23	3.71	3.1	0.6	154.7	2.82	103	109	137	157	6.1	2.9	1.5	0.5	1.08
N		163.65	5.69	3.5	0.6	182.9	3.1	106	116	159	185	8.4	3.1	2	0.5	2.62
N	NR	193.65	5.69	3.5	0.6	212.9	3.1	108	125	187	215	8.4	3.1	2.5	0.5	5.67
N	NR	122.6	2.1	1.3	0.4	130.7	1.12	105	106	120	132	2.9	1.2	1	0.5	0.313
N		137.6	3.3	1.9	0.6	145.7	1.7	106.5		133.5		4.7	1.7	1	0.5	0.785
_	_	_	_	_	_	_	_	105	_	145	_	_	_	1	_	0.91
N	NR	145.24	3.71	3.1	0.6	159.7	2.82	108	110	142	162	6.1	2.9	1.5	0.5	1.15
N	NR	173.66	5.69	3.5	0.6	192.9	3.1	111	122	169	195	8.4	3.1	2	0.5	3.14
N	NR	208.6	5.69	3.5	1	227.8	3.1	113	133	202	230	8.4	3.1	2.5	0.5	7
N	NR	127.6	2.1	1.3	0.4	135.7	1.12	110	111	125	137	2.9	1.2	1	0.5	0.33
N	NR	142.6	3.3	1.9	0.6	150.7	1.7	111.5	115	138.5	152	4.7	1.7	1	0.5	0.816
_	_	_	_	_	_	_	_	110	_	155	_	_	_	1	_	1.2
N		155.22	3.71	3.1	0.6	169.7	2.82	114	119	151	172	6.1	2.9	2	0.5	1.59
N		183.64	5.69	3.5	0.6	202.9	3.1	116	125	179	205	8.4	3.1	2	0.5	3.7
N	NR	217.0	6.5	4.5	1	237	3.5	118	134	212	239	9.6	3.5	2.5	0.5	8.05
N		137.6	2.5	1.9	0.6	145.7	1.7	115	118	135	147	3.9	1.7	1	0.5	0.515
N	NR	147.6	3.3	1.9	0.6	155.7	1.7	116.5	120	143.5	157	4.7	1.7	1	0.5	0.849
_	_	_					_	115	_	165	_	_	_	1	_	1.46
N		163.65	3.71	3.5	0.6	182.9	3.1	119	126	161	185	6.4	3.1	2	0.5	1.96
N		193.65	5.69	3.5	0.6	212.9	3.1	121	132	189	215	8.4	3.1	2	0.5	4.36
N	NK	232.0	6.5	4.5	1	252	3.5	123	149	227	254	9.6	3.5	2.5	0.5	9.54
N	NR	147.6	2.5	1.9	0.6	155.7	1.7	125	128	145	157	3.9	1.7	1	0.5	0.555
N	NR	161.8	3.7	1.9	0.6	171.5	1.7	126.5	132	158.5	173	5.1	1.7	1	0.5	1.15
_	_	_	_	_	_	_	_	125	_	175	_	_	_	1	_	1.56
N	NR	173.66	3.71	3.5	0.6	192.9	3.1	129	136	171	195	6.4	3.1	2	0.5	2.07

 ³⁾ Sealed and shielded bearings are also available.
 4) This dimension applies to sealed and shielded bearings.
 5) Does not include bearings with snap rings.

B-31

B-31



### *d* 120 ∼ 170mm

120 17011111														
	Bounda	ry din	nension	s	Basic loa	ad rating		Factor	Allo	wable s	oeed	Bear	ing num	nber
							load		_	min-1			_	
					dynamic		limit		Grease	Oil		_	CI.	
		mm		0.0	K	N	kN		Open	Open	1111	Open		elded
d	D	B	ac 1)	$r_{ m NS}$ Min.	C	$C_{0r}$	C	f	type,	type,	LLU LU	type		ed type 2)
a	D	D	$r_{\rm s min}^{1}$	IVIIII.	$C_{ m r}$	$c_{0r}$	$C_{ m u}$	$f_0$	ZZ, Z	Z	LU		(See u	rawings)
100	215	40	2.1	_	172	131	7.95	14.4	2 900	3 400	2 000	6224	ZZ	LLU
120	260	55	3	_	229	185	10.5	13.5	2 600	3 100	1 700	6324	ZZ	LLU
	165	18	1.1	0.5	41.0	41.0	2.25	16.1	3 700	4 300	2 000	6826	ZZ	LLU
	180	24	1.5	0.5	72.0	67.5	3.65	16.5	3 500	4 100	1 900	6926	ZZ	LLU
	200	22	1.1	_	88.5	79.5	4.25	16.2	3 200	3 800	_	16026		
130	200	33	2	0.5	118	101	5.70	15.8	3 200	3 800	1 900	6026	ZZ	LLU
	230	40	3	_	185	146	8.55	14.5	2 700	3 100	1 800	6226	ZZ	LLU
	280	58	4	_	254	214	11.7	13.6	2 400	2 800	_	6326		
	200	00	•		201			10.0	2 100	2 000		0020		
	175	18	1.1	0.5	42.5	44.5	2.35	16.0	3 400	4 000	1 900	6828	ZZ	LLU
	190	24	1.5	0.5	74.0	71.5	3.70	16.6	3 200	3 800	1 800	6928	ZZ	LLU
	210	22	1.1	_	91.0	85.0	4.35	16.4	3 000	3 500	_	16028	_	
140	210	33	2	_	122	109	5.85	15.9	3 000	3 500	1 800	6028	ZZ	LLU
	250	42	3	_	184	150	8.40	14.8	2 500	2 900	1 600	6228	ZZ	LLU
	300	62	4	_	280	246	13.0	13.6	2 200	2 600		6328		
			•											
	190	20	1.1	0.5	53.0	55.0	2.80	16.1	3 100	3 700	1 700	6830	ZZ	LLU
	210	28	2	_	94.0	90.5	4.55	16.5	3 000	3 500	1 700	6930	ZZ	LLU
	225	24	1.1	_	107	101	5.00	16.4	2 800	3 200	_	16030	_	_
150	225	35	2.1	_	139	126	6.55	15.9	2 800	3 200	1 700	6030	ZZ	LLU
	270	45	3	_	195	168	9.05	15.1	2 300	2 700	1 500	6230	ZZ	LLU
	320	65	4	_	305	284	14.5	13.9	2 100	2 400	_	6330	_	_
	200	20	1.1	0.5	53.5	57.0	2.82	16.1	2 900	3 400	1 600	6832	ZZ	LLU
	220	28	2	_	96.5	96.0	4.65	16.6	2 800	3 300	_	6932	ZZ	LLU
160	240	25	1.5	_	109	108	5.10	16.5	2 600	3 000		16032	_	
100	240	38	2.1	_	158	144	7.30	15.9	2 600	3 000	1 600	6032	ZZ	LLU
	290	48	3	_	205	186	9.45	15.4	2 100	2 500	_	6232	_	_
	340	68	4	_	310	286	14.2	13.9	1 900	2 300	_	6332	_	_
	215	22	1.1	_	66.5	70.5	3.35	16.1	2 700	3 200	_	6834	ZZ	_
	230	28	2	_	95.0	95.5	4.50	16.5	2 600	3 100	_	6934	ZZ	_
470	260	28	1.5	_	131	128	5.90	16.4	2 400	2 800	_	16034	_	_
170	260	42	2.1	_	187	172	8.55	15.8	2 400	2 800	_	6034	ZZ	_
	310	52	4	_	235	223	11.1	15.3	2 000	2 400	_	6234		_
	360	72	4	_	360	355	17.0	13.6	1 800	2 100	_	6334	_	_
	000		•		500	500				00				

# 1) Smallest allowable dimension for chamfer dimension r. 2) This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded type are also available. B-32



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_a}{F_r}$	$\leq e$	$\frac{F}{F}$	$\frac{a}{r} > e$	
Cor		X	Y	X	Y	
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00	

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

	earing umber	S	nap rin	g groc	ove		p ring nsions		In	stallat	ion-rela	ted di	mensi	ons		Mass 5)
				nm			nm				m	m				kg
	e / Snap ring			_		_	_		_	_	_	_	~			J
(Se	e drawings)	$D_1$	<i>a</i>	b	$r_{\rm o}$	$D_2$	f	N 41:	$d_{\mathrm{a}}$	$D_{\rm a}$	$D_{\rm X}$	$C_{\rm Y}$	$C_{\rm Z}$	$r_{\rm as}$	$r_{\rm Nas}$	()
		Max.	Max.	Min.	Max.	Max.	Max.	iviin.	iviax.	•) IVIax.	. (approx.)	iviax.	Min.	Max.	wax.	(approx.)
N.	ND	017.0	۰.	4.5		007.0	0.1	101	140	004	000	0.0	0.1	^	٥.	E 4E
N	NH	217.0	6.5	4.5	1	227.8	3.1	131 133	143 162	204 247	230	9.2	3.1	2.5	0.5	5.15 12.4
	_	_	_		_	_	_	133	102	241	_	_	_	2.5	_	12.4
N	NR	161.8	3.3	1.9	0.6	171.5	1.7	136.5	139.5	158.5	173	4.7	1.7	1	0.5	0.8
N		176.8	3.7	1.9	0.6	186.5	1.7	138	144	172	188	5.1	1.7	1.5	0.5	1.52
_	_	_			_	_	_	136.5	_	193.5	_	_	_	1	_	2.31
N	NR	193.65	5.69	3.5	0.6	212.9	3.1	139	148	191	215	8.4	3.1	2	0.5	3.16
N	NR	222.0	6.5	4.5	1	242	3.5	143	158	217	244	9.6	3.5	2.5	0.5	5.82
_	_	_	_	_	_	_	_	146	_	264	_	_	_	3	_	15.3
N		171.8	3.3	1.9	0.6	181.5	1.7	146.5		168.5		4.7	1.7	1	0.5	0.85
N	NR	186.8	3.7	1.9	0.6	196.5	1.7	148	154	182	198	5.1	1.7	1.5	0.5	1.62
_	_	_	_	_	_	_	_	146.5		203.5	_	_	_	1	_	2.45
_	NR	242.0	6.5		_	262	3.5	149	158	201 237	264		3.5	2 2.5	0.5	3.35
N		242.0	6.5	4.5	1	262		153 156	173	284	264	9.6	3.5	3	U.5 —	7.57 18.5
_	_	_	_	_	_	_	_	150	_	204	_	_	_	3	_	10.3
N	NR	186.8	3.3	1.9	0.6	196.5	1.7	156.5	161	183.5	198	4.7	1.7	1	0.5	1.16
	_	_	_	_	_	_	_	159	167	201	_	_	_	2	_	2.47
_	_	_	_	_	_	_	_	156.5	_	218.5	_	_	_	1	_	3.07
_	_	_	_	_	_	_	_	161	169	214	_	_	_	2	_	4.08
_	_	_	_	_	_	_	_	163	188	257	_	_	_	2.5	_	9.41
_	_	_	_	_	_	_	_	166	_	304	_	_	_	3	_	22
		100.0		4.0		222 =		100 5		100 =	200					4.00
N	NR	196.8	3.3	1.9	0.6	206.5	1.7	166.5		193.5 211	208	4.7	1.7	1	0.5	1.23 2.61
_	_	_	_	_	_	_	_	169 168	178	232	_	_	_	1.5	_	3.64
_	_	_	_	_	_	_	_	171	183	229	_	_	_	2	_	5.05
	_		_		_	_		173	100	277		_	_	2.5	_	11.7
							=	176		324			_	3		26
								.,,		JLT				U		
_	_	_	_	_	_	_	_	176.5	182	208.5	_	_	_	1	_	1.63
_	_	_	_	_	_	_	_	179	188	221	_	_	_	2	_	2.74
_	_	_	_	_	_	_	_	178	_	252	_	_	_	1.5	_	4.93
_	_	_	_	_	_	_	_	181	196	249	_	_	_	2	_	6.76
_	_	_	_	_	_	_	_	186	_	294	_	_	_	3	_	14.5
_	_	_	_	_	_	_	_	186	_	344	_	_	_	3	_	30.7

 ³⁾ Sealed and shielded bearings are also available.
 4) This dimension applies to sealed and shielded bearings.
 5) Does not include bearings with snap rings.

B-33





# *d* 180 ∼ 260mm

Во	oundary o	dimens	ions	Basic lo	ad rating	Fatigue load limit	Factor	Allowal	ole speed	Bearing number
	m	m			«N	kN		m	iin-1	
,	ъ	n		~	~	<i>a</i>	C	Grease	Oil	
d	D	В	$r_{\mathrm{s}\mathrm{min}^{1)}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	$f_0$	lubrication	lubrication	Open type
	225	22	1.1	67.0	73.0	3.40	16.1	2 600	3 000	6836
	250	33	2	122	119	5.45	16.5	2 400	2 900	6936
400	280	31	2	129	134	5.85	16.5	2 300	2 700	16036
180	280	46	2.1	210	199	9.70	15.6	2 300	2 700	6036
	320	52	4	252	241	11.9	15.1	1 900	2 200	6236
	380	75	4	390	405	19.0	13.9	1 700	2 000	6336
	240	24	1.5	81.0	88.0	4.00	16.1	2 400	2 900	6838
	260	33	2	125	127	5.65	16.6	2 300	2 700	6938
190	290	31	2	149	156	6.70	16.6	2 100	2 500	16038
130	290	46	2.1	218	215	10.1	15.8	2 100	2 500	6038
	340	55	4	282	281	13.5	15.0	1 800	2 100	6238
	400	78	5	395	415	18.9	14.1	1 600	1 900	6338
	250	24	1.5	82.0	91.5	4.05	16.1	2 300	2 700	6840
	280	38	2.1	174	168	7.45	16.2	2 200	2 600	6940
	310	34	2	157	160	6.65	16.6	2 000	2 400	16040
200	310	51	2.1	241	243	11.2	15.6	2 000	2 400	6040
	360	58	4	298	310	14.4	15.2	1 700	2 000	6240
	420	80	5	455	500	22.3	13.8	1 500	1 800	6340
	270	24	1.5	84.5	98.0	4.15	16.0	2 100	2 400	6844
	300	38	2.1	178	180	7.55	16.4	2 000	2 300	6944
	340	37	2.1	200	216	8.65	16.5	1 800	2 200	16044
220	340	56	3	267	289	12.5	15.8	1 800	2 200	6044
	400	65	4	330	365	15.8	15.3	1 500	1 800	6244
	460	88	5	455	520	22.0	14.3	1 400	1 600	6344
	300	28	2	94.0	112	4.55	15.9	1 900	2 200	6848
240	320	38	2.1	188	203	8.05	16.5	1 800	2 100	6948
	360	37	2.1	197	217	8.30	16.5	1 700	2 000	16048
	360	56	3	276	310	12.8	16.0	1 700	2 000	6048
	320	28	2	96.5	120	4.65	15.8	1 700	2 000	6852
260	360	46	2.1	245	280	10.9	16.3	1 600	1 900	6952
260	400	44	3	252	299	11.1	16.5	1 500	1 800	16052
	400	65	4	325	375	15.1	15.8	1 500	1 800	6052

Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

$\frac{f_0 \cdot F_a}{C_{0r}}$	e		$\leq e$	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00

Static equivalent radial load  $P_{0r}=0.6F_{r}+0.5F_{a}$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

Instal d		Mass	
$d_{a}$	mm $D_{\rm a}$	ac.	kg
Min.	Max.	$r_{ m as}$ Max.	(approx.)
186.5	218.5	1	2.03
189	241	2	4.76
189	271	2	6.49
191	269	2	8.8
196	304	3	15.1
196	364	3	35.6
198	232	1.5	2.62
199	251	2	4.98
199	281	2	6.77
201	279	2	9.18
206	324	3	18.2
210	380	4	41
208	242	1.5	2.73
211	269	2	7.1
209	301	2	8.68
211	299	2	11.9
216	344	3	21.6
220	400	4	46.3
222	222		
228	262	1.5	3
231	289	2	7.69
231	329	2	11.3
233	327	2.5	15.7
236	384	3	30.2
240	440	4	60.8
249	291	2	4.6
251	309	2	8.28
251	349	2	12.1
253	347	2.5	16.8
269	311	2	5
271	349	2	13.9
273	387	2.5	18.5
276	384	3	25
		•	





### *d* 280 ∼ 440mm

<i>u</i> 20	$50 \sim 44$	FUITILI	ı							
В	oundary o	dimens	sions		oad rating	Fatigue load	Factor	Allowal	ble speed	Bearing number
	m	m		dynamic	static kN	<b>limit</b> kN			nin-1 Oil	
d	D	B	$r_{\mathrm{s}\mathrm{min}^{\mathrm{1}}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	$f_0$	Grease lubrication	lubrication	Open type
	350	33	2	151	177	6.65	16.1	1 600	1 900	6856
280	380	46	2.1	252	299	11.1	16.5	1 500	1 800	6956
200	420	44	3	257	315	11.3	16.5	1 400	1 600	16056
	420	65	4	360	420	16.9	15.5	1 400	1 600	6056
	380	38	2.1	179	210	7.60	16.1	1 500	1 700	6860
300	420	56	3	305	375	13.7	16.2	1 400	1 600	6960
300	460	50	4	325	410	14.5	16.3	1 300	1 500	16060
	460	74	4	395	480	18.4	15.6	1 300	1 500	6060
	400	38	2.1	186	228	7.95	16.1	1 400	1 600	6864
320	440	56	3	315	405	14.1	16.4	1 300	1 500	6964
320	480	50	4	335	440	14.9	16.4	1 200	1 400	16064
	480	74	4	410	530	19.3	15.7	1 200	1 400	6064
	420	38	2.1	189	236	8.05	16.0	1 300	1 500	6868
340	460	56	3	325	430	14.4	16.5	1 200	1 400	6968
340	520	57	4	380	515	17.0	16.3	1 100	1 300	16068
	520	82	5	465	610	21.9	15.6	1 100	1 300	6068
	440	38	2.1	207	258	8.55	16.0	1 200	1 400	6872
360	480	56	3	330	455	14.8	16.5	1 100	1 300	6972
300	540	57	4	390	550	17.6	16.4	1 100	1 200	16072
	540	82	5	485	670	23.0	15.7	1 100	1 200	6072
	480	46	2.1	256	340	10.8	16.1	1 100	1 300	6876
380	520	65	4	360	510	15.9	16.6	1 100	1 200	6976
	560	82	5	505	725	24.1	15.9	990	1 200	6076
	500	46	2.1	251	340	10.6	16.0	1 100	1 200	6880
400	540	65	4	370	535	16.4	16.5	990	1 200	6980
	600	90	5	565	825	26.9	15.7	930	1 100	6080
	520	46	2.1	288	405	12.4	16.1	1 000	1 200	6884
420	560	65	4	380	560	16.8	16.4	940	1 100	6984
	620	90	5	590	895	28.3	15.8	880	1 000	6084
440	540	46	2.1	292	420	12.6	16.0	950	1 100	6888
440	600	74	4	405	615	18.0	16.4	890	1 000	6988

Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F'a}{Fr}$	$\leq e$	F F	$\frac{a}{r} > e$
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03	0.19 0.22 0.26 0.28				2.30 1.99 1.71 1.55
1.38 2.07	0.30 0.34	1	0	0.56	1.45 1.31
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00

Static equivalent radial load  $P_{0r}=0.6F_{r}+0.5F_{a}$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

	Installation-related dimensions								
$d_{ m a}$ Min.	mm $D_{\rm a}$ Max.	$r_{ m as}$ Max.	kg (approx.)						
IVIII1.	IVIdX.	IVIdX.	(approx.)						
289	341	2	7.4						
291	369	2	14.8						
293	407	2.5	23						
296	404	3	31						
311	369	2	10.5						
313	407	2.5	23.5						
316	444	3	32.5						
316	444	3	43.8						
0.0	• • • •	•	10.0						
331	389	2	10.9						
333	427	2.5	24.8						
336	464	3	34.2						
336	464	3	46.1						
351	409	2	11.5						
353	447	2.5	26.2						
356	504	3	47.1						
360	500	4	61.8						
371	429	2	12.3						
373	467	2.5	27.5						
376	524	3	49.3						
380	520	4	64.7						
391	469	2	19.7						
396	504	3	39.8						
400	540	4	67.5						
411	489	2	20.6						
416	524	3	41.6						
420	580	4	87.6						
431	509	2	21.6						
436	544	3	43.4						
440	600	4	91.1						
451	529	2	22.5						
456	584	2	60						





# d 460 ∼ 600mm

Во	undary d	limensi	ons		ad rating	Fatigue load	Factor	Allowal	ble speed	Bearing number
	mı	m		dynamic I	static <n< th=""><th><b>limit</b> kN</th><th></th><th>m Grease</th><th>nin-1 Oil</th><th></th></n<>	<b>limit</b> kN		m Grease	nin-1 Oil	
d	D	B	$r_{\mathrm{s}\mathrm{min}^{\mathrm{1}}}$	$C_{ m r}$	$C_{0r}$	$C_{ m u}$	$f_0$	lubrication	lubrication	Open type
460	580 620	56 74	3 4	350 415	515 645	15.1 18.5	16.2 16.4	900 850	1 100 1 000	6892 6992
480	600 650	56 78	3 5	355 480	540 770	15.4 21.5	16.1 16.5	860 810	1 000 950	6896 6996
500	620 670	56 78	3 5	360 490	560 805	15.7 22.2	16.1 16.5	820 770	970 910	68/500 69/500
530	650	56	3	365	580	15.9	16.0	770	900	68/530
560	680	56	3	370	600	16.1	16.0	710	840	68/560
600	730	60	3	415	705	18.2	16.0	660	780	68/600

Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{Fa}{Fr}$	$\leq e$	$\frac{F}{F}$	$\frac{a}{r} > e$
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04

Static equivalent radial load  $P_{0r}=0.6F_r+0.5F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

	llation-re imensior		Mass
d	mm	22	kg
$d_{ m a}$ Min.	$D_{ m a}$ Max.	$r_{ m as}$ Max.	(approx.)
473	567	2.5	34.8
476	604	3	62.2
493	587	2.5	36.2
500	630	4	73
513	607	2.5	37.5
520	650	4	75.5
543	637	2.5	39.5
573	667	2.5	41.5
613	717	2.5	51.7

# Expansion Compensating Bearings



# Expansion Compensating Bearings









Open type









Contact sealed type (LLU)

(ZZ)	:

Non-contact sealed type (LLB)

Low torque sealed type (LLH)

4		50							(LL	<i>D)</i>	,	(LLII)	,	LLU)			
Bou	ndary o	dimer	nsions	Basic lo	ad rating	Fatigue	Allowable	Factor	- 1	Allowabl	e speed	l	В	earing n	umber		
	·			duna:	in stati-	load	load		Crosss	mir	n-1						
	m	m			ic static «N	limit kN	kN		Grease Open type,	Oil Onen tyne							
	- 111			,	XI V	KIN	KIN		ZZ, LLB	Z, LB	LLH	LLU	Open type	Shielded	or seale	ed tyr	oe 2)
d	D	B	$r_{\rm smin}^{1}$	$C_{\mathbf{r}}$	$C_{0r}$	$C_{\mathrm{u}}$	$C_{ m p}$	$f_0$	Z, LB	•	LH	LU	, ,,	(See	drawir	ıgs) ်	
							-										
	26	8	0.3	5.05	1.96	0.138	1.65	12.4	29 000	34 000	25 000	21 000	EC-6000	ZZ	LLB I	LLH	LLU
10	30	9	0.6	5.65		0.182		13.2	25 000	30 000			EC-6200	ZZ	LLB I		
	35	11	0.6	9.10	3.50	0.273	3.45	11.4	23 000	27 000	20 000	16 000	EC-6300	ZZ	LLB I	LLH	LLU
	28	8	0.3	5.65	2.39	0.182	1.78	100	26 000	30 000	21 000	10 000	EC-6001J	RX ZZ	LLB I	1 11	
12	32	10	0.6	6.75		0.162	2.29	-		26 000			EC-6201	ZZ	LLB		
12	37	12	1	10.8		0.325	3.65			24 000			EC-6301	ZZ	LLB I		
	O1	12		10.0	7.20	0.020	0.00	11.1	20 000	24 000	10 000	10 000	LO 0001		LLD .		LLU
	32	9	0.3	6.20	2.83	0.199	2.83	13.9	22 000	26 000	18 000	15 000	EC-6002	ZZ	LLB I	LLH	LLU
15	35	11	0.6	8.60	3.60	0.279	2.78	12.7	19 000	23 000	18 000	15 000	EC-6202	ZZ	LLB I	LLH	LLU
	42	13	1	12.7	5.45	0.425	4.40	12.3	17 000	21 000	15 000	12 000	EC-6302	ZZ	LLB I	LLH	LLU
47	35	10	0.3	7.55		0.263	2.88			24 000			EC-6003	ZZ	LLB I		
17	40		0.6	10.6		0.243	3.45			21 000			EC-6203	ZZ	LLB I		
	47	14	1	15.0	6.55	0.355	6.55	12.2	16 000	19 000	14 000	11 000	EC-6303	ZZ	LLB I	LLH	LLU
	42	12	0.6	10.4	5.05	0.355	5.05	13.0	18 000	21 000	13 000	11 000	EC-6004	ZZ	LLB I	ТН	1111
20	47	14	1	14.2		0.505		13.2	16 000	18 000			EC-6204	ZZ	LLB I		
	52	15	1.1	17.6		0.615	7.90	-		17 000				ZZ	LLB I		
	0_					0.0.0				000	000						
	47	12	0.6	11.2	5.85	0.380	5.85	14.5	15 000	18 000	11 000	9 400	EC-6005	ZZ	LLB I	LLH	LLU
25	52	15	1	15.5	7.85	0.550	6.55	13.9	13 000	15 000	11 000	8 900	EC-6205	ZZ	LLB I	LLH	LLU
	62	17	1.1	23.5	10.9	0.855	10.9	12.6	12 000	14 000	9 700	8 100	EC-6305	ZZ	LLB I	LLH	LLU
							0.00		10.000	45.000		====	=0.000				
20	55	13	1	14.7		0.650	8.30			15 000	9 200	7 700	EC-6006	ZZ	LLB I		
30	62 72	16 19	1.1	21.6 29.5	11.3 15.0	0.795	9.85 15.0	13.8 13.3	11 000	13 000 12 000	8 800 7 900	7 300 6 600	EC-6206 EC-6306	ZZ ZZ	LLB I		
	12	19	1.1	29.5	15.0	1.14	15.0	13.3	10 000	12 000	7 900	6 600	EC-0300	22	LLB I	LLN	LLU
	62	14	1	17.7	10.3	0.805	10.3	14.8	12 000	14 000	8 200	6 800	EC-6007	ZZ	LLB I	LLH	LLU
35	72		1.1	28.4	15.3	1.09	14.5	13.8		11 000	7 600	6 300	EC-6207	ZZ	LLB		
	80		1.5	37.0	19.1	1.47	18.5	13.1		10 000	7 300	6 000	EC-6307	ZZ	LLB I		
	68	15	1	18.6	11.5	0.890	11.5	15.2	10 000	12 000	7 300	6 100	EC-6008	ZZ	LLB I	LLH	LLU
40	80	18	1.1	32.5	17.8	1.24	17.5	14.0	8 700	10 000	6 700	5 600	EC-6208	ZZ	LLB I	LLH	LLU
	90	23	1.5	45.0	24.0	1.83	23.4	13.2	7 800	9 200	6 400	5 300	EC-6308	ZZ	LLB I	LLH	LLU
	75	10	4	00.0	45.4	1 10	45.4	150	0.000	11.000	0.500	E 400	EO 0000	77			
45	75	16	1	23.2	15.1	1.16	15.1	15.3	9 200	11 000	6 500	5 400	EC-6009	ZZ	LLB I		
45	85 100	19 25	1.1	36.0 58.5	20.4 32.0	1.60	20.3	14.1	7 800 7 000	9 200 8 200	6 200 5 600	5 200 4 700	EC-6209 EC-6309	ZZ ZZ	LLB I		
	100	25	1.5	30.3	JZ.U	2.50	21.4	13.1	7 000	0 200	5 600	4 / 00	EC-0309	LL	LLB I	LLH	LLU
	80	16	1	24.2	16.6	1.24	16.6	15.5	8 400	9 800	6 000	5 000	EC-6010	ZZ	LLB I	LLH	LLU
50	90		1.1		23.2	1.82	17.7	14.4	7 100	8 300	5 700	4 700	EC-6210	ZZ	LLB		
	110		2	68.5	-	2.00	33.0			7 500			EC-6310		LLD		

	110	27	2	68.5	38.5	2.99	33.0	13.2	6 400	7 500	5 000	4 200	EC-6310	ZZ	LLB LLH LLU
1) S	mallest ut singl	allow e seal	able o	dimensi nd single	ion for c e shielde	namfer o	dimensio are also a	on $r$ . 2) available.	This beari B-40	ing numb	er is for d	ouble sea	aled and double	shield	ed type bearings,

$\phi D_{\rm a}$		r _a		$\phi d_{\mathrm{a}}$
			<i></i> _	

Ins	tallatio dimer	n-relate	ed	Mass
	m			kg
$d_{\epsilon}$	ì	$D_{\mathbf{a}}$	$r_{\rm as}$	Open type
Min.	Max. ³⁾	Max.	Max.	(approx.)
12	13.5	24	0.3	0.019
14	16	26	0.6	0.031
14	17	31	0.6	0.051
14	16	26	0.3	0.021
16	17.5	28	0.6	0.036
17	18.5	32	1	0.058
17	19	30	0.3	0.029
19	20.5	31	0.6	0.043
20	23	37	1	0.079
19	21	33	0.3	0.037
21	23	36	0.6	0.062
22	25	42	1	0.11
24	26	38	0.6	0.066
25	28	42	1	0.101
26.5	28.5	45.5	1	0.139
29	30.5	43	0.6	0.075
30	32	47	1	0.122
31.5	35	55.5	1	0.223
35	37	50	1	0.11
35	39	57	1	0.191
36.5	43	65.5	1	0.334
40	42	57	1	0.148
41.5	45	65.5	1	0.277
43	47	72	1.5	0.44
45	47	63	1	0.183
46.5	51	73.5	1	0.352
48	54	82	1.5	0.609
50	52.5	70	1	0.233
51.5	55.5	78.5	1	0.391
53	61.5	92	1.5	0.80
55	57.5	75	1	0.246
56.5	60	83.5	1	0.444
59	68.5	101	2	1.03

Dynar Pr=XI			lent	radia	l load
$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F}{F}$	$\frac{\frac{a}{r}}{r} > e$
Cor		X	Y	X	Y
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00

Static equivalent radial load  $P_{0r} = 0.6F_r + 0.5F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

³⁾ This dimension applies to sealed and shielded bearings.







(ZZ)



sealed type

(LLB)



(LLH)



Contact sealed type (LLU)

*d* 10 ∼ 45mm

Во	undary	dimen	sions	Basic lo	ad rating	Fatigue load	Allowable load	Factor	A	<b>llowab</b> l mi		l	Ве	earing I	number	
	г	nm		dynamic k	static N	limit kN	kN		Grease Open type,	Oil Open type						
d	D	В	$r_{\mathrm{s}\mathrm{min}^{1}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	$C_{\mathrm{p}}$	$f_0$	ZZ, ĽĽB Z, LB	Z, LB	LLH	LLU LU	Open type		d or sealed ty ee drawings)	pe ²⁾
10	26 30 35	8 9 11	0.3 0.6 0.6	5.05 5.65 9.10	1.96 2.39 3.50	0.138 0.182 0.273	1.53 2.39 2.98		25 000	30 000	21 000	18 000	AC-6000 AC-6200 AC-6300	ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLŪ
12	28 32 37	8 10 12	0.3 0.6 1	5.65 6.75 10.8	2.39 2.75 4.20	0.182 0.214 0.325	1.73 2.75 3.00		22 000	26 000	20 000	16 000	AC-6001JI AC-6201 AC-6301	RX ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLU
15	32 35 42	9 11 13	0.3 0.6 1	6.20 8.60 12.7	2.83 3.60 5.45	0.199 0.279 0.425	2.43 2.71 3.90	12.7	19 000	23 000	18 000	15 000	AC-6002 AC-6202 AC-6302	ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLÜ
17	35 40 47	10 12 14	0.3 0.6 1	7.55 10.6 15.0		0.263 0.243 0.355	2.44 3.50 5.10	12.8	18 000	21 000	15 000	12 000	AC-6003 AC-6203 AC-6303	ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLU
20	42 47 52	12 14 15	0.6 1 1.1	10.4 14.2 17.6	5.05 6.65 7.90	0.355 0.505 0.615	3.80 4.20 5.40	13.2	16 000	18 000	12 000	10 000	AC-6204 AC-6304	ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLU
25	47 52 62	12 15 17	0.6 1 1.1	11.2 15.5 23.5	5.85 7.85 10.9	0.380 0.550 0.855	4.50 5.80 7.30	14.5 13.9 12.6		18 000 15 000 14 000			AC-6005 AC-6205 AC-6305	ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLU
30	55 62 72	13 16 19	1 1 1.1	14.7 21.6 29.5	8.30 11.3 15.0	0.650 0.795 1.14	6.85 7.55 11.0	14.8 13.8 13.3	13 000 11 000 10 000	13 000	9 200 8 800 7 900	7 300	AC-6006 AC-6206 AC-6306	ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLÜ
35	62 72 80	14 17 21	1 1.1 1.5	17.7 28.4 37.0	10.3 15.3 19.1	0.805 1.09 1.47	8.95 9.65 13.4	14.8 13.8 13.1		14 000 11 000 10 000	8 200 7 600 7 300	6 300	AC-6007 AC-6207 AC-6307	ZZ ZZ ZZ	LLB LLH LLB LLH LLB LLH	LLU
40	80 90	18 23	1.1 1.5	32.5 45.0	17.8 24.0	1.24 1.83	11.6 16.6	14.0 13.2	8 700 7 800	10 000 9 200	6 700 6 400		AC-6208 AC-6308	ZZ ZZ	LLB LLH	
45	85 100	19 25	1.1 1.5	36.0 58.5	20.4 32.0	1.60 2.50	14.7 21.8	14.1 13.1	7 800 7 000	9 200 8 200	6 200 5 600		AC-6209 AC-6309	ZZ ZZ	LLB LLH	



In	stallation dimen mr	sions	ed	<b>Mass</b> kg
	,			Ü
Min.	da May 2	$D_{ m a}$ Max.	r _a	Open type
IVIII1.	Max. ³⁾	IVIdX.	Max.	(approx.)
12	13.5	24	0.3	0.019
14	16	26	0.6	0.031
14	17	31	0.6	0.051
14	16	26	0.3	0.021
16	17.5	28	0.6	0.036
17	18.5	32	1	0.058
17	19	30	0.3	0.029
19	20.5	31	0.6	0.043
20	23	37	1	0.079
19	21	33	0.3	0.037
21	23	36	0.6	0.062
22	25	42	1	0.11
24	26	38	0.6	0.066
25	28	42	1	0.101
26.5	28.5	45.5	1	0.139
29	30.5	43	0.6	0.075
30	32	47	1	0.122
31.5	35	55.5	1	0.223
35	37	50	1	0.11
35	39	57	1	0.191
36.5	43	65.5	1	0.334
40	42	57	1	0.148
41.5	45	65.5	1	0.277
43	47	72	1.5	0.44
46.5	51	73.5	1	0.352
48 54		82	1.5	0.609
51.5	55.5	78.5	1	0.391
53	61.5	92	1.5	0.8

Dynar $P_r = XI$		t radia	lload
€o E	Fa_	F	a

$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_a}{F_r}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$		
Cor		X	Y	X	Y	
0.172	0.19				2.30	
0.345	0.22				1.99	
0.689	0.26				1.71	
1.03	0.28				1.55	
1.38	0.30	1	0	0.56	1.45	
2.07	0.34				1.31	
3.45	0.38				1.15	
5.17	0.42				1.04	
6.89	0.44				1.00	

Static equivalent radial load  $P_{0r} = 0.6F_r + 0.5F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

# 0

# Miniature and Small Size Ball Bearings



# Miniature and Small Size Ball Bearings







Open type

Shielded type

Shielded type with snap ring

# 1. Design features and characteristics

The dimensional range of miniature and extra small bearings can be found in **Table 1**. Boundary dimensions for both metric and inch series are in accordance with the internationally specified ISO and ANSI/ABMA standards. The most widely used sealed and shielded type ball bearings generally have a 1 - 2 mm wider width dimension than open type bearings.

The main variations of these bearings are shown in **Table 2**. Miniature and extra small size ball bearings can also utilize snap rings, which simplify assembly within the housing. These bearings with snap rings can also be found in the dimensional tables in this catalog.

Among the most generally used sealed and shielded bearings are standard ZZ and ZZA type which incorporate non-contact steel shield plates. **Fig. 1** also shows non-contact type rubber sealed LLB and resin sealed SSA type bearings, as well as the contact-type rubber sealed LLU bearing.

Section "11. Lubrication" provides additional information on grease filled within the sealed and shielded bearings.

Table 1 Dimensional range

Bearing	Dimensional range				
Miniature ball bearings	Nominal outer diameter D< 9mm				
Extra small ball bearings	Nominal bore diameter $d \le 10$ mm Nominal outer diameter $D \ge 9$ mm				



Fig. 1

Table 2 Main types and construction

Tuna		Standard type code	9	Flange-attached type code				
Туре	Construction	Metric series	Inch series	Construction	Metric series	Inch series		
Open type		6 R BC			FL6 FLBC	FLR		
Shielded type		6 X X ZZ W6 X X ZZ WBC X X X ZZ	RAXXZZ		FL6 X X X ZZ FLW6 X X X ZZ FLWBC X X ZZ	FLRA X X ZZ		

Note: 1. Representative codes are shown. For further details, please refer to dimension tables.

2. May change to ZA or SA for shielded type bearings, according to the bearing number.



# 3. Dimensional and rotational accuracy

The accuracy of miniature and extra small ball bearings complies with JIS standards. Accuracy of these bearings is defined by Table A-54 in section "6. Bearing Accuracy." Flange accuracies are listed in **Table 3**.

Table 3 Tolerance and tolerance values for outer ring flange

Unit:	

Accuracy class		$\begin{array}{c} \text{Outer diameter} \\ \text{dimensional} \\ \text{tolerance} \\ \Delta_{\text{D1S}} \text{ or } \Delta_{\text{D2S}} \\ \text{Upper}  \text{Lower} \end{array}$	Outer ring surface runout for rear surface $S_{\rm D1}$ Max.	Back face axial runout $S_{\rm ea1}$ Max.	$\begin{array}{c} \text{Width} \\ \text{deviation} \\ \Delta_{\textit{C1S}} \text{ or } \Delta_{\textit{C2S}} \\ \\ \text{Upper}  \text{Lower} \end{array}$	Width unevenness $V_{C1S}$ or $V_{C2S}$ Max.	
	Class 0		_	_		Identical to same	
	Class 6		_	_	Identical to	bearing's inner ring $V_B$ s.	
ISO standard	Class 5	* (see table below)	8	11	same bearing's	5	
	Class 4	(see table below)	4	7	inner ring $\Delta_{BS}$ .	2.5	
	Class 2		1.5	3 ¹⁾ 4		1.5	

¹⁾ Applies to nominal outer diameter D of 18 mm or less.

k	Unit: µm

•			Offic. #11
diar $D_1$	minal outer neter or D ₂		er dimensional ance or $\Delta_{D2S}$
Over	Incl.	Upper	Lower
_	10	+220	-36
10	18	+270	-43
18	30	+330	-52
30	50	+390	-62

# 4. Radial internal clearance

Radial internal clearance is defined by Table A-88 in section "8. Internal Clearance and Preload."

The radial clearance values for high precision miniature and extra small bearings can be found in **Table 4**.

Table 4 Radial internal clearance for high precision bearings

Miniature and Small Size Ball Bearings

Unit: //m

MIL Standard		Tig	ght			Standard						ose	Extra Loose	
Code		C2S CNS				CNM CNL			C3S		СЗМ		C3L	
Internal	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
clearance	0	5	3	8	5	10	8	13	10	15	13	20	20	28

Note: 1. These standards are specified in accordance with MIL B23063. However, NTN codes are shown.

B-46 B-47



^{2.} Clearance values do not include compensation for measuring load.



Open type



With single

shield

(Z)



shield

(ZZ)





Open type with flange (FL)

With flanged OR and single shield (FL···Z)

# d 1.5 $\sim$ 5mm

			Βοι	•	<b>dimensi</b> m	ons			Basic I	oad rating	Fatigue load limit	Factor	Allov	
									,	N	N		Grease	Oil
d	D	B	$B_1$	$D_1$	$D_2$	$C_1$	$C_2$	$r_{\rm s min}^{1)}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\mathrm{u}}$	$f_0$	lubrication	lubrication
		4.0	•	_	_	0.4	0.0	0.45	440	00.0	0.775	40.0	00.000	100.000
1.5	4 5	1.2	2.6	5 6.5	5 6.5	0.4	0.6	0.15 0.15	113 189	29.0 51.0	0.775	13.6	88 000 79 000	100 000 93 000
1.5	6	2.5	3	7.5	7.5	0.6 0.6	0.8	0.15	305	86.0	1.35 2.28	12.3	79 000	84 000
	U	2.5	3	7.5	7.5	0.0	0.0	0.13	303	00.0	2.20	12.0	71 000	04 000
	4	1.2	_	_	_	_	_	0.05	115	37.0	0.970		83 000	98 000
	5	1.5	2.3	6.1	6.1	0.5	0.6	0.08	189	51.0	1.35	13.3	74 000	87 000
	5	2	2.5	_	_	_	_	0.1	189	51.0	1.35	13.3	74 000	87 000
2	6	2.3	3	7.5	7.5	0.6	8.0	0.15	310	89.0	2.37	12.8	67 000	79 000
	6	2.5	_	7.2	_	0.6	_	0.15	310	89.0	2.37	12.8	67 000	79 000
	7	2.5					<del>-</del> .	0.15	430	120	3.20	11.9	59 000	70 000
	7	2.8	3.5	8.5	8.5	0.7	0.9	0.15	425	125	3.30	12.4	62 000	73 000
	5	1.5	2.3	_	_	_	_	0.08	169	59.0	1.56	15.0	70 000	82 000
	6	1.8	2.6	7.1	7.1	0.5	0.8	0.08	231	73.0	1.92	14.2	65 000	76 000
0.5	7	_	3	_	8.2	_	0.6	0.15	315	96.0	2.53	13.7	59 000	70 000
2.5	7	2.5	3.5	8.5	8.5	0.7	0.9	0.15	315	96.0	2.53	13.7	59 000	70 000
	8	2.5	2.8	9.2	_	0.6	_	0.15	475	152	4.05	13.2	56 000	66 000
	8	2.8	4	9.5	9.5	0.7	0.9	0.15	610	174	7.05	11.5	56 000	66 000
	6	2	2.5	7.2	7.2	0.6	0.6	0.08	268	94.0	2.47	14.7	60 000	71 000
	7	2	3	8.1	8.1	0.5	0.8	0.1	430	130	3.45	12.9	58 000	68 000
	8	2.5	_	9.2	_	0.6	_	0.15	620	180	7.25	11.9	54 000	63 000
3	8	3	4	9.5	9.5	0.7	0.9	0.15	620	180	7.25	11.9	54 000	63 000
	9	2.5	4	10.2	10.6	0.6	8.0	0.15	700	219	8.85	12.4	50 000	59 000
	9	3	5	10.5	10.5	0.7	1	0.15	700	219	8.85	12.4	50 000	59 000
	10	4	4	11.5	11.5	1	1	0.15	710	224	9.05	12.7	50 000	58 000
	7	2	2.5	8.2	8.2	0.6	0.6	0.08	246	88.0	2.31	15.3	54 000	63 000
	8	2	3	9.2	9.2	0.6	0.6	0.08	440	140	5.65	13.9	52 000	61 000
	9	2.5	4	10.3	10.3	0.6	1	0.15	710	224	9.05	12.7	49 000	57 000
4	10	3	4	11.2	11.6	0.6	0.8	0.15	720	235	9.50	13.3	46 000	55 000
4	11	4	4	12.5	12.5	1	1	0.15	790	276	11.1	13.7	45 000	52 000
	12	4	4	13.5	13.5	1	1		1 080	360	14.4	12.8	43 000	51 000
	13	5	5	15	15	1	1		1 450	490	19.8	12.4	42 000	49 000
	16	5	5	_	_	_	_	0.3	1 940	680	23.1	12.4	37 000	44 000
	8	2	2.5	9.2	9.2	0.6	0.6	0.08	241	91.0	2.39	15.8	49 000	57 000
5	9	2.5	3	10.2	10.2	0.6	0.6	0.15	555	211	5.55	14.6	46 000	55 000
	10	3	4	11.2	11.6	0.6	0.8	0.15	790	276	11.1	13.7	45 000	52 000

#### 1) Smallest allowable dimension for chamfer dimension r.



With flanged OR

and double shield

(FL···ZZ)

Miniature and Small Size Ball Bearings

$r_{\rm a}$	
$\phi d_a \bigvee_{}^{\tau_a}$	

Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ C_{0r} 0.172 0.19 0.345 0.22 0.689 0.26 2.30 1.99 1.71 1.03 1.38 2.07 0.28 0.30 0.34 1.55 0 0.56 1.45 1 1.31 3.45 5.17 0.38 0.42 1.15 1.04

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

6.89 0.44

	\AC11		ng numbers	With With			tion-rela m	Mass (approx.)			
Open type	With single	With double	Open type with	flanged OR and single	flanged OR and double	d		$D_a$	$r_{as}$	Open	Open type
Open type	shield	shield	flange	shield	shield	Min.	a Max. ²⁾		Max.	type	with flange
	Siliela	Siliciu	Harige	SHICIU	SHICIU	IVIII I.	IVIdX/	IVIUA.	WIGA.	type	with hange
68/1.5	W68/1.5SA	SSA	FL68/1.5	FLW68/1.5SA	SSA	2.3	2.4	3.2	0.05	0.07	0.09
69/1.5A	W69/1.5ASA		FL69/1.5A	FLW69/1.5ASA		2.7	2.9	3.8	0.15	0.18	0.24
60/1.5	W60/1.5ZA	ZZA	FL60/1.5	FLW60/1.5ZA	ZZA	2.7	3	4.8	0.15	0.35	0.42
672	_	_	_	_	_	2.5	2.6	3.5	0.05	0.06	_
682	W682SA	SSA	FL682	FLW682SA	SSA	2.8	2.9	4.2	0.08	0.13	0.17
BC2-5	WBC2-5SA	SSA	_	_	_	2.8	2.9	4.2	0.1	0.16	_
692	W692SA	SSA	FL692	FLW692SA	SSA	3.2	3.3	4.8	0.15	0.31	0.38
BC2-6	_	_	FLBC2-6	_	_	3.2	3.3	4.8	0.15	0.32	0.38
BC2-7A	_	_	_	_	_	3.2	3.6	5.8	0.15	0.44	_
602	W602ZA	ZZA	FL602	FLW602ZA	ZZA	3.2	3.7	5.8	0.15	0.54	0.64
67/2.5	W67/2.5ZA	ZZA	_	_	_	3.1	3.3	4.4	0.08	0.11	_
68/2.5	W68/2.5ZA	ZZA	FL68/2.5	FLW68/2.5ZA	ZZA	3.1	3.6	4.8	0.08	0.22	0.26
_	WBC2.5-7ZA	ZZA	_	FLWBC2.5-7Z	ZZA	3.7	4	5.8	0.15	$0.6^{3)}$	0.673)
69/2.5	W69/2.5SA	SSA	FL69/2.5	FLW69/2.5SA	SSA	3.7	4	5.8	0.15	0.43	0.53
BC2.5-8	WBC2.5-8ZA	ZZA	FLBC2.5-8	_	_	3.7	4.3	6.8	0.15	0.57	0.65
60/2.5	W60/2.5ZA	ZZA	FL60/2.5	FLW60/2.5ZA	ZZA	3.7	4.1	6.8	0.15	0.72	0.83
673	WA673SA	SSA	FL673	FLWA673SA	SSA	3.6	4.1	5.4	0.08	0.2	0.26
683	W683Z	ZZ	FL683	FLW683Z	ZZ	3.9	4.1	5.8	0.1	0.33	0.38
BC3-8	_	_	FLBC3-8	_	_	4.2	4.4	6.8	0.15	0.52	0.6
693	W693Z	ZZ	FL693	FLW693Z	ZZ	4.2	4.4	6.8	0.15	0.61	0.72
BC3-9	WBC3-9ZA	ZZA	FLBC3-9	FLAWBC3-9ZA	ZZA	4.2	5	7.8	0.15	0.71	0.79
603	W603Z	ZZ	FL603	FLW603Z	ZZ	4.2	5	7.8	0.15	0.92	1
623	623Z	ZZ	FL623	FL623Z	ZZ	4.2	5.2	8.8	0.15	1.6	1.8
674A	WA674ASA	SSA	FL674A	FLWA674ASA	SSA	4.6	5	6.4	0.08	0.28	0.35
BC4-8	WBC4-8Z	ZZ	FLBC4-8	FLWBC4-8Z	ZZ	4.8	5	6.8	0.08	0.38	0.46
684AX50	W684AX50Z	ZZ	FL684AX50	FLW684AX50Z		5	5.2	7.8	0.1	0.67	0.76
BC4-10	WBC4-10Z	ZZ	FLBC4-10	FLAWBC4-10Z	ZZ	5.2	6	8.8	0.15	1	1.1
694	694Z	ZZ	FL694	FL694Z	ZZ	5.2	6.4	9.8	0.15	1.8	2
604	604Z	ZZ	FL604	FL604Z	ZZ	5.6	6.6	10.4	0.2	2.1	2.3
624	624Z	ZZ	FL624	FL624Z	ZZ	5.6		11.4	0.2	3.2	3.5
634	634Z	ZZ	_	_	_	6	7.6	14	0.3	5.1	_
675	WA675Z	ZZ	FL675	FLWA675Z	ZZ	5.6	6	7.4	0.08	0.32	0.4
BC5-9	WBC5-9Z	ZZ	FLBC5-9	FLWBC5-9Z	ZZ	5.2	6.1	7.8	0.15	0.55	0.63
BC5-10	WBC5-10Z	ZZ	FLBC5-10	FLAWBC5-10Z	ZZ	6.2	6.4	8.8	0.15	0.88	0.97





With double shield (ZZ)



Open type with flange (FL)



With flanged OR and single shield (FL···Z)

# d 5 $\sim$ 9mm

			Bou	undary	dimens	ions			Basic	load rating	Fatigue load	Factor	Allowable speed	
				m	nm				dynam		limit		mi	n-1
,	-	D		D	n	~	~	1		N	N		Grease	Oil
d	D	B	$B_1$	$D_1$	$D_2$	$C_1$	$C_2$	$r_{\rm s min}^{1}$	$C_{\rm r}$	$C_{0r}$	$C_{\mathrm{u}}$	$f_0$	lubrication	lubrication
	11	_	4	_	12.6	_	8.0	0.15	795	282	11.4	14.0	43 000	51 000
	11	3	5	12.5	12.5	0.8	1	0.15	795	282	11.4	14.0	43 000	51 000
	13	4	4	15	15	1	1		1 190	430	17.3	13.4	40 000	47 000
5	13	—	5	_	15	_	1		1 190	430	17.3	13.4	40 000	47 000
	14	5	5	16	16	1	1		1 470	505	20.5	12.8	39 000	46 000
	16	5	5	18	18	1	1		1 940	680	23.1	12.4	37 000	44 000
	19	6	6	_	_	_	_	0.3	2 590	885	64.5	12.1	34 000	40 000
	10	2.5	3	11.2	11.2	0.6	0.6	0.1	515	196	5.15	15.2	43 000	51 000
	12	3	4	13.2	13.6	0.6	0.8	0.15	920	365	14.8	14.5	40 000	47 000
	13	3.5	5	15	15	1.0	1.1		1 200	440	17.5	13.7	39 000	46 000
6	15	5	5	17	17	1.2	1.2		1 490	530	21.3	13.3	37 000	44 000
·	16	6	6	_	_		_		1 960	695	28.1	12.7	36 000	42 000
	17	6	6	19	19	1.2	1.2		2 430	865	35.0	12.3	35 000	42 000
	19	6	6	22	22	1.5	1.5		2 590	885	64.5	12.1	34 000	40 000
	11	2.5	3	12.2	12.2	0.6	0.6	0.1	610	269	7.05	15.6	40 000	47 000
	13	3	4	14.2	14.6	0.6	0.8	0.15	915	375	15.2	14.9	38 000	45 000
7	14	3.5	5	16	16	1	1.1		1 300	505	20.4	14.0	37 000	44 000
′	17	5	5	19	19	1.2	1.2		1 780	715	28.8	14.0	35 000	41 000
	19	6	6	_	_	_	_		2 480	910	60.0	12.9	34 000	40 000
	22	7	7	_	_	_	_	0.3	3 700	1 400	97.0	12.5	32 000	37 000
	12	2.5	3.5	13.2	13.6	0.6	0.8	0.1	570	252	6.60	15.9	38 000	45 000
	14	3.5	4	15.6	15.6	0.8	0.8	0.15	910	385	15.5	15.2	36 000	43 000
_	16	4	5	18	18	1	1.1		1 780	715	28.8	14.0	35 000	41 000
8	19	6	6	22	22	1.5	1.5		2 200	865	35.0	13.8	33 000	39 000
	22	7	7	25	25	1.5	1.5		3 700	1 400	97.0	12.5	32 000	37 000
	24	8	8	_	_	_	_		4 450	1 590	122	11.7	31 000	36 000
	14	3	4.5	_	_	_	_	0.1	1 020	465	18.8	15.5	36 000	42 000
	17	4	5	19	19	1	1.1		1 910	820	33.0	14.4	33 000	39 000
9	20	6	6	_	_	_	_		2 750	1 090	44.0	13.5	32 000	38 000
	24	7	7	_	_	_	_		3 750	1 450	94.5	12.9	31 000	36 000
	26	8	8	_	_	_	_	0.6	5 050	1 960	138	12.4	30 000	35 000



With flanged OR and double shield (FL···ZZ)

Dynamic equivalent radial load $P_r = XF_r + YF_a$								
$\frac{f_0 \cdot F_a}{C_{0r}}$	e		$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
001		X	Y	X	Y			
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00			

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

							**1	ICITI 01	∖Fr use i	01-11.	
Open type	With single shield	Bearin With double shield	Open type with flange	With flanged OR and single shield	With flanged OR and double shield		ation-relation $d_a$ Max. $^{2)}$	$D_a$	ensions $r_{as}$ Max.	Mass Open type	(approx.) g Open type with flange
			. 0.							21.	0.
	WD05 447	77		ELWDOE 447	77		0.0	0.0	0.0	1.83)	23)
	WBC5-11Z W685Z	ZZ ZZ	FL685	FLWBC5-11Z FLW685Z	ZZ ZZ	6.2	6.8 6.8	9.8 9.8	0.2	1.0%	1.3
	695AZ	ZZ	FL685 FL695A	FLW685Z FL695AZ	ZZ	6.6		9.8	0.15	2.4	2.7
	WBC5-13Z	ZZ	FL095A	FLWBC5-13Z	ZZ	6.6		11.4	0.2	3.4 ³⁾	3.7 ³⁾
			FL605								
	605Z 625Z	ZZ ZZ	FL605	FL605Z FL625Z	ZZ ZZ	6.6 7		12.4 14	0.2	3.5	3.9 5.2
			FL025	FL025Z	22					4.8	5.2
635	635Z	ZZ	_	_	_	7	9.5	17	0.3	8	_
676A	WA676AZ	ZZ	FL676A	FLWA676AZ	ZZ	6.6	6.7	9.2	0.1	0.65	0.74
	WBC6-12Z	ZZ	FLBC6-12	FLAWBC6-12Z		7.2		10.8	0.15	1.3	1.4
	W686Z	ZZ	FL686	FLW686Z	ZZ	7		11.8	0.15	1.9	2.2
	696Z	ZZ	FL696	FL696Z	ZZ	7.6		13.4	0.2	3.8	4.3
	BC6-16AZ	ZZ				7.6	8	14.4	0.2	5.2	_
	606Z	ZZ	FL606	FL606Z	ZZ	8		15	0.3	6	6.5
	626Z	ZZ	FL626	FL626Z	ZZ	8		17	0.3	8.1	9.2
020	OLUL		I LUZU	LUZUZ		U	0.0	'	0.0	0.1	5.2
677	WA677Z	ZZ	FL677	FLWA677Z	ZZ	7.8	8.1	10.2	0.1	0.67	0.77
	WBC7-13Z	ZZ	FLBC7-13	FLAWBC7-13Z		8.2		11.8	0.15	1.4	1.5
	W687AZ	ZZ	FL687A	FLW687AZ	ZZ	8.2		12.8	0.15	2.1	2.4
	697Z	ZZ	FL697	FL697Z	ZZ	9	10	15	0.3	5.2	5.7
	607Z	ZZ				9		17	0.3	8	
	627Z	ZZ	_	_	_	9		20	0.3	13	_
021	VEIL					J	12.2	20	0.0	10	
678A	W678AZ	ZZ	FL678A	FLAW678AZ	ZZ	8.8	9.1	11.2	0.1	0.75	0.86
BC8-14	WBC8-14Z	ZZ	FLBC8-14	FLWBC8-14Z	ZZ	9.2	9.5	12.8	0.15	1.8	1.9
	W688AZ	ZZ	FL688A	FLW688AZ	ZZ	9.6	10	14.4	0.2	3.1	3.5
698	698Z	ZZ	FL698	FL698Z	ZZ	10	10.6	17	0.3	7.3	8.4
608	608Z	ZZ	FL608	FL608Z	ZZ	10	12.2	20	0.3	12	13
628	628Z	ZZ	_	_	_	10	12.1	22	0.3	17	_
	W679Z	ZZ				9.8		13.2	0.1	1.4	_
	W689Z	ZZ	FL689	FLW689Z		10.6		15.4	0.2	3.2	3.6
	699Z	ZZ	_	_		11		18	0.3	8.2	_
	609JX2Z	ZZ	_	_		11		22	0.3	14	_
629X50	629X50Z	ZZ	_	_	_	13	13.9	22	0.3	20	_

# Miniature and Small Size Ball Bearings

# NTN

# Inch series



Open type





With single

shield

(Z)



shield

(ZZ)

With double



Open type with flange (FL)

With flanged OR and single shield (FL···Z)

# d 1.984 ~ 9.525mm

		Во	oundary	dimensi	ons		Basic I	oad rating	Fatigue load	Factor	Allowa		
			m	nm				dynam	ic static N	limit N		spee min ⁻ Grease	
d	D	B	$B_1$	$D_1$	$C_1$	$C_2$	$r_{ m s min}^{1}$	$C_{\rm r}$	$C_{0r}$	$C_{ m u}$	$f_0$	lubrication lu	
1.984	6.35	2.38	3.571	7.52	0.58	0.79	0.08	310	89.0	2.37	12.8	67 000	79 000
2.380	4 762 7.938	1.588 2.779	2.38 3.571	5.94 9.12	0.46 0.58	0.79 0.79	0.08 0.13	137 475	42.0 152	1.12 4.05	14.8 13.2	73 000 56 000	85 000 66 000
3.175	6.35 7.938 9.525 9.525 12.7	2.38 2.779 2.779 3.967 4.366	2.779 3.571 3.571 3.967 4.366	7.52 9.12 10.72 11.18	0.58 0.58 0.58 0.76	0.79 0.79 0.79 0.76	0.08 0.08 0.13 0.3 0.3	315 620 710 710 1 270	96.0 180 224 224 395	2.53 7.25 9.05 9.05 16.1	13.7 11.9 12.7 12.7 11.7	59 000 54 000 49 000 49 000 43 000	70 000 63 000 58 000 58 000 51 000
3.967	7.938	2.779	3.175	9.12	0.58	0.91	0.08	370	133	3.50	14.8	51 000	60 000
4.762	7.938 9.525 12.7 12.7	2.779 3.175 3.967 4.978	3.175 3.175 — 4.978	9.12 10.72 — 14.35	0.58 0.58 — 1.07	0.91 0.79 — 1.07	0.08 0.08 0.3 0.3	440 785 1 450 1 450	143 268 490 490	3.80 10.8 19.8 19.8	14.2 13.3 12.4 12.4	46 000	58 000 55 000 48 000 48 000
6.350	9.525 12.7 15.875 19.05	3.175 3.175 4.978	3.175 4.762 4.978 7.142	10.72 13.89 17.53	0.58 0.58 1.07	0.91 1.14 1.07	0.08 0.13 0.3 0.41	232 920 1 640 2 590	94.0 370 615 885	2.47 15.0 24.9 64.5	16.4 14.7 13.6 12.1	43 000 39 000 36 000 34 000	51 000 46 000 43 000 40 000
9.525	22.225	_	7.142	24.61	_	1.57	0.41	3700	1 400	94.5	12.7	31 000	37 000

# Miniature and Small Size Ball Bearings



With flanged OR and double shield (FL···ZZ)	

	Dynamic equivalent radial load $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$								
$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\frac{F_a}{F_r} \leq e$		$\frac{a}{r} > e$				
Cor		X	Y	X	Y				
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00				

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

		Bearin	g numbers	With	With	Install	ation-rela	ted dim	ensions	Mass	(approx.)
Open type	With single shield	With double shield	Open type with flange	flanged OR and single shield	flanged OR and double shield	Min.	$d_a$ Max. $^{2)}$	$D_a$ Max.	$r_{as}$ Max.	Open type	g Open type with flange
R1-4	RA1-4ZA	ZZA	FLR1-4	FLRA1-4ZA	ZZA	2.8	3.3	5.5	0.08	0.35	0.41
R133 R1-5	RA133ZA RA1-5ZA	ZZA ZZA	FLR133 FLR1-5	FLRA133ZA FLRA1-5ZA	ZZA ZZA	2.9 3.2	3.1 4.3	4 7.1	0.08 0.1	0.12 0.69	0.16 0.76
R144 R2-5 RA2-6 R2 RA2	RA144ZA RA2-5Z RA2-6ZA RA2ZA RA2Z	ZZA ZZ ZZA ZZA ZZ	FLR144 FLR2-5 FLR2-6 FLR2	FLRA144ZA FLRA2-5Z FLRA2-6ZA FLRA2ZA	ZZA ZZ ZZA ZZA	3.9 4 4 4.8 4.8	4 4.4 5.2 5.2 5.4	5.5 7 8.7 7.8 11	0.08 0.08 0.1 0.3 0.3	0.27 0.61 0.88 1.3 2.5	0.33 0.68 0.96 1.5
RA155	RA155ZA	ZZA	FLR155	FLRA155ZA	ZZA	4.8	5.3	7	0.08	0.54	0.61
R156 R166 R3 RA3	RA156Z R166Z — RA3Z	ZZ ZZ — ZZ	FLR156 FLR166 — FLRA3	FLRA156Z FLAR166Z — FLRA3Z	ZZ ZZ — ZZ	5.5 5.6 6.4 6	5.6 5.9 7.2 6.4	7 8.7 11 11	0.08 0.08 0.3 0.3	0.44 0.8 2.2 2.4	0.51 0.89 — 2.7
R168A R188 R4	R168AZ RA188ZA R4Z RA4Z	AZZ ZZA ZZ ZZ	FLR188 FLR4	FLAR168AZ FLRA188ZA FLR4Z		7.1 7.2 8 8.4	7.3 8.2 8.6 9.5	8.7 11.8 14.2 17	0.08 0.1 0.3 0.4	0.6 1.6 4.4 11 ³⁾	0.69 1.7 4.8
_	R6Z	ZZ	_	FLR6Z	ZZ	11.5	11.9	20.2	0.4	14 ³⁾	15 ³⁾

# With snap ring groove With snap ring





Shielded type with snap ring (ZZ)

d 5  $\sim$  10mm

	Boundary dimensions			ons	Basic lo	ad rating	Fatigue load	Factor	Allowab	le speed	Bearing nun Shielded type	nbers ²⁾ Shielded type	
			m		$r_{ m Na}$		V	<b>limit</b> N		mi Grease	Oil	with snap ring	with snap ring
	d	D	В	$r_{\mathrm{s}\mathrm{min}}^{\mathrm{1}}$	Min.	$C_{\mathrm{r}}$	$C_{0r}$	$C_{\mathrm{u}}$	$f_0$	lubrication	lubrication	groove	
	_	13	4	0.2	0.1	1 190	430	17.3	13.4	40 000	47 000	SC559ZZN	ZZNR
	5	14	5	0.2	0.2	1 470	505	20.5	12.8	39 000	46 000	SC571ZZN	ZZNR
		12	4	0.15	0.1	640	365	_	14.5	40 000	47 000	*F-SC6A06ZZ1I	N ZZ1NR
	6	13	5	0.15	0.1	1 200	440	17.5	13.7	39 000	46 000	SC6A04ZZN	ZZNR
	U	15	5	0.2	0.2	1 490	530	21.3	13.3	37 000	44 000	SC6A17ZZN	ZZNR
		19	6	0.3	0.3	2 590	885	64.5	12.1	34 000	40 000	SC669ZZN	ZZNR
	_	16	5	0.2	0.1	1 390	585	23.6	14.6	35 000	41 000	SC890ZZN	ZZNR
	8	22	7	0.3	0.4	3 700	1 400	97.0	12.5	32 000	37 000	SC850ZZN	ZZNR
1	10	26	8	0.3	0.3	5 050	1 960	138	12.4	29 000	34 000	SC0039ZZN	ZZNR

# Miniature and Small Size Ball Bearings



Dynamic equivalent radial load $P_r = XF_r + YF_a$								
$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F}{F}$	$\frac{\frac{a}{a}}{r} > e$			
Cor		X	Y	X	Y			
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42 0.44	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04			

Static equivalent radial load  $P_{0r}$ =0.6 $F_r$ +0.5 $F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

Snap ri $D_1$ Max.	-	ove dimenment box Min.	ensions $r_{ m o}$ Max.	Snap dimen $D_2$ Max.	sions	Min.	$d_{ m a}$	$D_{\rm a}$	ntion-rela $D_{ m X}$ (approx.)	m $C_{ m Y}$	mensio $C_{ m Z}$ Min.	$r_{ m as}$ Max.	$r_{ m Nas}$ Max.	Mass kg With snap ring (approx.)
12.15 13.03	0.88	0.55 0.65	0.2 0.06	15.2 16.13	0.55 0.54	6.6 6.6	6.9 7.4	11.4 12.4	15.9 16.9	1.2	0.6	0.2	0.1	0.002 0.004
11.15 12.15 14.03 17.9	0.78 1.08 1.03 0.93	0.60 0.55 0.65 0.80	0.02 0.2 0.06 0.2	14.2 15.2 17.2 22	0.55 0.55 0.6 0.7	7.2 7 7.6 8	7.9 7.2 7.8 9.5	10.8 11.8 13.4 17	14.9 15.9 17.9 22.8	1.1 1.4 1.4 1.4	0.6 0.6 0.7 0.7	0.15 0.15 0.2 0.3	0.1 0.1 0.2 0.3	0.001 0.002 0.004 0.008
14.95 20.8 24.5	0.53 2.35 2.20	0.65 0.80 0.90	0.05 0.2 0.3	18.2 24.8 28.8	0.54 0.7 0.85	9.6 10	10 12.7 13.5	14.4 20 24	18.9 25.5 29.5	0.9 2.8	0.6 0.7 0.9	0.2 0.3	0.1 0.4 0.3	0.003 0.013

1) Smallest allowable dimension for chamfer dimension r. 2) "  $\star$ " mark indicates that stainless steel is used.

# Ø

# **Angular Contact Ball Bearings**



# Angular Contact Ball Bearings









Angular contact ball bearing

Four-point contact ball Double row angular contact bearing ball bearing

# 1. Design features and characteristics

### 1.1 Angular contact ball bearing

Angular contact ball bearings are non-separable bearings with a defined contact angle in the radial direction relative to the straight line that runs through the point where each ball makes contact with the inner and outer rings (see Fig. 1). Table 1 provides information on contact angles and their designated codes.

In addition to radial loads, angular contact ball bearings can accommodate single direction axial loads. Since an axial load is generated from a radial force, these bearings are generally used in pairs. **Table 2** shows general angular contact ball bearing characteristics, **Table 3** shows information on using duplex (side by side) angular contact ball bearings, and **Table 4** shows information on multiple-row angular contact ball bearings.

For bearings with a contact angle of 15° and bearing tolerance JIS Class 5 or higher, see special catalog "Precision rolling bearings (CAT. No. 2260/E)".



Fig. 1

Table 1 Contact angle and contact angle codes

Contact angle	15°	30°	40°		
Contact angle code	С	A 1)	В		

¹⁾ Contact angle symbol A is omitted from part number.

Table 2 Angular contact ball bearing types and characteristics

Туре	Design	Characteristics
Standard type		<ul> <li>Available in bearing series 79, 70, 72, 72B, 73, and 73B.</li> <li>Contact angles: 30° and 40° (with B) available.</li> <li>Standard bearing cage type differs depending on bearing number. (see Table 5)</li> </ul>

Table 3 Duplex angular contact ball bearings — types and characteristics

Duplex	type	Characteristics
Back-to-back arrangement (DB)		Can accommodate radial loads and axial loads in either direction. Has a large distance between the acting load centers of the bearings, and therefore a large momentary force load capacity. Allowable misalignment angle is small.
Face-to-face arrangement (DF)		Can accommodate radial loads and axial loads in either direction. Has a smaller distance between the acting load centers of the bearings, and therefore a smaller momentary force load capacity. Has a larger allowable misalignment angle than back-to-back duplex type.
Tandem arrangement (DT)		Can accommodate radial loads and single direction axial loads.     Axial loads are received by both bearings as a set, and therefore heavy axial loads can be accommodated.

- Note: 1. Duplex angular contact ball bearings are manufactured in a set to specified clearance and preload values; therefore, they must be assembled side by side with identically numbered bearings and not be mixed with other arrangements.
  - 2. To satisfy specified clearance and preload values, tightening must be performed until the inner ring width surfaces or outer ring width surfaces come in contact with each other.

Table 4 Combination examples of multiple-row angular contact ball bearings

Duplex type	3-row arrangement	4-row arrangement
Back-to-back arrangement	(DBT)	(DTBT)
Face-to-face arrangement	(DFT)	(DTFT)
Tandem arrangement	(DTT)	ОПО

Note: Other combinations are also available. Consult NTN Engineering for details

### 1.2 Four-point angular contact ball bearings

Four-point angular contact ball bearings have a contact angle of 30° and a split inner ring. As shown in Fig. 2, when the inner and outer rings receive a radial load, the ball contacts the inner and outer rings at four points. This construction enables a single bearing to accommodate axial loads from either direction, and when under a simple axial load or heavy axial load, the bearing relies on two contact points like ordinary bearings.



### ■Flush ground

"Flush ground" is the name given to the finishing method shown in Fig. 3 where the offset of the front and back faces of the bearing are ground to the same value. This allows a designated clearance or preload value to be achieved when using bearings with identical codes in DB or DF orientations. DT series bearings can also be used in various arrangements to achieve uniform load distribution.

General angular contact ball bearings are not flush ground. If it is necessary to flush grind any of these other bearings, please consult NTN Engineering.



## 1.3 Double row angular contact ball bearings

The structure of double row angular contact ball bearings is designed by arranging two single row angular contact bearings back-to-back in duplex (DB) to form a single bearing with a contact angle of 25°.

These bearings are capable of accommodating radial loads, axial loads in either direction, and have a high capacity for moment loads.

As shown in Fig. 4, sealed and shielded type double row angular contact ball bearings are also available. Standard loads vary from those of open type bearings.



Fig. 4

# 2. Standard cage type

**Table 5** lists the standard cage types for angular contact ball bearings.

Table 5 Standard cages for angular contact hall bearings

Table 5		rd cages for angular conta	Lt Dali Dearings							
Type	Bearing series	Resin cage	Pressed steel cage	Machined cage						
Standard type	79 70 72 73 72B 73B	7904~7913 7000~7024 — — — —	- 7200~7222 7300~7322 72008~7222B 73008~7322B	7914~7960 7026~7040 7224~7240 7324~7340 7224B~7240B 7324B~7340B						
4-point contact	QJ2 QJ3	_ _ _	_ _ _	QJ208~QJ224 QJ306~QJ324						
Multi row	52 53		5200\$~5217\$ 5302\$~5314\$							

Note: Depending on the usage conditions, some cage types may not be suitable. For example, due to the material characteristics of resin cages, use at application temperatures in excess of 120°C is not possible. For details, please contact NTN Engineering.

Mass

kg

Single row

(approx.)

0.023

0.029

0.029

0.04



0.3

0.3

0.3



Face-to-face

arrangement

(DF)



arrangement

(DT)

24 000

26 000 34 000

11 000 15 000

14 000 19 000

13 000 18 000

7305B

7906

7006

27

15.5

19

0.234

0.058

0.135

0.197

0.385



Bearing

number 2)

7000

7200

7200B

7300

32 000

Load

center

a

9

10.5

13

12

d 10 ~ 30mm

30

35 11

35 11

62 17

55 13

9

34

18 0.3

26 1

1.1

0.6

0.15

0.6

27.0

15.4

8.35

10

18 0.6

22 0.6

Single row

	Во	unda	ry dim	nensions		Basic loa	d rating	Fatigue load	Allowable	e speed 1)
			mm			dynamic kN		limit	mi	
d	D	B	2B	$r_{ m s  min}$ 3)	$r_{ m ls\;min^{3)}}$		$C_{0\mathrm{r}}$	$_{C_{\mathrm{u}}}^{kN}$	Grease lubrication	Oil lubrication
	26	8	16	0.3	0.15	5.10	2.07	0.162	29 000	39 000
	30	9	18	0.6	0.3	6.00	2.74	0.214	28 000	37 000

5.50

11.2

22 22 000 29 000 7300B 0.041 0.6 10.5 4.60 0.360 15 28 5.60 2.46 0.193 26 000 35 000 7001 10 0.025 16 0.3 0.15 32 10 20 0.6 0.3 8.40 3.95 0.310 25 000 33 000 7201 11.5 0.035 32 10 20 0.6 0.3 7.75 3.65 0.287 21 000 28 000 7201B 14 0.036 12 37 12.4 12 24 1 0.6 5.25 0.410 23 000 30 000 7301 13 0.044 37 12 24 0.6 11.7 4.95 0.385 19 000 26 000 7301B 16.5 0.045 32 18 0.3 0.15 6.40 3.15 0.246 23 000 31 000 7002 11.5 0.035 35 11 22 0.6 0.3 10.0 4.70 0.370 22 000 29 000 7202 12.5 0.046 35 22 18 000 25 000 15 11 0.6 0.3 9.25 4.35 0.340 7202B 16 0.046 42 13 26 0.6 14.9 7.20 0.560 19 000 26 000 7302 15 0.055 42 13 26 13.8 6.65 0.520 17 000 22 000 7302B 19 0.057 35 20 0.15 7.95 3.85 0.299 21 000 28 000 7003 12.5 0.046 10 0.3 40 24 0.6 0.3 13.2 6.60 0.515 19 000 26 000 7203 14.5 0.064 12

2.52

4.95

40 12 24 0.6 0.3 12.2 6.10 0.480 17 000 22 000 7203B 18 0.066 47 14 28 1 0.6 17.7 8.65 0.675 18 000 24 000 7303 16 0.107 28 8.05 7303B 20.5 47 14 0.6 16.4 0.630 15 000 20 000 0.109 42 12 24 0.6 0.3 10.7 5.60 0.440 19 000 25 000 7004 15 0.08 47 28 0.6 16.1 8.40 0.655 17 000 23 000 7204 17 0.1 14 0.102 47 14 28 1 0.6 14.7 7.70 0.605 15 000 20 000 7204B 21.5 20 52 15 30 1.1 0.6 20.7 10.4 0.815 16 000 21 000 7304 18 0.138 52 15 30 1.1 19.2 9.65 0.755 13 000 18 000 7304B 22.5 0.141 9 18 0.3 0.15 7.90 4.95 0.360 17 000 22 000 7905 14 0.05 47 6.85 0.535 16 000 21 000 7005 0.093 12 24 0.6 0.3 11.9 16.5 52 15 30 0.6 18.0 10.3 0.805 14 000 19 000 7205 19 0.125 52 30 16.4 9.40 0.740 12 000 16 000 7205B 24 0.129 15 0.6 - 1 62 17 34 29.3 15.8 13 000 17 000 7305 21 0.23 1.1 0.6 1.24

1) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2) Bearing numbers appended with the code "B" have a contact angle of 40°; bearings without this code have a contact angle of 30°. 3) Smallest allowable dimension for chamfer dimension r or r₁.

1.14

0.395

0.725



Single and Duplex Angular Contact Ball Bearings

Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

e e	e		Singl	e, DT		DB, DF			
Bit		$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/I$	$F_{\rm r} > e$	$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/I$	$r_{\rm r}>\epsilon$
ပို့ဇ		X	Y	X	Y	X	Y	X	Y
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93

#### Static equivalent radial load $P_{0r} = X_0 \dot{F_r} + Y_0 F_a$

Contact	Singl	e, DT	DB, DF		
	$X_0$	$Y_0$	$X_0$	$Y_0$	
30°	0.5	0.33	1	0.66	
40°	0.5	0.26	1	0.52	

For single and DT arrangement, when  $P_{0r} < F_r$  use  $P_{0r}=F_{r}$ .

Basic load rat dynamic sta	Bear	ing nun	nber		Installation-related dimensions						
(duplex)		nin-1				,	,	D	mm		
kN a	Grease	Oil	DB	DF	DT	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{\rm as}$	$r_{1as}$
$C_{\rm r}$ $C_{\rm c}$	r lubrication	n lubrication				Min.	Min.	Max.	Max.	Max.	Max.
8.30 4.		31 000	DB	DF	DT	12.5	12.5	23.5	24.8	0.3	0.15
9.75 5.4		30 000	DB	DF	DT	14.5	12.5	25.5	27.5	0.6	0.3
8.95 5.0		26 000	DB	DF	DT	14.5	12.5	25.5	27.5	0.6	0.3
18.2 9.8		27 000	DB	DF	DT	14.5	12.5	30.5	32.5	0.6	0.3
17.1 9.2	20 18 000	24 000	DB	DF	DT	14.5	12.5	30.5	32.5	0.6	0.3
9.10 4.9	90 21 000	28 000	DB	DF	DT	14.5	14.5	25.5	26.8	0.3	0.15
13.7 7.9		26 000	DB	DF	DT	16.5	14.5	27.5	29.5	0.6	0.3
12.6 7.3		23 000	DB	DF	DT	16.5	14.5	27.5	29.5	0.6	0.3
20.1 10.		24 000	DB	DF	DT	17.5	16.5	31.5	32.5	1	0.6
19.0 9.9		21 000	DB	DF	DT	17.5	16.5	31.5	32.5	1	0.6
10.4 6.3		24 000	DB	DF	DT	17.5	17.5	29.5	30.8	0.3	0.15
16.3 9.4		23 000	DB	DF	DT	19.5	17.5	30.5	32.5	0.6	0.3
15.1 8.3		20 000	DB	DF	DT	19.5	17.5	30.5	32.5	0.6	0.3
24.2 14.4		21 000	DB	DF	DT	20.5	19.5	36.5	37.5	1	0.6
22.5 13.5	3 13 000	18 000	DB	DF	DT	20.5	19.5	36.5	37.5	1	0.6
100 7	17,000	00.000	DB	DF	DΤ	10.5	10.5	00 ت	00.0	0.0	0.15
12.9 7.0		22 000 21 000	DB	DF	DT DT	19.5 21.5	19.5	32.5	33.8	0.3	0.15
21.5 13.5 19.8 12.5		18 000	DB	DF	DT	21.5	19.5 19.5	35.5 35.5	37.5 37.5	0.6 0.6	0.3
28.7 17.3		19 000	DB	DF	DT	22.5	21.5	41.5	42.5	1	0.6
26.6 16.		16 000	DB	DF	DT	22.5	21.5	41.5	42.5	1	0.6
20.0 10.	1 12 000	10 000	טט	DF	Di	22.5	21.0	41.5	42.5	'	0.0
17.5 11.5	2 15 000	20 000	DB	DF	DT	24.5	24.5	37.5	39.5	0.6	0.3
26.1 16.8	3 14 000	18 000	DB	DF	DT	25.5	24.5	41.5	42.5	1	0.6
23.9 15.4	12 000	16 000	DB	DF	DT	25.5	24.5	41.5	42.5	1	0.6
33.5 20.8	3 12 000	17 000	DB	DF	DT	27	24.5	45	47.5	1	0.6
31.0 19.	3 11 000	14 000	DB	DF	DT	27	24.5	45	47.5	1	0.6
12.9 9.9	95 13 000	18 000	DB	DF	DT	27.5	27.5	39.5	40.8	0.3	0.15
19.3 13.		17 000	DB	DF	DT	29.5	29.5	42.5	44.5	0.6	0.13
29.2 20.0		15 000	DB	DF	DT	30.5	29.5	46.5	47.5	1	0.6
26.6 18.8		13 000	DB	DF	DT	30.5	29.5	46.5	47.5	1	0.6
47.5 31.		14 000	DB	DF	DT	32	29.5	55	57.5	1	0.6
44.0 29.3		12 000	DB	DF	DT	32	29.5	55	57.5	1	0.6
10.0	40.000	45.005				00.5	00 =		45.6		0.45
13.6 11.		15 000	DB	DF	DT	32.5	32.5	44.5	45.8	0.3	0.15
25.0 18.9 Note: For bearing		14 000	DB are const	DF ructed w	DT	35.5	35.5	49.5	50.5	1 inner ring	0.6

dimension  $r_1$  is identical to dimension r. Furthermore, the radius  $r_{1a}$  of the shaft corner roundness is likewise identical to  $r_a$ .

14.6

5.75

9.45

# Single and Duplex Angular Contact Ball Bearings

# NTN

# Single and Duplex Angular Contact Ball Bearings









arrangement

(DB)







Tandem arrangement (DT)

- 55mm

	Во	unda	ry dim	ensions		Basic loa	d rating	Fatigue load	Allowable	e speed 1)	Bearing number 2)	Load center	<b>Mass</b> kg
			mm			dynamic		limit	mi			mm	
d	D	В	2B	$r_{ m s min}^{ m 3)}$	$r_{ m ls\;min^{3)}}$	$C_{ m r}$ kl	$N = C_{0\mathrm{r}}$	$_{C_{\mathrm{u}}}^{kN}$	Grease Iubrication	Oil lubrication		a	Single row (approx.)
	62	16	32	1	0.6	24.9	14.8	1.16	12 000	16 000	7206	21.5	0.193
30	62	16	32	1	0.6	22.7	13.5	1.06	11 000	14 000	7206B	27.5	0.197
•	72	19	38	1.1	0.6	37.5	22.3	1.75	11 000	15 000	7306	24.5	0.345
	72	19	38	1.1	0.6	34.0	20.5	1.61	9 600	13 000	7306B	31.5	0.352
	55	10	20	0.6	0.3	13.3	8.85	0.640	13 000	17 000	7907	18	0.088
	62	14	28	1	0.6	19.4	12.6	0.040	12 000	16 000	7007	21	0.088
	72	17	34	1.1	0.6	33.0	20.1	1.57	11 000	14 000	7207	24	0.10
35	72	17	34	1.1	0.6	30.0	18.4	1.44	9 300	12 000	7207B	31	0.287
	80	21	42	1.5	1	44.0	26.3	2.05	9 800	13 000	7307	27	0.462
	80	21	42	1.5	i	40.5	24.2	1.89	8 400	11 000	7307B	34.5	0.469
	- 00			1.0	•	10.0		1.00	0 100	11 000	100.5	01.0	0.100
	62	12	24	0.6	0.3	14.0	10.2	0.705	11 000	15 000	7908	20.5	0.13
	68	15	30	1	0.6	20.8	14.6	1.07	10 000	14 000	7008	23	0.222
40	80	18	36	1.1	0.6	39.0	25.1	1.97	9 600	13 000	7208	26.5	0.355
40	80	18	36	1.1	0.6	35.5	23.0	1.80	8 300	11 000	7208B	34	0.375
	90	23	46	1.5	1	54.0	33.0	2.58	8 600	12 000	7308	30.5	0.625
	90	23	46	1.5	1	49.5	30.5	2.37	7 400	9 900	7308B	39	0.636
	68	12	24	0.6	0.3	17.4	12.9	0.895	10 000	14 000	7909	22.5	0.15
	75	16	32	1	0.6	24.7	17.7	1.29	9 500	13 000	7009	25.5	0.13
	85	19	38	1.1	0.6	44.0	28.7	2.25	8 700	12 000	7209	28.5	0.404
45	85	19	38	1.1	0.6	40.0	26.2	2.04	7 400	9 900	7209B	37	0.41
	100	25	50	1.5	1	70.5	44.0	3.45	7 800	10 000	7309	33.5	0.837
	100	25	50	1.5	i	64.5	40.5	3.15	6 600	8 900	7309B	43	0.854
	72	12	24	0.6	0.3	18.4	14.5	0.985	9 200	12 000	7910	23.5	0.157
	80	16	32	1	0.6	26.2	20.1	1.42	8 600	11 000	7010	27	0.306
50	90	20	40	1.1	0.6	45.5	31.5	2.46	7 900	10 000	7210	30	0.457
30	90	20	40	1.1	0.6	41.5	28.6	2.16	6 700	9 000	7210B	39.5	0.466
	110	27	54	2	1	82.5	52.5	4.10	7 100	9 400	7310	36.5	1.09
	110	27	54	2	1	75.5	48.5	3.80	6 000	8 100	7310B	47	1.11
		40	00		0.0	40.0	40.4	4.07	0.400	44.000	7044	00	0.044
	80 90	13 18	26 36	1.1	0.6	19.2	16.1 26.3	1.07	8 400 7 900	11 000 11 000	7911 7011	26 30	0.214
	100	21	42		0.6	34.5	39.5	1.90 3.10	7 100	9 500	7011 7211	33	0.447 0.6
55	100	21	42	1.5 1.5	1	56.5 51.5	36.0	2.74	6 100	8 200	7211B	43	0.612
	120	29	58	2	1	95.0	61.5	4.80	6 400	8 600	7311	40	1.39
	120	29	58 58	2	1	95.0 87.0	56.5	4.80	5 500	7 300	7311B	52	1.42
1 \ Thia								4.45					





Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

act			Singl	e, DT		DB, DF			
Bit	e	$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/I$	$F_{\rm r} > e$	$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/I$	$F_{\rm r} > \epsilon$
a O		X	Y	X	Y	X	Y	X	Y
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93

# Static equivalent radial load $P_{0r}=X_0F_r+Y_0F_a$

Contact angle	Singl	e, DT	DB, DF			
	$X_0$	$Y_0$	$X_0$	$Y_0$		
30°	0.5	0.33	1	0.66		
40°	0.5	0.26	1	0.52		

For single and DT arrangement, when  $P_{0r} < F_r$  use  $P_{0r}=F_{r}$ .

dynamic		Allowable (dup	olex)	Bear	ing nun	nber	mm					
	iplex)	mii		D.D.	D.F.	БТ	,	,	D			
	kN C	Grease	Oil	DB	DF	DT	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{\rm as}$	$r_{1as}$
$C_{\mathrm{r}}$	$C_{0\mathbf{r}}$	lubrication	lubrication				Min.	Min.	Max.	Max.	Max.	Max.
40.5	29.6	9 800	13 000	DB	DF	DT	35.5	34.5	56.5	57.5	1	0.6
37.0	27.1	8 600	11 000	DB	DF	DT	35.5	34.5	56.5	57.5	1	0.6
60.5	44.5	8 900	12 000	DB	DF	DT	37	34.5	65	67.5	1	0.6
55.5	41.0	7 700	10 000	DB	DF	DT	37	34.5	65	67.5	1	0.6
21.6	17.7	10 000	13 000	DB	DF	DT	39.5	39.5	50.5	52.5	0.6	0.3
31.5	25.1	9 400	13 000	DB	DF	DT	40.5	40.5	56.5	57.5	1	0.6
53.5	40.0	8 600	11 000	DB	DF	DT	42	39.5	65	67.5	1	0.6
49.0	36.5	7 500	10 000	DB	DF	DT	42	39.5	65	67.5	1	0.6
72.0	52.5	7 800	10 000	DB	DF	DT	43.5	40.5	71.5	74.5	1.5	1
66.0	48.5	6 800	9 000	DB	DF	DT	43.5	40.5	71.5	74.5	1.5	1
22.8	20.4	9 000	12 000	DB	DF	DT	44.5	44.5	57.5	59.5	0.6	0.3
34.0	29.2	8 300	11 000	DB	DF	DT	45.5	45.5	62.5	63.5	1	0.6
63.5	50.5	7 700	10 000	DB	DF	DT	47	44.5	73	75.5	1	0.6
58.0	46.0	6 700	8 900	DB	DF	DT	47	44.5	73	75.5	1	0.6
88.0	66.0	6 900	9 200	DB	DF	DT	48.5	45.5	81.5	84.5	1.5	1
80.5	60.5	6 000	8 000	DB	DF	DT	48.5	45.5	81.5	84.5	1.5	1
28.3	25.7	8 100	11 000	DB	DF	DT	49.5	49.5	63.5	65.5	0.6	0.3
40.0	35.5	7 500	10 000	DB	DF	DT	50.5	50.5	69.5	70.5	1	0.6
71.5	57.5	6 900	9 200	DB	DF	DT	52	49.5	78	80.5	1	0.6
65.0	52.5	6 000	8 000	DB	DF	DT	52	49.5	78	80.5	1	0.6
114	88.0	6 200	8 200	DB	DF	DT	53.5	50.5	91.5	94.5	1.5	1
105	81.0	5 400	7 200	DB	DF	DT	53.5	50.5	91.5	94.5	1.5	1
29.9	28.9	7 300	9 800	DB	DF	DT	54.5	54.5	67.5	69.5	0.6	0.3
42.5	40.0	6 800	9 100	DB	DF	DT	55.5	55.5	74.5	75.5	1	0.6
74.5	63.0	6 300	8 300	DB	DF	DT	57	54.5	83	85.5	1	0.6
67.5	57.0	5 500	7 300	DB	DF	DT	57	54.5	83	85.5	1	0.6
134	105	5 600	7 500	DB	DF	DT	60	55.5	100	104.5	2	1
123	96.5	4 900	6 500	DB	DF	DT	60	55.5	100	104.5	2	1
31.0	32.0	6 700	8 900	DB	DF	DT	60.5	60.5	74.5	75.5	1	0.6
56.0	52.5	6 300	8 400	DB	DF	DT	62	62	83	85.5	1	0.6
92.0	79.0	5 700	7 600	DB	DF	DT	63.5	60.5	91.5	94.5	1.5	1
83.5	72.0	5 000	6 600	DB	DF	DT	63.5	60.5	91.5	94.5	1.5	1
154	123	5 100	6 800	DB	DF	DT	65	60.5	110	114.5	2	1
142	113	4 500	5 900	DB	DF	DT	65	60.5	110	114.5	2	1
Note: For	bearing ser	ies <b>79</b> and <b>70</b>	, inner rings a	re const	ructed w	ith groov	e abutmen	ts on both	sides. The	refore, the	inner ring	chamfer

dimension  $r_1$  is identical to dimension r. Furthermore, the radius  $r_{1a}$  of the shaft corner roundness is likewise identical to  $r_2$ .

# Single and Duplex Angular Contact Ball Bearings

# NTN

Mass

# Single and Duplex Angular Contact Ball Bearings

NTN





**Boundary dimensions** 



arrangement

(DB)

0.6

0.6

1.1

56 2

40.0

60.5

99.5

110







Bearing Load



d 60 ∼ 85mm

(DF)

Basic load rating

Tandem arrangement arrangement (DT)

Fatigue Allowable speed 1)

120 18 36

130 22 44 1.1

150 28 56 2

150 28

			100 100			dunancia	atatia	load	no.i	n 1	number 2)	center	kg
			mm			dynamic kN		<b>limit</b> kN	mi: Grease	Oil		mm	Single row
d	D	B	2B	$r_{\rm s  min}^{3)}$	$r_{ m ls\;min^{3)}}$		$C_{0r}$	$C_{ m u}$	lubrication	lubrication		a	(approx.)
	85	13	26	1	0.6	20.0	17.4	1.16	7 800	10 000	7912	27.5	0.23
	95	18	36	1.1	0.6	35.5	28.1	1.99	7 200	9 600	7012	31.5	0.478
60	110	22	44	1.5	1	68.5	49.0	3.85	6 600	8 800	7212	36	0.765
00	110	22	44	1.5	1	62.0	44.5	3.40	5 700	7 600	7212B	47.5	0.78
	130	31	62	2.1	1.1	109	71.5	5.60	5 900	7 900	7312	43	1.74
	130	31	62	2.1	1.1	99.5	66.0	5.15	5 100	6 800	7312B	56	1.77
	90	13	26	1	0.6	20.2	18.0	1.20	7 200	9 600	7913	29	0.245
	100	18	36	1.1	0.6	37.5	31.5	2.18	6 700	9 000	7013	33	0.509
٥.	120	23	46	1.5	1	78.0	58.0	4.55	6 100	8 100	7213	38	0.962
65	120	23	46	1.5	1	70.5	52.5	3.95	5 200	7 000	7213B	50.5	0.981
	140	33	66	2.1	1.1	123	82.0	6.35	5 500	7 300	7313	46	2.11
	140	33	66	2.1	1.1	113	75.5	5.85	4 700	6 300	7313B	59.5	2.15
	100	16	32	1	0.6	29.0	26.2	1.74	6 700	9 000	7914	32.5	0.397
	110	20	40	1.1	0.6	47.5	39.5	2.78	6 200	8 300	7014	36	0.705
	125	24	48	1.5	1	84.5	63.5	5.00	5 700	7 600	7214	40	1.09
70	125	24	48	1.5	1	76.5	58.0	4.35	4 900	6 500	7214B	53	1.11
	150	35	70	2.1	1.1	138	93.5	6.95	5 100	6 800	7314	49.5	2.56
	150	35	70	2.1	1.1	127	86	6.40	4 400	5 800	7314B	63.5	2.61
	105	16	32	1	0.6	29.4	27.1	1.80	6 300	8 400	7915	34	0.42
	115	20	40	1.1	0.6	48.5	41.5	2.90	5 800	7 800	7015	37.5	0.745
	130	25	50	1.5	1	87.5	68.5	5.20	5 300	7 100	7215	42.5	1.17
75	130	25	50	1.5	1	79.0	62.0	4.50	4 500	6 000	7215B	56	1.19
	160	37	74	2.1	1.1	150	106	7.65	4 800	6 300	7315	52.5	3.07
	160	37	74	2.1	1.1	138	97.5	7.00	4 100	5 400	7315B	68	3.13
	110	16	32	1	0.6	29.8	28.0	1.86	5 900	7 800	7916	35.5	0.444
	125	22	44	1.1	0.6	59.0	50.5	3.50	5 500	7 300	7016	40.5	0.994
	140	26	52	2	1	98.5	76.0	5.65	5 000	6 600	7216	45	1.39
80	140	26	52	2	1	89.0	69.5	4.90	4 300	5 700	7216B	59	1.42
	170	39	78	2.1	1.1	163	119	8.30	4 500	5 900	7316	55.5	3.65
	170	39	78	2.1	1.1	149	109	7.65	3 800	5 100	7316B	72	3.72

#### 1) This value achieved with machined cages; when pressed cages are used, 80% of this value is acceptable. 2) Bearing numbers appended with the code "B" have a contact angle of 40°; bearings without this code have a contact angle of 30°. 3) Smallest allowable dimension for chamfer dimension r or r1.

2.49

3.60

6.25

5.45

5 500

5 100

4 700

4 000

7 400

6 900

6 200

5 300

7917

7017

7217

7217B

38.5

42

48

63.5

0.628

1.04

1.78

1.82



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

act		Single, DT D $F_a/F_r \leq e F_a/F_r > e F_a/F_r \leq$						, DF	
ngi	e	$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/I$	$F_{\rm r} > e$	$F_{\rm a}/I$	Fr <b>≤</b> e	$F_{\rm a}/I$	$r_{\rm r}>e$
a S		X	Y	X	Y	X	Y	X	Y
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93

#### Static equivalent radial load $P_{0r} = X_0 F_r + Y_0 F_a$

Contact	Singl	e, DT	DB	, DF
	$X_0$	$Y_0$	$X_0$	$Y_0$
30°	0.5	0.33	1	0.66
40°	0.5	0.26	1	0.52

For single and DT arrangement, when  $P_{0r} < F_r$  use  $P_{0r}=F_{r}$ .

dynami		speed 1) ex)	Bear	ing nun	nber		Installa	tion-rela	ted dimer	sions		
	iplex)	min		D.D.	DE	ьт	-1	-1	D	mm		
$C_{ m r}$	kN $C_{0{ m r}}$	Grease Iubrication I	Oil	DB	DF	DT	$d_{ m a}$ Min.	$d_{ m b}$ Min.	$D_{ m a}$ Max.	$D_{ m b}$ Max.	r _{as}	$r_{ m 1as}$ Max.
$C_{\rm r}$	C0r	IUDITCALION I	uDITCation				IVIII I.	IVIII I.	IVIdX.	IVIAX.	Max.	IVIAX.
32.5	35.0	6 200	8 300	DB	DF	DT	65.5	65.5	79.5	80.5	1	0.6
57.5	56.0	5 800	7 700	DB	DF	DT	67	67	88	90.5	1	0.6
111	98.0	5 300	7 000	DB	DF	DT	68.5	65.5	101.5	104.5	1.5	1
101	89.0	4 600	6 100	DB	DF	DT	68.5	65.5	101.5	104.5	1.5	1
176	143	4 700	6 300	DB	DF	DT	72	67	118	123	2	1
162	132	4 100	5 500	DB	DF	DT	72	67	118	123	2	1
33.0	36.0	5 700	7 600	DB	DF	DT	70.5	70.5	84.5	85.5	1	0.6
60.5	62.5	5 400	7 100	DB	DF	DT	72	72	93	95.5	1	0.6
126	116	4 900	6 500	DB	DF	DT	73.5	70.5	111.5	114.5	1.5	1
115	105	4 200	5 600	DB	DF	DT	73.5	70.5	111.5	114.5	1.5	1
200	164	4 400	5 800	DB	DF	DT	77	72	128	133	2	1
183	151	3 800	5 100	DB	DF	DT	77	72	128	133	2	1
47.0	52.5	5 300	7 100	DB	DF	DT	75.5	75.5	94.5	95.5	1	0.6
77.0	78.5	5 000	6 600	DB	DF	DT	77	77	103	105.5	1	0.6
137	127	4 500	6 000	DB	DF	DT	78.5	75.5	116.5	119.5	1.5	1
124	116	3 900	5 200	DB	DF	DT	78.5	75.5	116.5	119.5	1.5	1
224	187	4 100	5 400	DB	DF	DT	82	77	138	143	2	1
206	172	3 500	4 700	DB	DF	DT	82	77	138	143	2	1
40.0	<b>540</b>	F 000	0.700	DD	DE	DT	00.5	00.5	00.5	100 5		0.0
48.0	54.0 83.5	5 000 4 600	6 700 6 200	DB DB	DF DF	DT DT	80.5 82	80.5 82	99.5 108	100.5 110.5	1	0.6 0.6
78.5 142	137	4 600	5 600	DB	DF	DT	83.5	82 80.5	121.5	124.5		1
128	124	3 700	4 900	DB	DF	DT	83.5	80.5	121.5	124.5	1.5 1.5	1
244	212	3 800	5 000	DB	DF	DT	87	82	148	153	2	1
224	195	3 300	4 400	DB	DF	DT	87	82	148	153	2	1
224	195	3 300	4 400	ъъ	DF	וט	07	02	140	133	2	'
48.5	56.0	4 700	6 200	DB	DF	DT	85.5	85.5	104.5	105.5	1	0.6
96.0	101	4 400	5 800	DB	DF	DT	87	87	118	120.5	1	0.6
160	152	3 900	5 300	DB	DF	DT	90	85.5	130	134.5	2	1
145	139	3 400	4 600	DB	DF	DT	90	85.5	130	134.5	2	1
265	238	3 500	4 700	DB	DF	DT	92	87	158	163	2	1
243	218	3 100	4 100	DB	DF	DT	92	87	158	163	2	1
65.0	76.0	4 400	5 900	DB	DF	DT	92	92	113	115.5	1	0.6
98.5	107	4 100	5 500	DB	DF	DT	92	92	123	125.5	1	0.6
179	177	3 700	5 000	DB	DF	DT	95	90.5	140	144.5	2	1
162	161	3 200	4 300	DB	DF	DT	95	90.5	140	144.5	2	i
-	-	ies <b>79</b> and <b>70</b> ,							-	-		-

dimension  $r_1$  is identical to dimension r. Furthermore, the radius  $r_{1a}$  of the shaft corner roundness is likewise identical to  $r_a$ .

38.0

53.5

88.5

80.5



arrangement

(DB)







52

 $d 85 \sim 120$ 

)	n	۱r	n	ı	
J	11	Ш	ш		

Face-to-face (DF)

Tandem arrangement arrangement (DT)

Single row

**120** 165 22 44 1.1

		Boundary dimensions		Basic load rating		Fatigue load	Allowable	e speed 1)	Bearing number 2)	Load center	<b>Mass</b> kg			
				mm				c static	limit	mi			mm	
	d	D	В	2B	$r_{a \min}$ 3)	$r_{ m ls\;min}^{ m 3)}$	$C_{\mathbf{r}}$	kN $_{C_{0\mathrm{r}}}$	$\frac{kN}{C_{11}}$	Grease lubrication	Oil lubrication		a	Single row (approx.)
	CC	_			, 2 111111	, 18 Itilit	O1	0.01	υu	Tabrication	Idbiication			(GPP10/L)
	0.5	180	41	82	3	1.1	176	133	9.00	4 200	5 600	7317	59	4.34
	85	180	41	82	3	1.1	161	122	8.30	3 600	4 800	7317B	76	4.43
ı		125	18	36	1.1	0.6	39.5	38.0	2.42	5 200	7 000	7918	40	0.658
		140	24	48	1.5	1	72.0	63.5	4.15	4 900	6 500	7018	45	1.35
		160	30	60	2	1	130	103	7.20	4 400	5 900	7218	51	2.18
	90	160	30	60	2	1	118	94.0	6.30	3 800	5 000	7218B	67.5	2.22
		190	43	86	3	1.1	189	147	9.70	4 000	5 300	7318	62	5.06
		190	43	86	3	1.1	173	135	8.95	3 400	4 500	7318B	80.5	5.16
ı		130	18	36	1.1	0.6	41.5	40.5	2.54	5 000	6 600	7919	41.5	0.688
		145	24	48	1.5	1	74.0	67.0	4.25	4 600	6 100	7019	46.5	1.41
		170	32	64	2.1	1.1	148	118	8.05	4 100	5 500	7219	54.5	2.67
	95	170	32	64	2.1	1.1	134	107	7.00	3 500	4 700	7219B	71.5	2.72
		200	45	90	3	1.1	202	162	10.5	3 700	5 000	7319	65	5.89
		200	45	90	3	1.1	185	149	9.60	3 200	4 200	7319B	84.5	6
ł														
		140	20	40	1.1	0.6	53.0	52.5	3.20	4 700	6 200	7920	44.5	0.934
		150	24	48	1.5	1	75.5	70.5	4.35	4 400	5 800	7020	48	1.47
	100	180	34	68	2.1	1.1	159	126	8.30	3 900	5 200	7220	57.5	3.2
		180	34	68	2.1	1.1	144	114	7.30	3 400	4 500	7220B	76	3.26
		215	47	94	3	1.1	230	193	12.0	3 500	4 700	7320	69	7.18
		215	47	94	3	1.1	211	178	11.1	3 000	4 000	7320B	89.5	7.32
		145	20	40	1.1	0.6	54.0	54.5	3.25	4 400	5 900	7921	46	0.972
		160	26	52	2	1	88.5	81.5	4.95	4 100	5 500	7021	51.5	1.86
	4 O E	190	36	72	2.1	1.1	173	142	9.10	3 700	5 000	7221	60.5	3.79
	105	190	36	72	2.1	1.1	157	129	8.05	3 200	4 300	7221B	80	3.87
		225	49	98	3	1.1	244	210	12.8	3 400	4 500	7321	72	8.2
		225	49	98	3	1.1	224	194	11.8	2 900	3 800	7321B	93.5	8.36
İ		150	20	40	1.1	0.6	54.5	56.0	3.25	4 200	5 700	7922	47.5	1.01
		170	28	56	2	1	102	93.0	5.50	3 900	5 300	7022	54.5	2.3
	440	200	38	76	2.1	1.1	188	158	9.95	3 500	4 700	7222	64	4.45
	110	200	38	76	2.1	1.1	170	144	8.80	3 000	4 000	7222B	84	4.54
		240	50	100	3	1.1	273	246	14.5	3 200	4 300	7322	76	9.6
		240	50	100	3	1.1	250	226	13.3	2 700	3 700	7322B	99	9.8



69.5

67.5

0.6



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

	e e			Singl	e, DT			DB	, DF	
	BE	e	$F_{\rm a}/I$	Fr <b>≦</b> e	Fa/I	$F_{\rm r} > e$	$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/I$	$r > \epsilon$
	೭೯		X	Y	X	Y	X	Y	X	Y
	30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
į	40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93

#### Static equivalent radial load $P_{0r} = X_0 F_r + Y_0 F_a$

Contact	Singl	e, DT	DB	, DF
	$X_0$	$Y_0$	$X_0$	$Y_0$
30°	0.5	0.33	1	0.66
40°	0.5	0.26	1	0.52

For single and DT arrangement, when  $P_{0r} < F_r$  use  $P_{0r}=F_{r}$ .

	oad rating c static		Allowable speed 1) (duplex) min-1		Bearing number		Installation-related dimensions					
	uplex) kN	min Grease	ı-1 Oil	DB	DF	DT	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{ m b}$	$r_{ m as}$	$r_{1as}$
$C_{\mathrm{r}}$		lubrication I		00	υ,	υ,	Min.	Min.	Max.	Max.	Max.	Max.
286	265	3 300	4 500	DB	DF	DT	99	92	166	173	2.5	1
262	244	2 900	3 900	DB	DF	DT	99	92	166	173	2.5	1
65.5	75.5	4 200	5 500	DB	DF	DT	97	97	118	120.5	1	0.6
117	127	3 900	5 200	DB	DF	DT	98.5	98.5	131.5	134.5	1.5	1
212	206	3 500	4 700	DB	DF	DT	100	95.5	150	154.5	2	1
192	188	3 100	4 100	DB	DF	DT	100	95.5	150	154.5	2	1
305	294	3 200	4 200	DB	DF	DT	104	97	176	183	2.5	1
281	270	2 700	3 700	DB	DF	DT	104	97	176	183	2.5	1
67.0	81.5	3 900	5 300	DB	DF	DT	102	102	123	125.5	1	0.6
120	134	3 700	4 900	DB	DF	DT	103.5	103.5	136.5	139.5	1.5	1
240	236	3 300	4 400	DB	DF	DT	107	102	158	163	2	1
218	215	2 900	3 800	DB	DF	DT	107	102	158	163	2	1
330	325	3 000	3 900	DB	DF	DT	109	102	186	193	2.5	1
300	298	2 600	3 400	DB	DF	DT	109	102	186	193	2.5	1
86.0	105	3 700	5 000	DB	DF	DT	107	107	133	135.5	1	0.6
123	141	3 500	4 600	DB	DF	DT	108.5	108.5	141.5	144.5	1.5	1
259	251	3 100	4 200	DB	DF	DT	112	107	168	173	2	1
234	229	2 700	3 600	DB	DF	DT	112	107	168	173	2	1
375	385	2 800	3 700	DB	DF	DT	114	107	201	208	2.5	1
340	355	2 400	3 300	DB	DF	DT	114	107	201	208	2.5	1
87.5	109	3 500	4 700	DB	DF	DT	112	112	138	140.5	1	0.6
144	163	3 300	4 400	DB	DF	DT	115	115	150	154.5	2	1
282	283	3 000	4 000	DB	DF	DT	117	112	178	183	2	1
255	258	2 600	3 500	DB	DF	DT	117	112	178	183	2	1
395	420	2 700	3 600	DB	DF	DT	119	112	211	218	2.5	1
365	385	2 300	3 100	DB	DF	DT	119	112	211	218	2.5	1
89.0	112	3 400	4 500	DB	DF	DT	117	117	143	145.5	1	0.6
165	186	3 100	4 200	DB	DF	DT	120	120	160	164.5	2	1
305	315	2 800	3 800	DB	DF	DT	122	117	188	193	2	i
277	289	2 500	3 300	DB	DF	DT	122	117	188	193	2	1
445	490	2 600	3 400	DB	DF.	DT.	124	117	226	233	2.5	1
405	455	2 200	3 000	DB	DF	DT	124	117	226	233	2.5	1
109	139	3 100 ies 79 and 70,	4 100	DB	DF	DT	127	127	158	160.5	1	0.6

Note: For bearing series 79 and 70, inner rings are constructed with groove abutments on both sides. Therefore, the inner ring chamfer dimension  $r_1$  is identical to dimension r. Furthermore, the radius  $r_{1a}$  of the shaft corner roundness is likewise identical to  $r_a$ .

3.90

3 900

5 200

7924

# Single and Duplex Angular Contact Ball Bearings

# NTN





(DB)



(DT)

Allowable speed



Bearing Load

320

320 65 130 4

220 28

240 38 76

290 48 96 3

290 48 96 3

340 68 136 4

340 68 136 4

260 42 84 2.1

310

360

**170** 310

65 130

28 56

52 104 4

52

104 4

72 144

56 2

2.1

*d* 120 ∼ 170mm

Single row

**Boundary dimensions** 

arrangement

			mm			dynamic		load limit	mi		number 1)	<b>center</b> mm	kg
d	D	В	2B	$r_{ m s  min}^{2)}$	$r_{ m ls\;min^{2)}}$	$C_{ m r}$ kN	$C_{0r}$	$KN \ C_{ m u}$	Grease lubrication	Oil lubrication		a	Single row (approx.)
	180	28	56	2	1	104	98.5	5.55	3 600	4 800	7024	57.5	2.47
120	215 215	40 40	80 80	2.1 2.1	1.1 1.1	202 183	177 162	10.7 9.40	3 200 2 800	4 300 3 700	7224 7224B	68.5 90.5	6.26 6.26
	260 260	55 55	110 110	3 3	1.1 1.1	273 249	252 231	14.3 13.1	2 900 2 500	3 900 3 300	7324 7324B	82.5 107	14.7 14.7
	180	24	48	1.5	1	83.0	87.5	4.65	3 600	4 700	7926	56.5	1.82
	200	33	66	2	1	130	125	6.75	3 300	4 400	7026	64	3.73
130	230 230	40 40	80	3	1.1	217 196	198 180	11.5 10.0	3 000 2 500	4 000 3 400	7226 7226B	72 95.5	7.15 7.15
	280	58	116	4	1.5	305	293	16.0	2 700	3 600	7326	88	17.6
	280	58	116	4	1.5	277	268	14.7	2 300	3 100	7326B	115	17.6
	190	24	48	1.5	1	83.5	90.0	4.65	3 300	4 400	7928	59.5	1.94
	210	33	66	2	1	133	133	6.85	3 100	4 100	7028	67	3.96
140	250 250	42 42	84 84	3	1.1	225 203	215 195	11.7 10.1	2 700 2 300	3 600 3 100	7228 7228B	77.5 103	8.78 8.78
	300	62	124	4	1.1 1.5	335	335	17.7	2 500	3 300	7328	94.5	21.5
	300	62	124	4	1.5	305	310	16.3	2 100	2 800	7328B	123	21.5
	210	28	56	2	1	108	117	5.80	3 100	4 100	7930	66	2.96
	225	35	70	2.1	1.1	152	154	7.65	2 800	3 800	7030	71.5	4.82
150	270	45	90	3	1.1	257	259	13.7	2 500	3 400	7230	83	11
	270	45	90	3	1.1	232	235	11.9	2 200	2 900	7230B	111	11

(DF)

Basic load rating Fatigue

# 1) Bearing numbers appended with the code "B" have a contact angle of 40°; bearings without this code have a contact angle of 30°

4

365

335

109

172

291

263

385

350

115

206

325

295

430

1.5

1.5

1.1

1.1

1.1

1.5

1.5

1.1

1.5

1.5

1.5

380

350

121

176

305

279

420

385

129

214

360

325

485

19.5

17.9

5.80

8.55

15.8

13.7

20.9

19.1

6.05

10.2

18.0

15.6

23.3

2 300

2 000

2 800

2 700

2 400

2 000

2 100

1 800

2 700

2 500

2 200

1 900

2 000

3 100

2 600

3 800

3 600

3 200

2 700

2 800

2 400

3 600

3 300

3 000

2 500

2 700

# Single and Duplex Angular Contact Ball Bearings



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

e e			Singl	e, DT			DB	, DF	
ng it	e	$F_{\rm a}/I$	Fr <b>≦</b> e	Fa/I	$F_{\rm r} > e$	$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/I$	$F_{\rm r} > \epsilon$
a S		X	Y	X	Y	X	Y	X	Y
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93

#### Static equivalent radial load $P_{0r} = X_0 F_r + Y_0 F_a$

Contact	Singl	e, DT	DB, DF			
	$X_0$	$Y_0$	$X_0$	$Y_0$		
30°	0.5	0.33	1	0.66		
40°	0.5	0.26	1	0.52		

For single and DT arrangement, when  $P_{0r} < F_r$  use  $P_{0r}=F_{r}$ .

Basic load rating dynamic static		(duplex)		Bearing number		Installation-related dimensions					
$C_{ m r}$	uplex) kN $C_{0\mathrm{r}}$	Grease lubrication le	Oil	DB	DF	DT	$d_{ m a}$ Min.	$D_{\mathrm{a}}$ Max.	$D_{ m b}$ Max.	$r_{ m as}$ Max.	$r_{ m las}$ Max.
169	197	2 900	3 800	DB	DF	DT	130	170	174.5	2	1
330	355	2 600	3 400	DB	DF	DT	132	203	208	2	1
298	325	2 300	3 000	DB	DF	DT	132	203	208	2	1
445	505	2 300	3 100	DB	DF	DT	134	246	253	2.5	1
405	460	2 000	2 700	DB	DF	DT	134	246	253	2.5	1
135	175	2 800	3 800	DB	DF	DT	138.5	171.5	174.5	1.5	1
211	251	2 600	3 500	DB	DF	DT	140	190	194.5	2	1
355	395	2 400	3 100	DB	DF	DT	144	216	223	2.5	1
320	360	2 100	2 700	DB	DF	DT	144	216	223	2.5	1
490	585	2 100	2 800	DB	DF	DT	148	262	271.5	3	1.5
450	535	1 900	2 500	DB	DF	DT	148	262	271.5	3	1.5
136	180	2 600	3 500	DB	DF	DT	148.5	181.5	184.5	1.5	1
215	265	2 400	3 300	DB	DF	DT	150	200	204.5	2	1
365	430	2 200	2 900	DB	DF	DT	154	236	243	2.5	1
330	390	1 900	2 500	DB	DF	DT	154	236	243	2.5	1
540	670	2 000	2 600	DB	DF	DT	158	282	291.5	3	1.5
495	615	1 700	2 300	DB	DF	DT	158	282	291.5	3	1.5
175	234	2 400	3 300	DB	DF	DT	160	200	204.5	2	1
246	305	2 300	3 000	DB	DF	DT	162	213	218	2	1
420	515	2 000	2 700	DB	DF	DT	164	256	263	2.5	1
375	470	1 800	2 400	DB	DF	DT	164	256	263	2.5	1
595	765	1 800	2 400	DB	DF	DT	168	302	311.5	3	1.5
540	700	1 600	2 100	DB	DF	DT	168	302	311.5	3	1.5
177	241	2 300	3 000	DB	DF	DT	170	210	214.5	2	1
279	355	2 100	2 800	DB	DF	DT	172	228	233	2	1
475	615	1 900	2 500	DB	DF	DT	174	276	283	2.5	1
430	555	1 600	2 200	DB	DF	DT	174	276	283	2.5	1
625	845	1 700	2 300	DB	DF	DT	178 178	322	331.5	3	1.5
570	770	1 500	2 000	DB	DF	DT	178	322	331.5	3	1.5
183	257	2 100	2 800	DB	DF	DT	180	220	224.5	2	1
335	430	2 000	2 600	DB	DF	DT	182	248	253	2	1
530	715	1 800	2 400	DB	DF	DT	188	292	301.5	3	1.5
480	650	1 500	2 100	DB	DF	DT	188	292	301.5	3	1.5
700	970	1 600	2 100	DB	DF	DT	188	342	351.5	3	1.5

B-69

7330

7932

7032

7232

7332

7934

7034

7234

7334

7234B

7232B

7332B

7330B

100

131

69

77

89

118

106

139

71.5

95.5 17

83

127

113

25.1

25.1

3.13

5.96

13.7

13.7

29.8

29.8

3.29

7.96

35.3

²⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ .

# Single and Duplex Angular Contact Ball Bearings

# NTN











*d* 170 ∼ 300mm

Single row

Back-to-back arrangement (DB) (DF)

Tandem arrangement arrangement (DT)

	Boundary dimensions					Basic load rating		Fatigue Allowable speed load		Bearing number 1)	Load center	<b>Mass</b> kg		
				mm			dynam	ic static	limit	mi		ilullibei 7	mm	
	d	D	В	2B	$r_{ m s min}^{2)}$	$r_{ m ls\;min^{2)}}$	$C_{ m r}$	kN $C_{0\mathrm{r}}$	$KN \ C_{ m u}$	Grease lubrication	Oil lubrication		a	Single row (approx.)
	170	360	72	144	4	1.5	395	445	21.3	1 700	2 300	7334B	147	35.3
		250	33	66	2	1	145	163	7.40	2 500	3 300	7936	78.5	4.87
		280	46	92	2.1	1.1	242	266	12.3	2 300	3 100	7036	89.5	10.4
	180	320	52	104	4	1.5	340	385	18.6	2 100	2 800	7236	98	17.7
	100	320	52	104	4	1.5	305	350	16.1	1 800	2 400	7236B	131	17.7
		380	75	150	4	1.5	455	535	24.9	1 900	2 500	7336	118	40.9
		380	75	150	4	1.5	415	490	22.8	1 600	2 100	7336B	155	40.9
ı		260	33	66	2	1	147	169	7.45	2 400	3 200	7938	81.5	5.1
		290	46	92	2.1	1.1	248	280	12.6	2 200	2 900	7038	92.5	10.8
		340	55	110	4	1.5	335	390	17.9	2 000	2 600	7238	104	21.3
	190	340	55	110	4	1.5	300	355	15.5	1 700	2 200	7238B	139	21.3
		400	78	156	5	2	475	585	26.6	1 800	2 300	7338	124	47
		400	78	156	5	2	430	535	24.0	1 500	2 000	7338B	163	47
ł														
		280	38	76	2.1	1.1	205	231	9.90	2 200	3 000	7940	88.5	7.15
		310	51	102	2.1	1.1	279	325	14.3	2 100	2 800	7040	99	14
	200	360	58	116	4	1.5	375	450	20.2	1 900	2 500	7240	110	25.3
		360	58	116	4	1.5	335	410	17.6	1 600	2 100	7240B	146	25.3
		420	80	160	5	2	500	610	27.0	1 700	2 200	7340	130	53.1
		420	80	160	5	2	455	555	24.7	1 400	1 900	7340B	170	53.1
	220	300	38	76	2.1	1.1	207	239	9.85	2 000	2 700	7944	94	7.74
	240	320	38	76	2.1	1.1	213	255	10.1	1 800	2 400	7948	100	8.34
	260	360	46	92	2.1	1.1	285	375	14.1	1 700	2 200	7952	112	14
	280	380	46	92	2.1	1.1	289	385	14.1	1 500	2 100	7956	118	14.8

# Single and Duplex Angular Contact Ball Bearings



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

act			Singl	e, DT			DB	, DF		
ng it	e	Fa/Fr≦e		$e F_a/F_r>e$		$F_{\rm a}/I$	Fr <b>≦</b> e	$F_{\rm a}/F_{\rm r} > 0$		
ပို့စ		X	Y	X	Y	X	Y	X	Y	
30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24	
40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93	

#### Static equivalent radial load $P_{0r}=X_0F_r+Y_0F_a$

Contact	Singl	e, DT	DB, DF			
	$X_0$	$Y_0$	$X_0$	$Y_0$		
30°	0.5	0.33	1	0.66		
40°	0.5	0.26	1	0.52		

For single and DT arrangement, when  $P_{0r} < F_r$  use  $P_{0r}=F_{r}$ .

<b>Basic</b> dynam	load rating	Allowable speed 1) (duplex)		Bear	ing nun	nber	In	Installation-related dimensions			
	duplex) kN $C_{0\mathrm{r}}$	min Grease Iubrication I	Oil	DB	DF	DT	$d_{ m a}$ Min.	$D_{ m a}$ Max.	$D_{ m b}$ Max.	$r_{ m as}$ Max.	$r_{ m 1as}$ Max.
640	890	1 400	1 800	DB	DF	DT	188	342	351.5	3	1.5
236	325	2 000	2 700	DB	DF	DT	190	240	244.5	2	1
395	530	1 900	2 500	DB	DF	DT	192	268	273	2	1
550	770	1 700	2 200	DB	DF	DT	198	302	311.5	3	1.5
495	700	1 400	1 900	DB	DF	DT	198	302	311.5	3	1.5
735	1 070	1 500	2 000	DB	DF	DT	198	362	371.5	3	1.5
670	975	1 300	1 700	DB	DF	DT	198	362	371.5	3	1.5
239	335	1 900	2 500	DB	DF	DT	200	250	254.5	2	1
405	560	1 800	2 300	DB	DF	DT	202	278	283	2	1
545	780	1 600	2 100	DB	DF	DT	208	322	331.5	3	1.5
490	705	1 400	1 800	DB	DF	DT	208	322	331.5	3	1.5
770	1 170	1 400	1 900	DB	DF	DT	212	378	390	4	2
700	1 070	1 200	1 600	DB	DF	DT	212	378	390	4	2
335	465	1 800	2 400	DB	DF	DT	212	268	273	2	1
455	650	1 700	2 200	DB	DF	DT	212	298	303	2	1
605	900	1 500	2 000	DB	DF	DT	218	342	351.5	3	1.5
545	815	1 300	1 700	DB	DF	DT	218	342	351.5	3	1.5
810	1 220	1 300	1 800	DB	DF	DT	222	398	410	4	2
740	1 110	1 200	1 500	DB	DF	DT	222	398	410	4	2
335	475	1 600	2 100	DB	DF	DT	232	288	293	2	1
345	510	1 500	1 900	DB	DF	DT	252	308	313	2	1
465	750	1 300	1 800	DB	DF	DT	272	348	353	2	1
470	775	1 200	1 600	DB	DF	DT	292	368	373	2	1
590	1 040	1 100	1 500	DB	DF	DT	314	406	413	2.5	1

18.2

1 400 1 900 7960

**300** 420 56 112 3

¹⁾ Bearing numbers appended with the code "B" have a contact angle of  $40^{\circ}$ ; bearings without this code have a contact angle of  $30^{\circ}$ . 2) Smallest allowable dimension for chamfer dimension r or  $r_1$ .

# Four-Point Contact Ball Bearings

NTN

QJ type





Dynamic equivalent axial load  $P_a = F_a$ 

Static equivalent axial load  $P_{0a}=F_a$ 

d 30 ~ 90mm

Во	Boundary dimensions mm		nsions	dynamic static limi		Fatigue load limit	id lit min-1		Bearing Installation-related dimensions				Load center mm	<b>Mass</b> kg
d	D	B	$r_{ m smin}$		$C_{0a}$	$KN$ $C_{ m u}$	Grease lubrication	Oil lubrication		$d_{ m a}$ Min.	$D_{ m a}$ Max.	$r_{ m as}$ Max.	a	(approx.)
30	72	19	1.1	44.0	57.5	2.46	8 000	11 000	QJ306	37	65	1	30	0.42
35	80	21	1.5	55.0	73.0	3.15	7 000	9 300	QJ307	43.5	71.5	1.5	33	0.57
40	80 90	18 23	1.1 1.5	49.0 67.0	70.5 91.5	3.05 3.95	6 900 6 200	9 200 8 200	QJ208 QJ308	47 48.5	73 81.5	1 1.5	34.5 37.5	
45	85 100	19 25	1.1 1.5	55.0 87.0	81.0 121	3.50 5.20	6 200 5 500	8 200 7 400	QJ209 QJ309	52 53.5	78 91.5	1 1.5	37.5 42	0.52 1.05
50	90 110	20 27	1.1 2	57.5 102	89.0 145	3.80 6.20	5 600 5 000	7 500 6 700	QJ210 QJ310	57 60	83 100	1 2	40.5 46	0.603 1.38
55	100 120	21 29	1.5 2	71.0 118	112 170	4.80 7.30	5 100 4 600	6 800 6 100	QJ211 QJ311	63.5 65	91.5 110	1.5 2	44.5 50.5	
60	110 130	22 31	1.5 2.1	86.0 135	138 198	5.90 8.50	4 700 4 200	6 300 5 700	QJ212 QJ312	68.5 72	101.5 118	1.5 2	49 55	0.98 2.18
65	120 140	23 33	1.5 2.1	93.5 153	153 228	6.55 9.70	4 400 3 900	5 800 5 200	QJ213 QJ313	73.5 77	111.5 128	1.5 2	53.5 59	1.24 2.7
70	125 150	24 35	1.5 2.1	102 172	168 260	7.15 10.7	4 000 3 600	5 400 4 800	QJ214 QJ314	78.5 82	116.5 138	1.5 2	56.5 63.5	
75	130 160	25 37	1.5 2.1	106 187	183 294	7.55 11.7	3 800 3 400	5 000 4 500	QJ215 QJ315	83.5 87	121.5 148	1.5 2	59 68	1.53 3.9
80	140 170	26 39	2 2.1	124 202	217 330	8.65 12.7	3 500 3 200	4 700 4 200	QJ216 QJ316	90 92	130 158	2 2	63.5 72	1.83 4.64
85	150 180	28 41	2 3	139 218	252 370	9.65 13.8	3 300 3 000	4 400 4 000	QJ217 QJ317	95 99	140 166	2 2.5	68 76.5	2.3 5.43
90	160 190	30 43	2	164 235	293 410	11.1 14.8	3 100 2 800	4 200 3 800	QJ218 QJ318	100 104	150 176	2 2.5	72 81	2.76 6.31

Smallest allowable dimension for chamfer dimension r.
 Note: 1. These bearings are also manufactured with a slot in the chamfer section of the outer ring to stop whirling.
 This bearing is widely used in applications where the only type of load is axial. When considering it for use where radial loads are applied, consult NTN Engineering.

# Four-Point Contact Ball Bearings

NTN

QJ type





Dynamic equivalent axial load  $P_a = F_a$ 

Static equivalent axial load  $P_{0a}=F_{a}$ 

*d* 95 ∼ 120mm

Воц	•		ad rating	Fatigue load	Allowab	Allowable speed		Installation-related dimensions			Load center	Mass		
	m	ım			c static kN	limit kN	m Grease	in-1 Oil	number	$d_{\rm a}$	mm $D_{\rm a}$	$r_{\rm as}$	mm	kg
d	D	B	$r_{\rm s min}^{1)}$	$C_{\rm a}$	$C_{0a}$	$C_{\mathrm{u}}$	lubrication	lubrication		Min.	Max.	Max.	a (	approx.)
95	170	32	2.1	186	335	12.4	3 000	3 900	QJ219	107	158	2	76.5	3.35
	200	45	3	251	450	16.0	2 700	3 500	QJ319	109	186	2.5	85	7.41
100	180	34	2.1	200	355	12.9	2 800	3 700	QJ220	112	168	2	81	4.02
	215	47	3	302	585	20.0	2 500	3 400	QJ320	114	201	2.5	91	9.14
105	190	36	2.1	218	400	14.2	2 700	3 600	QJ221	117	178	2	85	4.75
	225	49	3	303	585	19.6	2 400	3 200	QJ321	119	211	2.5	95.5	10.4
110	200	38	2.1	236	450	15.5	2 500	3 400	QJ222	122	188	2	89.5	5.62
	240	50	3	338	680	22.1	2 300	3 100	QJ322	124	226	2.5	101	12
120	215	40	2.1	266	540	17.7	2 300	3 100	QJ224	132	203	2	96.5	6.75
	260	55	3	359	765	23.8	2 100	2 800	QJ324	134	246	2.5	110	15.9

1) Smallest allowable dimension for chamfer dimension r.
Note: 1. These bearings are also manufactured with a slot in the chamfer section of the outer ring to stop whirling.

2. This bearing is widely used in applications where the only type of load is axial. When considering it for use where radial

loads are applied, consult NTN Engineering.



# Double Row Angular Contact Ball Bearings

load

limit

kΝ

0.230

0.350

0.420

0.620

0.540

0.770

0.750

0.930

0.880

1.30

1.30

1.70

1.70

2.20

2.00

2.50

2.30

3.10

2.70

3.80

3.00

4.50

3.80

6.00

4.20

7.00



Load Mass

(approx.)

14.5 0.05

16.7 0.06

18.3 0.07

20.8 0.1

24.3 0.16

26.8 0.18

31.8 0.35

31.6 0.3

36.5 0.57

36.6 0.46

41.5 0.62

43.4 0.67

50.6 1.37

45.9 0.72

55.6 1.84

50.1 1.01

60.6 2.4

56.5 1.33

69.2 2.92

72.8 3.67

59.7

1.5 41.6 0.76

1.5 45.5 1.03

0.13

0.18

0.22

center

mm

a

22

25

26.7





Boundary dimensions Basic load rating Fatigue

 $C_{\rm r}$ 

7.15

17.6

21.0

19.6

21.3

29.6

39.0

dynamic static

kΝ

 $C_{0r}$ 

3.90

5.80

7.05

9.05

12.6

12.4

15.0

14.7

20.7

21.1

28.1

28.7

36.0

33.5

41.0

38.0

51.0

43.5

61.5

49.0

73.0

62.0

98.5

69.0

113

10.2



Grease

17 000

15 000

13 000

11 000

11 000

10 000

10 000

9 000

8 500

7 500

7 100

6 300

6 300

5 600

5 600

5 300

5 000

4 500

4 800

4 300

4 300

3 800

3 800

3 400

3 600

3 200

B-74



 1 211						
e	$\frac{F_{2}}{F_{1}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
	X	Y	X	Y		
0.68	1	0.92	0.67	1.41		

Static equivalent radial load  $P_{0r} = F_r + 0.76F_a$ 

Installation-related

dimensions

mm

 $D_{\rm a}$ 

Max.

30

65

65

71

73 1

91

 $r_{\rm as}$ 

Max.

0.6

0.6

0.6

1

1

1.5

2

1.5

1.5

1.5

2

2

2

 $d_{\rm a}$ 

Min.

15 25

17 27

20

21 36

22 35

23 41

26 41

27 45

31 46

32 55

36 56 1

37

42

49 81

52 78 1

57 83

64 91

60 100

65 110

69 101

72 118

74 111

77 128

5200S

5201S

5202S

5302S

5203S

5303S

5204S

5304S

5205S

5305S

5206S

5306S

5207S

5307S

5208S

5308S

5209S

5309S

5210S

5310S

5211S

5311S

5212S

5312S

5213S

5313S

Allowable speed Bearing

Oil

22 000

20 000

17 000

15 000

15 000

13 000

13 000

12 000

11 000

10 000

9 500

8 500

8 000

7 500

7 100

6 700

6 700

6 000

6 000

5 600

5 600

5 000

5 000

4 500

4 500

4 300

lubrication lubrication

e	$\frac{F_{1}}{F_{1}}$	$\leq e$	$\frac{Fa}{Fr} > e$			
	X	Y	X	Y		
0.68	1	0.92	0.67	1.41		

# Double Row Angular Contact Ball Bearings







Dynamic equivalent radial load

$P_{\rm r} = XF_{\rm r} + YF_{\rm a}$										
	e	$\frac{F_{8}}{F_{1}}$	$\leq e$	$\frac{F_{i}}{F_{i}}$						
		X	Y	X	Y					
0	.68	1	0.92	0.67	1.41					

Static equivalent radial load  $P_{0r} = F_r + 0.76F_a$ 

### d 70 ∼ 85mm

В	oun	dary	dime	nsions	Basic loa	d rating	Fatigue load	Allowab	ole speed	Bearing number		lation-re		Load center	
		r	nm		dynamic k1	static N	<b>limit</b> kN	m Grease	in-1 Oil		$d_{\rm a}$	$m$ m $D_{\mathrm{a}}$	$r_{\rm as}$	mm	kg
C	l	D	В	$r_{\rm s min}^{1)}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	lubrication	lubrication		Min.	Max.	Max.	a	(approx.)
7		125 150	39.7 63.5		94.0 159	82.0 128	5.00 7.90	3 400 3 000	4 500 3 800	5214S 5314S	79 82	116 138	1.5 2	63.8 78.3	1.75 4.55
7	5	130	41.3	1.5	93.5	83.0	5.10	3 200	4 300	5215S	84	121	1.5	66.1	1.88
8	0	140	44.4	2	99.0	93.0	5.70	3 000	3 800	5216S	90	130	2	69.6	2.51
8	5	150	49.2	2	116	110	6.70	2 800	3 600	5217S	95	140	2	75.3	3.16





d 10 ~ 65mm

d D B  $r_{\rm s min}^{1)}$ 

**10** 30 14.3 0.6

32 15.9 0.6

42 19 1

47 22.2 1

47 20.6 1

52 20.6 1

62 23.8 1

72 27 1.1

35 15.9 0.6 11.7

40 17.5 0.6 14.6

52 22.2 1.1 24.6

62 25.4 1.1 32.5

72 30.2 1.1 40.5

80 34.9 1.5 51.0

80 30.2 1.1 44.0

90 36.5 1.5 56.5

85 30.2 1.1 49.5

90 30.2 1.1 53.0

100 33.3 1.5 56.0

110 36.5 1.5 69.0

120 38.1 1.5 76.5

**65** 140 58.7 2.1 142

130 54 2.1 125

110 44.4 2

120 49.2 2

100 39.7 1.5 68.5





(ZZ)





Non-contact sealed type (LLM)

Contact sealed type (LLD)

d	1	0	$\sim$	40	mr	n
---	---	---	--------	----	----	---

Во	Boundary dimensions			Basic lo	ad rating	Fatigue load	Al	lowable spec	ed	Bearing	number	• 2)
d	D	mm <i>B</i>	$r_{ m smin}^{-1)}$	dynamic $_{ m k}$	static $N$	limit kN	Grease lubrication ZZ, LLM Z, LM	Oil lubrication Z, LM	LLD, LD	Shielded type	Non- contact sealed type	Contact sealed type
10	30	14.3	0.6	7.15	3.90	0.230	17 000	22 000	15 000	5200SCZZ	LLM	LLD
12	32	15.9	0.6	8.50	5.30	0.310	15 000	20 000	12 000	5201SCZZ	LLM	LLD
15	35	15.9	0.6	8.50	5.30	0.310	13 000	17 000	12 000	5202SCZZ	LLM	LLD
17	40 47	17.5 22.2	0.6 1	12.7 19.6	8.30 12.4	0.490 0.750	11 000 10 000	15 000 13 000	10 000 9 500	5203SCZZ 5303SCZZ	LLM LLM	LLD LLD
20	47	20.6	1	15.9	10.7	0.640	10 000	13 000	9 000	5204SCZZ	LLM	LLD
25	52 62	20.6 25.4	1 1.1	16.9 25.2	12.3 18.2	0.740 1.10	8 500 7 500	11 000 10 000	7 500 6 300	5205SCZZ 5305SCZZ	3) LLM LLM	LLD LLD
30	62 72	23.8 30.2	1 1.1	25.2 39.0	18.2 28.7	1.10 1.70	7 100 6 300	9 500 8 500	6 300 5 300	5206SCZZ 5306SCZZ	LLM LLM	LLD LLD
35	72 80	27.0 34.9	1.1 1.5	34.0 44.0	25.3 33.5	1.50 2.00	6 300 5 600	8 500 7 500	5 300 4 800	5207SCZZ 5307SCZZ	LLM LLM	LLD LLD
40	80 90	30.2 36.5	1.1 1.5	36.5 49.5	29.0 38.0	1.70 2.30	5 600 5 300	7 100 6 700	4 800 4 500	5208SCZZ 5308SCZZ	3) LLM LLM	LLD LLD



e	$\frac{F_{3}}{F_{1}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
	X	Y	X	Y		
0.68	1	0.92	0.67	1.41		

Static equivalent radial load  $P_{0r}=F_r+0.76F_a$ 

	Installation-related dimensions									
Min.	$d_{ m a}$ Max.	m $D_{ m a}$ Max.	$r_{ m as}$ Max.	mm a						
14	15.5	26	0.6	14.5						
16	19	28	0.6	16.3						
19	19	31	0.6	16.3						
21	23.5	36	0.6	20.1						
23	25.5	41	1	24.3						
26	26.5	41	1	23						
31	32	46	1	25.4						
32	38.5	55	1	30.9						
36	38.5	56	1	30.9						
37	44.5	65	1	36.6						
42	45	65	1	36.3						
44	50.5	71	1.5	41.5						
47	50.5	73	1	39.4						
49	53	81	1.5	43						

Smallest allowable dimension for chamfer dimension r.
 This bearing number is for double sealed and double shielded type bearings, but single sealed and single shielded types are also available.

³⁾ Resin formed cage is standard for 5205SC and 5208SC.

# **Self-Aligning Ball Bearings**



# Self-Aligning Ball Bearings





# 1. Design features and characteristics

The outer ring raceway of self-aligning ball bearings forms a spherical surface whose center is common to the bearing center. The inner ring of the bearing has two raceways.

The balls, cage, and inner ring of these bearings are capable of shifting in order to compensate for a certain degree of misalignment with the outer rings. As a result, the bearing is able to align itself and compensate for shaft / housing finishing unevenness, bearing fitting error, and other sources of misalignment as shown in Fig. 1.

Since axial load capacity is limited, selfaligning ball bearing are not suitable for applications with heavy axial loads. It is recommended to use an adapter on a self-aligning ball bearing with a tapered bore inner diameter for ease of installation and disassembly. These bearings and adapters are often used on drive shaft applications.



Fig. 1

# 2. Standard cage type

All bearing series are equipped with a pressed cage, except 2321S and 2322S, which are equipped with a machined cage.

Table 1 Standard cage types of spherical ball bearings

	Pressed s	steel cage	Machined cage
Cage type			
Bearing series or model	12 and 13 series	22 and 23 series	2321S, 2322S

# 

# 3. Ball protrusion

Bearings with part numbers listed in Table 2 below have balls which protrude slightly from the bearing face as illustrated in Fig. 2. The total width dimensions are shown in Table 2.



Fig. 2

#### Table 2

Unit: mm Width Total width Bearing numbers dimension Bdimension  $B_1$ 2222S (K) 53 54 58 2316S (K) 59 2319S (K) 67 68 2320S (K) 73 74 2321S 77 78 2322S (K) 80 81 43 1318S (K) 46 1319S (K) 45 49 1320S (K) 47 53 1321S 49 55 1322S (K) 50 56

# 4. Allowable misalignment angle

NTN

The allowable misalignment angle can be determined by the following function. This degree of allowable misalignment may be limited by the design of mating components around the bearing.

Normal load ..... 1/15

# 5. Precautions for using self-aligning ball bearings

Self-aligning ball bearings are unable to support large axial loads and therefore axial loading shall be limited.

Please consider using self-aligning roller bearings when a large axial load is to be applied.

B-81 B-80







Cylindrical bore

Tapered bore

d 10  $\sim$  35mm

В	oundar	y dime	ensions	Basic lo	ad rating	Fatigue load	Allowab	le speed	Bearing	numbers	Installation-related dimensions			
		mm		dynamic	static	limit	nit min-1				mm			
			4)		kN	kΝ	Grease	Oil	Cylindrical	Tapered	$d_{\mathrm{a}}$	$D_{\rm a}$	$r_{\rm as}$	
C	D	B	$r_{\rm smin}^{1)}$	$C_{\rm r}$	$C_{0\mathbf{r}}$	$C_{\mathrm{u}}$	lubrication	lubrication	bore	bore ²⁾	Min.	Max.	Max.	
	30	9	0.6	5.55	1.19	0.049	22 000	28 000	1200S	_	14.0	26.0	0.6	
10	30	14	0.6	7.45	1.59	0.067	24 000	28 000	2200S	_	14.0	26.0	0.6	
	35	11	0.6	7.35	1.62	0.074	20 000	24 000	1300S	_	14.0	31.0	0.6	
	35	17	0.6	9.20	2.01	0.096	18 000	22 000	2300S	_	14.0	31.0	0.6	
	32	10	0.6	5.70	1.27	0.053	22 000	26 000	1201S	_	16.0	28.0	0.6	
	20	14	0.6	7.75	1.73	0.033	22 000	26 000	2201S		16.0	28.0	0.6	
12	37	12	1	9.65	2.16	0.078	18 000	22 000	1301S	_	17.0	32.0	1	
	37	17	1	12.1	2.73	0.120	17 000	22 000	2301S	_	17.0	32.0	1	
	35	11	0.6	7.60	1.75	0.072	18 000	22 000	1202S	_	19.0	31.0	0.6	
1	35	14	0.6	7.80	1.85	0.095	18 000	22 000	2202S	_	19.0	31.0	0.6	
•	42	13	1	9.70	2.29	0.081	16 000	20 000	1302S	_	20.0	37.0	1	
	42	17	1	12.3	2.91	0.130	14 000	18 000	2302S	_	20.0	37.0	1	
	40	12	0.6	8.00	2.01	0.083	16 000	20 000	1203S		21.0	36.0	0.6	
	40	16	0.6	9.95	2.42	0.130	16 000	20 000	2203S		21.0	36.0	0.6	
10	47	14	1	12.7	3.20	0.110	14 000	17 000	1303S	_	22.0	42.0	1	
	47	19	1	14.7	3.55	0.160	13 000	16 000	2303S	_	22.0	42.0	1	
	47	14	1	10.0	2.61	0.110	14 000	17 000	1204S	1204SK	25.0	42.0	1	
2	47	18	1	12.8	3.30	0.140	14 000	17 000	2204S	2204SK	25.0	42.0	1	
21	52	15	1.1	12.6	3.35	0.140	12 000	15 000	1304S	1304SK	26.5	45.5	1	
	52	21	1.1	18.5	4.70	0.210	11 000	14 000	2304S	2304SK	26.5	45.5	1	
	52	15	1	12.2	3.30	0.130	12 000	14 000	1205S	1205SK	30.0	47.0	1	
	52	18	1	12.4	3.45	0.130	12 000	14 000	2205S	2205SK	30.0	47.0	1	
2	62	17	1.1	18.2	5.00	0.150	10 000	13 000	1305S	1305SK	31.5	55.5	i	
	62	24	1.1	24.9	6.60	0.290	9 500	12 000	2305S	2305SK	31.5	55.5	1	
	62	16	1	15.8	4.65	0.190	10 000	12 000	1206S	1206SK	35.0	57.0	1	
3	62	20	1	15.3	4.55	0.260	10 000	12 000	2206S	2206SK	35.0	57.0	1	
3	12	19	1.1	21.4	6.30	0.190	8 500	11 000	1306S	1306SK	36.5	65.5	1	
	72	27	1.1	32.0	8.75	0.380	8 000	10 000	2306S	2306SK	36.5	65.5	1	
	72	17	1.1	15.9	5.10	0.210	8 500	10 000	1207S	1207SK	41.5	65.5	1	
0		23	1.1	21.7	6.60	0.320	8 500	10 000	2207S	2207SK	41.5	65.5	1	
3	80	21	1.5	25.3	7.85	0.280	7 500	9 500	1307S	1307SK	43.0	72.0	1.5	
	80	31	1.5	40.0	11.3	0.480	7 100	9 000	2307S	2307SK	43.0	72.0	1.5	

Dynamic equivalent radial load

Pr = XFr + YFa

$\frac{Fa}{Fr}$	<b>≦</b> e	$\frac{Fa}{F_1}$	:>e
X	Y	X	Y
1	<i>Y</i> 1	0.65	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

Constant	Axi	al load fac	tors	Mass
				kg
e	$Y_1$	$Y_2$	$Y_0$	(approx.)
0.32	2.00	3.10	2.10	0.034
0.64	0.98	1.50	1.00	0.046
0.35	1.80	2.80	1.90	0.059
0.71	0.89	1.40	0.93	0.078
0.36	1.80	2.70	1.80	0.041
0.58	1.10	1.70	1.10	0.051
0.33	1.90	2.90	2.00	0.068
0.60	1.10	1.60	1.10	0.087
0.32	2.00	3.10	2.10	0.050
0.50	1.30	1.90	1.30	0.058
0.33	1.90	2.90	2.00	0.101
0.51	1.20	1.90	1.30	0.113
0.31	2.00	3.10	2.10	0.074
0.50	1.30	1.90	1.30	0.089
0.32	2.00	3.10	2.10	0.130
0.51	1.20	1.90	1.30	0.160
0.29	2.20	3.40	2.30	0.120
0.47	1.30	2.10	1.40	0.142
0.29	2.20	3.40	2.30	0.164
0.50	1.20	1.90	1.30	0.207
0.28	2.30	3.50	2.40	0.140
0.41	1.50	2.40	1.60	0.160
0.28	2.30	3.50	2.40	0.261
0.47	1.40	2.10	1.40	0.332
0.25	2.50	3.90	2.60	0.220
0.38	1.60	2.50	1.70	0.262
0.26	2.40	3.70	2.50	0.391
0.44	1.40	2.20	1.50	0.500
0.23	2.70	4.20	2.80	0.330
0.37	1.70	2.60	1.80	0.403
0.26	2.50	3.80	2.60	0.520
0.46	1.40	2.10	1.40	0.671







Cylindrical bore

Tapered bore

d 40  $\sim$  75mm

	Boundary dimensions			nsions	Basic lo	ad rating	Fatigue load	Allowab	le speed	Bearing	numbers	Installation-related dimensions		
			mm		dynami		limit	mi		C	<b>-</b> .	,	mm	
	d	D	В	$r_{\rm s  min}^{1)}$		kN $C_{0{ m r}}$	$_{C_{\mathrm{u}}}^{kN}$	Grease lubrication	Oil	Cylindrical bore	Tapered bore ²⁾	$d_{ m a}$ Min.	$D_{ m a}$ Max.	$r_{ m as}$ Max.
	и	D	D	s min '	O _r	C0r	Ou	lubrication	lublication	DOIE	DOI (e²)	IVIII I.	IVIdX.	IVIAX.
			4.0		40.0	0.50		<b></b>		40000	4000016	40.5	<b>70 5</b>	
		80 80	18 23	1.1	19.3 22.4	6.50 7.35	0.260	7 500 7 500	9 000 9 000	1208S 2208S	1208SK 2208SK	46.5 46.5	73.5 73.5	1
	40	90	23	1.5	29.8	9.70	0.390	6 700	8 500	1308S	1308SK	48.0	82.0	1.5
		90	33	1.5	45.5	13.5	0.580	6 300	8 000	2308S	2308SK	48.0	82.0	1.5
-					10.0	. 0.0	0.000	0 000	0 000			.0.0	02.0	
		85	19	1.1	22.0	7.35	0.290	7 100	8 500	1209S	1209SK	51.5	78.5	1
	45	85	23	1.1	23.3	8.15	0.510	7 100	8 500	2209S	2209SK	51.5	78.5	1
ľ	43	100	25	1.5	38.5	12.7	0.330	6 000	7 500	1309S	1309SK	53.0	92.0	1.5
		100	36	1.5	55.0	16.7	0.710	5 600	7 100	2309S	2309SK	53.0	92.0	1.5
		90	20	1.1	22.8	8.10	0.330	6 300	8 000	1210S	1210SK	56.5	83.5	1
	50	90	23	1.1	23.3	8.45	0.570	6 300	8 000	2210S	2210SK	56.5	83.5	1
	ου	110	27	2	43.5	14.1	0.350	5 600	6 700	1310S	1310SK	59.0	101	2
		110	40	2	65.0	20.2	0.860	5 000	6 300	2310S	2310SK	59.0	101	2
		100	21	1.5	26.9	10.0	0.400	6 000	7 100	1211S	1211SK	63.0	92.0	1.5
		100	25	1.5	26.7	9.90	0.720	6 000	7 100	2211S	2211SK	63.0	92.0	1.5
	55	120	29	2	51.5	17.9	0.400	5 000	6 300	1311S	1311SK	64.0	111	2
		120	43	2	76.5	24.0	1.00	4 800	6 000	2311S	2311SK	64.0	111	2
ı		110	22	1.5	30.5	11.5	0.460	5 300	6 300	1212S	1212SK	68.0	102	1.5
		110	28	1.5	34.0	12.6	0.840	5 300	6 300	2212S	2212SK	68.0	102	1.5
	60	130	31	2.1	57.5	20.8	0.510	4 500	5 600	1312S	1312SK	71.0	119	2
		130	46	2.1	88.5	28.3	1.20	4 300	5 300	2312S	2312SK	71.0	119	2
		120	23	1.5	31.0	12.5	0.500	4 800	6 000	1213S	1213SK	73.0	112	1.5
	۰-	120	31	1.5	43.5	16.4	0.920	4 800	6 000	2213S	2213SK	73.0	112	1.5
	65	140	33	2.1	62.5	22.9	0.670	4 300	5 300	1313S	1313SK	76.0	129	2
		140	48	2.1	97.0	32.5	1.40	3 800	4 800	2313S	2313SK	76.0	129	2
		125	24	1.5	35.0	13.8	0.550	4 800	5 600	1214S	_	78.0	117	1.5
		125	31	1.5	44.0	17.1	1.10	4 500	5 600	2214S	_	78.0	117	1.5
	70	150	35	2.1	75.0	27.7	0.690	4 000	5 000	1314S	_	81.0	139	2
		150	51	2.1	111	37.5	1.60	3 600	4 500	2314S	_	81.0	139	2
		130	25	1.5	39.0	15.7	0.630	4 300	5 300	1215S	1215SK	83.0	122	1.5
١,	76	130	31	1.5	44.5	17.8	1.20	4 300	5 300	2215S	2215SK	83.0	122	1.5
	75	160	37	2.1	80.0	30.0	0.720	3 800	4 500	1315S	1315SK	86.0	149	2
		160	55	2.1	125	43.0	1.80	3 400	4 300	2315S	2315SK	86.0	149	2

Dynamic equivalent radial load

Pr = XFr + YFa

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F_a}{F_1}$	:>e
X	Y	X	Y
1	<i>Y</i> 1	0.65	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

Constant	Axi	ial load fa	ctors	Mass
				kg
e	$Y_1$	$Y_2$	$Y_0$	(approx.)
0.22	2.8	4.3	2.9	0.420
0.33	1.9	3.0	2.0	0.506
0.24	2.6	4.0	2.7	0.727
0.43	1.5	2.3	1.5	0.918
0.21	3.0	4.7	3.1	0.470
0.30	2.1	3.2	2.2	0.556
0.25	2.6	4.0	2.7	0.971
0.41	1.5	2.4	1.6	1.200
0.21	3.1	4.7	3.2	0.535
0.28	2.2	3.4	2.3	0.598
0.23	2.7	4.2	2.8	1.230
0.42	1.5	2.3	1.6	1.630
0.20	3.2	4.9	3.3	0.708
0.28	2.3	3.5	2.4	0.807
0.23	2.7	4.2	2.8	1.600
0.41	1.5	2.4	1.6	2.080
0.18	3.4	5.3	3.6	0.910
0.28	2.3	3.5	2.4	1.100
0.23	2.8	4.3	2.9	2.000
0.40	1.6	2.4	1.6	2.580
0.17	3.7	5.7	3.8	1.160
0.28	2.3	3.5	2.4	1.500
0.23	2.7	4.2	2.9	2.470
0.39	1.6	2.5	1.7	3.200
0.18	3.4	5.3	3.6	1.300
0.26	2.4	3.7	2.5	1.550
0.22	2.8	4.4	3.0	3.030
0.38	1.7	2.6	1.8	3.900
0.17	3.6	5.6	3.8	1.360
0.25	2.5	3.9	2.6	1.600
0.22	2.8	4.4	2.9	3.630
0.38	1.6	2.5	1.7	4.780







Cylindrical bore

Tapered bore

### *d* 80 ∼ 110mm

	Boundary dimensions		Basic load rating		Fatigue load	Allowable speed		Bearing numbers		Installation-related dimensions					
		r	nm		dynami	c static		limit min-1			u	mm			
						kN	kN	Grease	Oil	Cylindrical	Tapered	$d_{\rm a}$	$D_{\rm a}$	$r_{ m as}$	
	d	D	B	$r_{\rm smin}^{12}$		$C_{0r}$	$C_{ m u}$		lubrication	bore	bore ²⁾	Min.	Max.	Max.	
		110	00	0	40.0	17.0	0.000	4.000	F 000	10100	404COK	00	101	•	
		140	26 33	2	40.0	17.0 19.9	0.680	4 000	5 000	1216S	1216SK	89	131 131	2	
	80	140	39		49.0		1.30	4 000	5 000	2216S	2216SK	89	159	2	
		170		2.1	89.0	33.0	0.800	3 600	4 300	1316S	1316SK	91		2	
		170	58	2.1	130	45.0	1.90	3 200	4 000	2316S	2316SK	91	159	2	
Ī		150	28	2	49.5	20.8	0.830	3 800	4 500	1217S	1217SK	94	141	2	
	٥-	150	36	2	58.5	23.6	1.50	3 800	4 800	2217S	2217SK	94	141	2	
	85	180	41	3	98.5	38.0	0.950	3 400	4 000	1317S	1317SK	98	167	2.5	
		180	60	3	142	51.5	2.10	3 000	3 800	2317S	2317SK	98	167	2.5	
-															
		160	30	2	57.5	23.5	0.940	3 600	4 300	1218S	1218SK	99	151	2	
	90	160	40	2	70.5	28.7	1.80	3 600	4 300	2218S	2218SK	99	151	2	
9	90	190	43	3	117	44.5	1.20	3 200	3 800	1318S	1318SK	103	177	2.5	
		190	64	3	154	57.5	2.40	2 800	3 600	2318S	2318SK	103	177	2.5	
Ī		170	32	2.1	64.0	27.1	1.10	3 400	4 000	1219\$	1219SK	106	159	2	
		170	43	2.1	84.0	34.5	2.00	3 400	4 000	2219S	2219SK		159	2	
	95	200	45	3	129	51.0	1.40	3 000	3 600	13195	1319SK		187	2.5	
		200	67	3	161	64.5	2.70	2 800	3 400	23198	2319SK		187	2.5	
			0,	Ū	101	0 1.0	2.70	2 000	0 100	20.00	2010010	100	107	2.0	
		180	34	2.1	69.5	29.7	1.20	3 200	3 800	1220S	1220SK		169	2	
	100	180	46	2.1	94.5	38.5	2.30	3 200	3 800	2220S	2220SK		169	2	
	100	215	47	3	140	57.5	1.60	2 800	3 400	1320S	1320SK	113	202	2.5	
		215	73	3	187	79.0	3.30	2 400	3 200	2320S	2320SK	113	202	2.5	
i		400	00	0.4	75.0	00.5	4.00	0.000	0.000	40040		440	470		
		190	36	2.1	75.0	32.5	1.30	3 000	3 600	12215		116	179	2	
	105	190	50	2.1	109	45.0	2.60	3 000	3 600	2221S	_	116	179	2	
		225	49	3	154	64.5	1.80	2 600	3 200	13215	_	118	212	2.5	
		225	77	3	200	87.0	3.60	2 400	3 000	2321S ³⁾	_	118	212	2.5	
ı		200	38	2.1	87.0	38.5	1.50	2 800	3 400	1222S	1222SK	121	189	2	
		200	53	2.1	122	51.5	2.90	2 800	3 400	2222S	2222SK		189	2	
	110	240	50	3	161	72.5	2.10	2 400	3 000	1322S	1322SK		227	2.5	
		240	80		211	94.5	3.90	2 200	2 800	2322S ³⁾	2322SK		227	2.5	
		0	50	-		5 1.0	0.00		_ 000						

# Dynamic equivalent radial load Pr=XFr+YFa

$\frac{Fa}{Fr}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	<i>Y</i> 1	0.65	$Y_2$			

# Static equivalent radial load $P_{0r}=F_r+Y_0F_a$

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

Constant	Axial load factors			Mass			
				kg			
e	$Y_1$	$Y_2$	$Y_0$	(approx.)			
0.16	3.9	6.0	4.1	1.68			
0.25	2.5	3.9	2.7	2.02			
0.22	2.9	4.5	3.1	4.24			
0.39	1.6	2.5	1.7	5.63			
0.17	3.7	5.7	3.8	2.10			
0.25	2.5	3.9	2.6	2.56			
0.21	2.9	4.6	3.1	5.03			
0.37	1.7	2.6	1.8	6.56			
0.17	3.8	5.8	3.9	2.56			
0.27	2.4	3.7	2.5	3.22			
0.22	2.8	4.3	2.9	5.83			
0.38	1.7	2.6	1.7	7.75			
0.17	3.7	5.8	3.9	3.12			
0.27	2.4	3.7	2.5	3.96			
0.23	2.8	4.3	2.9	6.79			
0.38	1.7	2.6	1.8	8.97			
0.17	3.6	5.6	3.8	3.74			
0.27	2.4	3.7	2.5	4.71			
0.24	2.7	4.1	2.8	8.40			
0.38	1.7	2.6	1.8	11.5			
0.18	3.6	5.5	3.7	4.43			
0.28	2.3	3.5	2.4	5.73			
0.23	2.7	4.2	2.9	9.58			
0.38	1.7	2.6	1.7	14.5			
0.18	3.7	5.7	3.9	5.21			
0.28	2.2	3.5	2.3	6.75			
0.22	2.8	4.4	3.0	11.5			
0.37	1.7	2.6	1.8	17.5			

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) "K" indicates bearings having a tapered bore with a taper ratio of 1:12. 3) A machined cage is the standard for 2321S and 2322S(K).

# (For self-aligning ball bearings)





d 17  $\sim$  50mm

	Boundary dimensions			Num	bers	li	nstallation	-related o	limensions		Mass ¹⁾	
		mm							mm			kg
	$d_1$	$B_1$	$d_2$	$B_2$	Bearing	Adapter	$d_{ m a}$ Min.	$d_{ m b}$ Max.	$S_1$ Min.	$D_{ m a}$ Max.	$r_{ m as}$ Max.	(approx.)
-	17	24 28 28 31	32 32 32 32	7 7 7 7	1204SK 2204SK 1304SK 2304SK	;H 304 ;H 304	23 24 24 24	27 28 31 28	5 5 8 5	41 41 45 45	1 1 1 1	0.041 0.045 0.045 0.049
2	20	26 29 29 35	38 38 38 38	8 8 8 8	1205SK 2205SK 1305SK 2305SK	H 305X	28 29 29 29	33 33 37 34	5 5 6 5	46 46 55 55	1 1 1	0.07 0.075 0.075 0.087
2	25	27 31 31 38	45 45 45 45	8 8 8 8	1206SK 2206SK 1306SK 2306SK	H 306X	33 34 34 35	39 39 44 40	5 5 6 5	56 56 65 65	1 1 1 1	0.099 0.109 0.109 0.126
	30	29 35 35 43	52 52 52 52	9 9 9	1207SK 2207SK 1307SK 2307SK	H 307X	38 39 39 40	46 45 50 46	5 5 7 5	65 65 71.5 71.5	1 1 1.5 1.5	0.125 0.142 0.142 0.165
;	35	31 36 36 46	58 58 58 58	10 10 10 10	1208SK 2208SK 1308SK 2308SK	H 308X	44 44 44 45	52 50 56 52	5 5 5 5	73 73 81.5 81.5	1 1 1.5 1.5	0.174 0.189 0.189 0.224
4	40	33 39 39 50	65 65 65 65	11 11 11 11	1209SK 2209SK 1309SK 2309SK	H 309X	49 49 49 50	57 57 61 58	5 8 5 5	78 78 91.5 91.5	1 1 1.5 1.5	0.227 0.248 0.248 0.28
4	45	35 42 42 55	70 70 70 70	12 12 12 12	1210SK 2210SK 1310SK 2310SK	H 310X	53 54 54 56	62 63 67 65	5 10 5 5	83 83 100 100	1 1 2 2	0.274 0.303 0.303 0.362
į	50	37	75	12	1211SK	;H 211X	60	70	6	91.5	1.5	0.308

1) Indicates adapter mass.

Note: 1. Refer to pages B-82 to B-85 for bearing dimensions, basic rated loads, and mass.

2. Adapters for series 12 bearings can also be used with H2 and H3 series bearings. Caution: the B₁ dimension of H3 series bearings is longer than that of H2 series bearings.

3. Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washers with straight inner tabs.

4. Refer to pages D-2 to D-7 and D-12 to D-14 for adapter locknut and washer dimensions.

(For self-aligning ball bearings)





*d* 50 ∼ 85mm

Adapters

	Rounda	rv dimons	ions	Numb	orc		Installation	-related (	limonsions		Mass ¹⁾
	Boundary dimensions		Numb								
$d_1$	$B_1$	mm $d_2$	$B_2$	Bearing	Adapter	$d_{ m a}$ Min.	$d_{ m b}$ Max.	$\begin{array}{c} \operatorname{mm} \\ S_1 \\ \operatorname{Min.} \end{array}$	$D_{\mathrm{a}}$ Max.	$r_{ m as}$ Max.	kg (approx.
50	45 45	75 75	12 12	2211SK;I	1311X	60 60	69 73	11 6	91.5 110	1.5 2	0.345 0.345
55	38 47 47 62	75 80 80 80 80	12 13 13 13 13	2311SK;I 1212SK;I 2212SK;I 1312SK;I 2312SK;I	H 212X H 312X H 312X	61 64 65 65 66	71 76 75 79 77	5 9 5 5	110 101.5 101.5 118 118	1.5 1.5 2 2	0.42 0.346 0.394 0.394 0.481
60	40 50 50 65	85 85 85 85	14 14 14 14	1213SK;I 2213SK;I 1313SK;I 2313SK;I	H 213X H 313X H313X	70 70 70 70 72	83 81 85 84	5 8 5 5	111.5 111.5 128 128	1.5 1.5 2 2	0.401 0.458 0.458 0.557
65	43 55 55 73	98 98 98 98	15 15 15 15	1215SK;I 2215SK;I 1315SK;I 2315SK;I	H 315X H 315X	80 80 80 82	93 93 97 96	5 12 5 5	121.5 121.5 148 148	1.5 1.5 2 2	0.707 0.83 0.83 1.05
70	46 59 59 78	105 105 105 105	17 17 17 17	1216SK;I 2216SK;I 1316SK;I 2316SK;I	H 316X H 316X	85 86 86 87	100 98 103 103	5 12 5 5	130 130 158 158	2 2 2 2	0.882 1.03 1.03 1.28
75	50 63 63 82	110 110 110 110	18 18 18 18	1217SK;I 2217SK;I 1317SK;I 2317SK;I	H 317X H 317X	90 91 91 94	106 104 110 110	6 12 6 6	140 140 166 166	2 2 2.5 2.5	1.02 1.18 1.18 1.45
80	52 65 65 86	120 120 120 120	18 18 18 18	1218SK;I 2218SK;I 1318SK;I 2318SK;I	H 318X H 318X	95 96 96 99	111 112 116 117	6 10 6 6	150 150 176 176	2 2 2.5 2.5	1.19 1.37 1.37 1.69
85	55 68	125 125	19 19	1219SK; <b>I</b> 2219SK; <b>I</b>		101 102	118 117	7 9	158 158	2 2	1.37 1.56

Indicates adapter mass.
 Note: 1. Refer to pages B-84 to B-87 for bearing dimensions, basic rated loads, and mass.
 Adapters for series 12 bearings can also be used with H2 and H3 series bearings. Caution: the B₁ dimension of H3 series bearings is longer than that of H2 series bearings.
 Adapter numbers which are appended with the code "X" indicate anrows lift type adapters which use washers with straight inner tabs.
 Refer to pages D-2 to D-7 and D-12 to D-14 for adapter locknut and washer dimensions.

# (For self-aligning ball bearings)





*d* 85 ∼ 100mm

	Bounda	ry dimens	ions	Numbers	Installation-related dimensions			s	Mass ¹⁾	
$d_1$	$B_1$	mm $d_2$	$B_2$	Bearing Adapter	$d_{ m a}$ Min.	$d_{ m b}$ Max.	$\begin{array}{c} \operatorname{mm} \\ S_1 \\ \operatorname{Min.} \end{array}$	$D_{ m a}$ Max.	r _{as} Max.	kg (approx.)
85	68	125	19	1319SK; <b>H 319X</b>	102	123	7	186	2.5	1.56
	90	125	19	2319SK; <b>H2319X</b>	105	123	7	186	2.5	1.92
90	58	130	20	1220SK; <b>H 220X</b>	106	125	7	168	2	1.49
	71	130	20	2220SK; <b>H 320X</b>	107	123	8	168	2	1.69
	71	130	20	1320SK; <b>H 320X</b>	107	130	7	201	2.5	1.69
	97	130	20	2320SK; <b>H2320X</b>	110	129	7	201	2.5	2.15
100	63	145	21	1222SK; <b>H 222X</b>	116	138	7	188	2	1.93
	77	145	21	2222SK; <b>H 322X</b>	117	137	6	188	2	2.18
	77	145	21	1322SK; <b>H 322X</b>	117	150	9	226	2.5	2.18
	105	145	21	2322SK; <b>H2322X</b>	121	142	7	226	2.5	2.74

1) Indicates adapter mass.

Note: 1. Refer to pages B-86 to B-87 for bearing dimensions, basic rated loads, and mass.

2. Adapters for series 12 bearings can also be used with H2 and H3 series bearings. Caution: the B₁ dimension of H3 series bearings is longer than that of H2 series bearings.

3. Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washers with straight inner tabs.

4. Refer to pages D-2 to D-9 and D-12 to D-14 for adapter locknut and washer dimensions.

# **Cylindrical Roller Bearings**



# Cylindrical Roller Bearings











Cylindrical roller bearing

E Type cylindrical roller bearing

Double-row cylindrical roller bearing

# 1. Types, design features, and characteristics

Cylindrical roller bearings can accommodate heavy radial loads due to the line contact formed between their rolling elements and raceways. These bearings are also suitable for high speed applications since the rollers are guided by either inner or outer ring ribs. Cylindrical roller bearings are separable, allowing them to be easily installed and disassembled even when interference fits are required.

Among the various types of cylindrical roller bearings, E type and EA type have a high load capacity while maintaining standard boundary dimensions. HT type has a large axial load

capacity, and HL type provides extended fatigue life in poor lubrication conditions. Multiple row bearing arrangements are also available.

For extremely heavy load applications, the non-separable full complement SL type bearing offers special advantages. For SL type and fourrow cylindrical roller bearings, see section "C. Special application bearings."

Table 1 shows the various types and characteristics of single row cylindrical roller bearings. Table 2 shows the characteristics of non-standard type cylindrical roller bearings.

		ing types and characteristics
Type code	Design	Characteristics
NU type N type	NU type N type	<ul> <li>NU type outer rings have two ribs. The outer ring, roller, and cage assembly can be separated from the inner ring.</li> <li>N type inner rings have two ribs. The inner ring, roller, and cage assembly can be separated from the outer ring.</li> <li>Unable to accommodate any axial loading.</li> <li>This is widely used as the floating side bearing in a fixed-float arrangement.</li> </ul>
NJ type NF type	NJ type NF type	<ul> <li>NJ type has two ribs on the outer ring, a single rib on the inner ring; NF type has a single rib on the outer ring, and two ribs on the inner ring.</li> <li>Can receive single direction axial loads.</li> <li>When there is no distinction between the fixed side and floating side bearing, these types can be used as a pair in close proximity.</li> </ul>
NUP type NH type (NJ+HJ)	NUP type NH type	<ul> <li>NUP type has a collar ring attached to the ribless side of the inner ring; NH type is NJ type with an L type collar ring attached. All of these collar rings are separable, and therefore it is necessary to fix the inner ring axially.</li> <li>Can accommodate axial loads in either direction.</li> <li>Widely used as the shaft's fixed-side bearing.</li> </ul>

# 2. Standard cage type

**Table 3** shows the standard cage types for cylindrical roller bearings.

The basic load ratings listed in the dimension charts correspond to use of the standard cages listed in **Table 3**. The basic load ratings

Cylindrical Roller Bearings

listed in the dimension tables are for standard configurations. These ratings can change when a different cage type and number of rolling elements is utilized.

Table 3 Standard cage types

Table 3	Standard cage types			
Cage	Resin cage	Pressed cage	Machin	ed cage
type	Resili Cage	Pressed Cage	Single type	Studded double type
Bearing				
NU10	_	_	-	1005 to 10/500
NU2	_	208 to 230	232 to 240	244 to 264
NU2E		_	220E to 240E	_
NU2EA	204EA to 219EA	_	_	_
NU22	_	2208 to 2230	2232 to 2240	2244 to 2264
NU22E	— 2204EA to 2218EA	_	2219E to 2240E	_
NU22EA	2204EA 10 2218EA	_	_	<del>-</del>
NU3	_	308 to 324	326 to 330	332 to 356
NU3E	- 24554	_	316E to 332E	_
NU3EA	304EA to 315EA	_	_	_
NU23	-	2308 to 2320	2322 to 2330	2332 to 2356
NU23E	-	_	2316E to 2332E	_
NU23EA	2304EA to 2315EA	_	_	_
NU4	_	405 to 416	-	_

Note: 1. Within the same bearing series, cage type is constant regardless of the cylindrical roller bearing type (NJ, NUP, N, NF).

#### Table 2 Non-standard type cylindrical roller bearing characteristics

Designation	Characteristics									
	<ul> <li>Boundary dimensions are the same as the standard type, but the diameter, length and number of the rollers have been increased, resulting in higher load capacity.</li> <li>Identified by the addition of "E" to the end of the basic roller number.</li> <li>Enables compact design due increased load rating.</li> <li>Rollers' inscribed circle diameter differs from the standard type rollers and therefore cannot be interchanged.</li> <li>EA type bearings are ULTAGE series¹).</li> </ul>									
E type and EA type Cylindrical roller bearing	NU2220E NU320 NU224E  E type Standard type E type bearing Standard type bearing E type bearing  Note: In the dimension tables, both E type and EA type are listed.									
Cylindrical roller bearing for axial loads (HT type)	<ul> <li>Can accommodate larger axial loads than the standard type due to improved geometry of the rib roller end surface.</li> <li>Please consult NTN Engineering concerning necessary considerations, such as load, lubricant, and installation conditions.</li> </ul>									
Double-row cylindrical roller bearing	<ul> <li>NN type and NNU type are available.</li> <li>Widely used for applications requiring thin-walled bearings, such the main shafts of machine tools, rolling machine rollers, and in printing equipment.</li> <li>Internal radial clearance is adjusted for the spindle of machine tools by pressing the tapered bore of the inner ring on a tapered shaft.</li> <li>Remarks: For precision bearings for machine tools, see precision rolling bearings (CAT. No. 2260/E).</li> </ul>									

¹⁾ ULTAGE series cylindrical roller bearings has been developed for "longer life," "improved loading capability," and "higher speed," which are required for various types of industrial machinery. For details, see the special catalog (CAT. No. 3037/E).

B-94

B-95



^{2.} For high speed and other special applications, machined cages can be manufactured when necessary. Consult **NTN** Engineering.

^{3.} Among EA type bearings that use resin cages as standard, certain varieties use pressed cages. Consult NTN Engineering.

^{4.} Although machined cages are the standard for two-row cylindrical roller bearings, resin cages may also be used in some of these bearings for machine tool applications.

9	
Bearing series 0 or 1	1/1 000
Bearing series 2 · · · · · · · · · · · · · · · · · ·	1/2 000
• Bearing series 0, 1, and 2 single-row	ULTAGE
	1/500
· Double-row cylindrical roller bearing	(s ¹⁾
	1/2 000

Does not include high precision bearings for machine tool main shaft applications.

# 4. Combinations of cylindrical roller bearings

**Table 4** shows the representative combinations of bearings.

Table 4 Combination type

Back-to-back arrangement (DB)	Face-to-face arrangement (DF)	Symmetrical parts arrangement (D2)
NJ type	NJ type	NU type
NF type	NF type	N type

Note: 1. Bearings are manufactured in a set so that two bearings receive a load evenly; therefore, they must be assembled together with identically numbered bearings and not mixed with other arrangements.

# 5. Tolerance of inscribed circle diameter and circumscribed circle diameter of rollers of interchangeable cylindrical roller bearings

Table 5 Tolerance of inscribed circle diameter and circumscribed circle diameter of rollers of interchangeable cylindrical roller bearings

	Onc. D	cug5		Onit. µm				
Nomina diame	eter	tolerance inscr circle d	nsional e of roller ribed iameter Fw	Dimensional tolerance of roller circumscribed circle diameter $\Delta \it{Ew}$				
Over	Incl.	Upper	Lower	Upper	Lower			
17 1)	20	+10	0	0	-10			
20	50	+15	0	0	-15			
50	120	+20	0	0	-20			
120	200	+25	0	0	-25			
200	250	+30	0	0	-30			
250	315	+35	0	0	-35			
315 400		+40	0	0	-40			
400	500	+45	0	0	-45			

7) 17 mm is included in this dimensional division.
 Note: Interchangeable cylindrical roller bearings are bearings having the same number in the group. The bearing function is not impaired even if an outer ring is combined with an inner ring with rollers or an inner ring is combined with an outer ring with rollers.

# 6. Allowable speed of cylindrical roller bearing ULTAGE series

Cylindrical Roller Bearings

As the rotational speed of the bearing increases, the temperature of the bearing also increases because of the friction heat produced inside the bearing. Operation at excessive temperatures will significantly deteriorate the lubricant performance, causing abnormal temperature rises and seizure. Factors affecting the allowable speed of bearings are as follows.

- (1) Bearing type
- (2) Bearing size
- (3) Lubrication (grease lubrication, circulating lubrication, oil lubrication, etc.)
- (4) Bearing internal clearance (bearing internal clearance during operation)
- (5) Bearing load
- (6) Shaft and housing accuracy

The allowable speed specified in the bearing dimension table is the reference speed limit which allows for satisfactory heat dissipation and lubrication conditions before adversely affecting the bearing. The allowable speed of ULTAGE series cylindrical roller bearings specified in the catalog is defined as follows.

#### [Oil lubrication]

The allowable speed for oil lubrication is the speed at which the outer ring temperature reaches  $80^{\circ}$ C with room temperature spindle oil (lubrication oil viscosity: VG32) supplied at 1 liter/min under an operating load of 5% of the basic static load rating  $C_{0r}$ .

#### [Grease lubrication]

The allowable speed for grease lubrication is the speed at which the outer ring temperature reaches  $80^{\circ}$ C with lithium-based grease (consistency: NLGI3) filled 20%-30% of the free space under an operating load of 5% of the basic static load rating  $C_{0r}$ .

In either of the lubrication methods, the bearing temperature rise differs if the usage condition (operating load, rotational speed pattern, lubricating condition, etc.) is different; therefore, the bearings must be selected with sufficient allowable speed as specified in the catalog.

If 80% of the allowable speed specified in the dimension table is exceeded or the bearing is used under vibration or impact conditions, please consult **NTN** Engineering.

See section "9. Allowable speed" for the definition of the allowable speed of the cylindrical roller bearings that are not part of the ULTAGE series.



B-96 B-97

Triplex arrangements of bearings are also available. Consult NTN Engineering for details.





	D	imensi	on				Mass								
		mm						mr	m					kg	2
				$d_{\mathrm{a}}$	$d_{ m e}$	$d_{ m b}$	$d_{ m c}$	$d_{ m d}$	$D_{\rm a}$	$D_1$	b	$r_{\rm as}$	$r_{1as}$	<b>NU</b> type	
NF type	$F_{ m w}$	$E_{\mathrm{w}}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min.6)	Max.	Max.	(аррі	ox.)
NF	26.5	41.5	29.5	24	25	26	29	32	42	42	42.5	1	0.6	0.115	0.11
NF	26.5	41.5	29.5	24	25	26	29	32	42	42	42.5	i	0.6	0.146	0.144
NF	27.5	45.5	31.1	24	26.5	27	30	33	45.5	45.5	46.5	i	0.6	0.176	0.147
NF	27.5	45.5	31.1	24	26.5	27	30	33	45.5	45.5	46.5	1	0.6	0.242	0.212
		10.0	01.1		20.0				10.0	10.0	10.0	•	0.0	0.2.12	0.212
_	30.5	41.5	32.7	27	29	30	32	33	43	45	42.5	0.6	0.3	0.092	0.091
NF	31.5	46.5	34.5	29	30	31	34	37	47	47	47.5	1	0.6	0.151	0.13
NF	31.5	46.5	34.5	29	30	31	34	37	47	47	47.5	1	0.6	0.186	0.163
NF	34	54	38	31.5	31.5	33	37	40	55.5	55.5	55	1	1	0.275	0.242
NF	34	54	38	31.5	31.5	33	37	40	55.5	55.5	55	1	1	0.386	0.345
NF	38.8	62.8	43.6	33	33	38	41	46	72	72	64	1.5	1.5	0.55	0.536
_	36.5	48.5	38.9	34	35	35	38	39.5	50	51	49.5	1	0.6	0.13	0.128
NF	37.5	55.5	41.1	34	35	37	40	44	57	57	56.5	1	0.6	0.226	0.205
NF	37.5	55.5	41.1	34	35	37	40	44	57	57	56.5	1	0.6	0.297	0.259
NF	40.5	62.5	44.9	36.5	36.5	40	44	48	65.5	65.5	64	1	1	0.398	0.353
NF	40.5	62.5	44.9	36.5	36.5	40	44	48	65.5	65.5	64	1	1	0.58	0.526
NF	45	73	50.5	38	38	44	47	52	82	82	74	1.5	1.5	0.751	0.732
_	42	55	44.6	39	40	41	44	45	57	58	56	1	0.6	0.179	0.176
NF	44	64	48	39	41.5	43	46	50	65.5	65.5	65.5	1	0.6	0.327	0.294
NF	44	64	48	39	41.5	43	46	50	65.5	65.5	65.5	1	0.6	0.455	0.405
NF	46.2	70.2	51	41.5	43	45	48	53	72	72	71.5	1.5	1	0.545	0.483
NF	46.2	70.2	51	41.5	43	45	48	53	72	72	71.5	1.5	1	0.78	0.737
NF	53	83	59	43	43	52	55	61	92	92	84	1.5	1.5	0.99	0.965
_	47	61	49.8	44	45	46	49	50.5	63	64	62	1	0.6	0.22	0.217
NF	50	70	54.2	46.5	46.5	49	52	56	73.5	73.5	72	1	1	0.378	0.37
NF	49.5	71.5	53.9	46.5	46.5	49	52	56	73.5	73.5	72.5	1	1	0.426	0.365
_	50	70	54.2	46.5	46.5	49	52	56	73.5	73.5	72	1	1	0.49	0.48
NF	49.5	71.5	53.9	46.5	46.5	49	52	56	73.5	73.5	72.5	1	1	0.552	0.491
NF	53.5	77.5	58.4	48	48	51	55	60	82	82	80	1.5	1.5	0.658	0.643
NF	52	80	57.6	48	48	51	55	60	82	82	81.5	1.5	1.5	0.754	0.658
_	53.5	77.5	58.4	48	48	51	55	60	82	82	80	1.5	1.5	0.951	0.932
NF	52	80	57.6	48	48	51	55	60	82	82	81.5	1.5	1.5	1.06	0.952
NF	58	92	64.8	49	49	57	60	67	101	101	93	2	2	1.3	1.27
_	52.5	67.5	55.5	49	50	52	54	56	70	71	68.5	1	0.6	0.28	0.276

⁵⁰ 5) Bearing numbers having no standard form are switched to type E or **ULTAGE Series**. 6) Does not apply to the sides of the outer ring rib of type **NF** bearings.



#### d 20 ~ 45mm

	Bound	lary di	mensio	ns	Basic lo	ad rating	Fatigue load	Allowabl	e speed 2)	Bearing n	umber	• 3) 4) 5)	
		mn	า		dynamic		limit		in-1				
d	D	B	$r_{\rm s min}$ 1	$r_{1 \mathrm{s}  \mathrm{min}^{1)}}$		$_{C0\mathrm{r}}^{kN}$	$_{C_{\mathrm{u}}}^{kN}$	Grease lubrication	Oil lubrication	<b>NU</b> type	NJ type	NUP type	<b>N</b> type
	47	14	1	0.6	32.5	24.7	3.00	15 000	21 600	*NU204EA	NJ	NUP	Ν
	47	18	1	0.6	38.5	31.0	3.75	14 000	19 200	*NU2204EA	NJ	NUP	N
20	52	15	1.1	0.6	37.5	26.9	3.25	13 000	18 000	* NU304EA	NJ	NUP	Ν
	52	21	1.1	0.6	49.5	39.0	4.75	12 000	16 800	*NU2304EA	NJ	NUP	N
	47	12	0.6	0.3	16.7	14.1	1.72	16 000	19 000	NU1005	NJ	NUP	N
	52	15	1	0.6	34.5	27.7	3.40	13 000	18 000	* NU205EA	NJ	NUP	N
25	52	18	1	0.6	41.5	34.5	4.25	11 000	15 600	* NU2205EA	NJ	NUP	N
25	62	17	1.1	1.1	49.0	37.5	4.55	11 000	15 600	* NU305EA	NJ	NUP	N
	62	24	1.1	1.1	67.5	56.0	6.85	9 700	13 200	*NU2305EA	NJ	NUP	N
	80	21	1.5	1.5	51.5	40.0	4.85	8 500	10 000	NU405	NJ	NUP	N
	55	13	1	0.6	21.8	19.6	2.39	14 000	16 000	NU1006	NJ	NUP	N
	62	16	1	0.6	46.0	37.5	4.55	11 000	15 600	*NU206EA	NJ	NUP	N
	62	20	1	0.6	58.0	50.0	6.10	9 700	13 200	*NU2206EA	NJ	NUP	N
30	72	19	1.1	1.1	63.0	50.0	6.15	9 300	13 200	*NU306EA	NJ	NUP	N
	72	27	1.1	1.1	88.0	77.5	9.45	8 300	11 600	*NU2306EA	NJ	NUP	N
	90	23	1.5	1.5	69.5	55.0	6.70	7 300	8 500	NU406	NJ	NUP	N
	62	14	1	0.6	25.1	23.2	2.82	12 000	15 000	NU1007	NJ	NUP	N
	72	17	1.1	0.6	59.5	50.0	6.10	9 500	13 200	*NU207EA	NJ	NUP	N
	72	23	1.1	0.6	73.0	65.5	7.95	8 500	12 000	*NU2207EA	NJ	NUP	N
35	80	21	1.5	1.1	83.5	71.0	8.65	8 100	11 500	*NU307EA	NJ	NUP	N
	80	31	1.5	1.1	117	109	13.3	7 200	10 200	*NU2307EA	NJ	NUP	N
	100	25	1.5	1.5	83.5	69.0	8.40	6 400	7 500	NU407	NJ	NUP	N
	68	15	1	0.6	30.5	29.0	3.55	11 000	13 000	NU1008	NJ	NUP	N
	80	18	1.1	1.1	48.5	43.0	5.25	9 400	11 000	* * NU208	NJ	NUP	N
	80	18	1.1	1.1	66.0	55.5	6.75	8 500	12 000	*NU208EA	NJ	NUP	N
	80	23	1.1	1.1	64.5	62.0	7.55	8 500	10 000	* * NU2208	NJ	NUP	N
	80	23	1.1	1.1	85.5	77.5	9.45	7 600	10 700	*NU2208EA	NJ	NUP	N
40	90	23	1.5	1.5	65.0	57.0	6.95	8 000	9 400	* * NU308	NJ	NUP	N
	90	23	1.5	1.5	98.5	81.5	9.95	7 200	10 200	* NU308EA	NJ	NUP	N
	90	33	1.5	1.5	91.5	88.0	10.7	7 000	8 200	* * NU2308	NJ	NUP	N
	90	33	1.5	1.5	135	122	14.9	6 400	9 000	*NU2308EA	NJ	NUP	N
	110	27	2	2	106	89.0	10.9	5 700	6 700	NU408	NJ	NUP	N
45	75	16	1	0.6	34.5	34.0	4.10	9 900	12 000	NU1009	NJ	NUP	N

1) Smallest allowable dimension for chamfer dimension r or  $r_1$ .

2) This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.
3) Bearing numbers marked "*" designate ULTAGE series bearings. 4) Bearing marked "**" are going to be integrated with ULTAGE Series.





# d 45 ∼ 60mm

	Bound	lary di	mensio	ns	Basic lo	ad rating	Fatigue	Allowable	e speed ²⁾	Bearing number 3) 4)				
		mm	1		dvnami	static	load limit	mi	n-1					
d	D	В	$r_{\rm s min}^{1}$	$r_{ m 1smin^{1)}}$		kN $C_{0\mathrm{r}}$	$_{C_{ m u}}^{ m kN}$	Grease lubrication	Oil	<b>NU</b> type	<b>NJ</b> type	<b>NUP</b> type	<b>N</b> type	
	85	19	1.1	1.1	51.0	47.0	5.70	8 400	9 900	* * NU209	NJ	NUP	N	
	85	19	1.1	1.1	74.5	66.5	8.10	7 600	10 800	* NU209EA	NJ	NUP	N	
	85 85	23 23	1.1	1.1	68.0 90.0	68.0 84.5	8.25 10.3	7 600	9 000 9 600	* * NU2209 * NU2209EA	NJ NJ	NUP NUP	N	
45	100	25	1.5	1.5	82.0	71.0	8.65	6 800 7 200	8 400	* * NU309	NJ	NUP	N	
45	100	25	1.5	1.5	115	98.5	12.0	6 500	9 100	* NU309EA	NJ	NUP	N	
	100	36	1.5	1.5	110	104	12.7	6 300	7 400	* * NU2309	NJ	NUP	N	
	100	36	1.5	1.5	162	153	18.7	5 700	8 200	* NU2309EA	NJ	NUP	N	
	120	29	2	2	119	102	12.4	5 100	6 000	NU409	NJ	NUP	N	
	00	10	4	0.0	05.5	00.0	4.40	0.000	11 000	MILITORO	NI I	NUP	N	
	80 90	16 20	1.1	0.6 1.1	35.5 53.5	36.0 51.0	4.40 6.20	8 900 7 600	9 000	NU1010 * * NU210	NJ NJ	NUP	N	
	90	20	1.1	1.1	81.5	76.5	9.30	6 900	9 700	* NU210EA	NJ	NUP	N	
	90	23	1.1	1.1	71.0	73.5	9.00	6 900	8 100	**NU2210EA	NJ	NUP	N	
	90	23	1.1	1.1	98.5	97.0	11.9	6 200	8 800	* NU2210EA	NJ	NUP	_	
50	110	27	2	2	96.5	86.0	10.5	6 500	7 700	* * NU310	NJ	NUP	N	
	110	27	2	2	130	113	13.8	5 900	8 300	*NU310EA	NJ	NUP	N	
	110	40	2	2	134	131	16.0	5 700	6 700	* * NU2310	NJ	NUP	N	
	110	40	2	2	192	187	22.7	5 200	7 300	*NU2310EA	NJ	NUP	N	
	130	31	2.1	2.1	143	124	15.1	4 700	5 500	NU410	NJ	NUP	N	
	90	18	1.1	1	42.0	44.0	5.35	8 200	9 700	NU1011	NJ	NUP	N	
	100	21	1.5	1.1	64.5	62.5	7.60	6 900	8 200	* * NU211	NJ	NUP	N	
	100	21	1.5	1.1	102	98.5	12.0	6 300	8 900	* NU211EA	NJ	NUP	N	
	100	25	1.5	1.1	83.5	87.0	10.6	6 300	7 400	* * NU2211	NJ	NUP	N	
	100	25	1.5	1.1	120	122	14.8	5 600	7 900	*NU2211EA	NJ	NUP	N	
55	120	29	2	2	123	111	13.6	5 900	7 000	* * NU311	NJ	NUP	N	
	120	29	2	2	162	143	17.4	5 300	7 600	* NU311EA	NJ	NUP	N	
	120	43	2	2	164	162	19.8	5 200	6 100	* * NU2311	NJ	NUP	N	
	120	43	2	2	238	233	28.4	4 700	6 700	*NU2311EA	NJ	NUP	N	
	140	33	2.1	2.1	154	138	16.9	4 300	5 000	NU411	NJ	NUP	N	
	95	18	1.1	1	44.5	48.5	5.95	7 500	8 800	NU1012	NJ	NUP	N	
	110	22	1.5	1.5	76.0	75.0	9.15	6 400	7 600	* * NU212	NJ	NUP	N	
60	110	22	1.5	1.5	115	107	13.1	5 800	8 200	* NU212EA	NJ	NUP	N	
	110	28	1.5	1.5	107	116	14.1	5 800	6 800	* * NU2212	NJ	NUP	N	
	110	28	1.5	1.5	155	157	19.1	5 200	7 300	*NU2212EA	NJ	NUP	N	

- Smallest allowable dimension for chamfer dimension r or r₁.
   This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.
   Bearing numbers marked "* " designate ULTAGE series bearings.
   Bearing marked "* * " are going to be integrated with ULTAGE Series.



		Dimensio	on		Installation-related dimensions										Mass		
		mm		$d_{\mathrm{a}}$	$d_{ m e}$	$d_{ m b}$	$d_{ m c}$	$d_{ m d}$	$D_{ m a}$	D	h	$r_{\rm as}$	$r_{1ac}$	kg <b>NU</b> type			
NF type	$F_{\mathrm{w}}$	$E_{\rm w}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min. ⁵⁾	Max.	Max.	(appr			
МЕ		75	<b>50</b>	<b>54 5</b>	<b>-1</b> -	<b>5</b> 4	<b>-</b> 7	04	70.5	70.5	77			0.400	0.400		
NF NF	55 54.5	75 76.5	59 58.9	51.5	51.5 51.5	54 54	57	61 61	78.5 78.5	78.5	77 77.5	1	1	0.432	0.423		
NF	54.5	76.5 75	58.9	51.5 51.5	51.5	54 54	57 57	61	78.5	78.5 78.5	77.5	1	1	0.495 0.53	0.423		
NF	54.5	76.5	58.9	51.5	51.5	54 54	57	61	78.5	78.5	77.5	1	1	0.53	0.52		
NF	58.5	86.5	64	53	53	54 57	60	66	92	92	89	1.5	1.5	0.877	0.857		
NF	58.5	88.5	64.5	53	53	57	60	66	92	92	90.5	1.5	1.5	0.877	0.865		
INF	58.5	86.5	64.5	53	53	57	60	66	92	92	89	1.5	1.5	1.27	1.24		
NF	58.5	88.5	64.5	53	53	57	60	66	92	92	90.5	1.5	1.5	1.41	1.24		
NF	64.5	100.5	71.8	54	54	63	66	74	111	111	102	2	2	1.62	1.58		
INI	04.5	100.5	71.0	34	54	03	00	74	111	111	102	_	2	1.02	1.50		
_	57.5	72.5	60.5	54	55	57	59	61	75	76	73.5	1	0.6	0.295	0.291		
NF	60.4	80.4	64.6	56.5	56.5	58	62	67	83.5	83.5	83	1	1	0.47	0.46		
NF	59.5	81.5	63.9	56.5	56.5	58	62	67	83.5	83.5	82.5	1	1	0.503	0.47		
_	60.4	80.4	64.6	56.5	56.5	58	62	67	83.5	83.5	83	i	i	0.571	0.56		
NF	59.5	81.5	63.9	56.5	56.5	58	62	67	83.5	83.5	82.5	i	1	0.587	_		
NF	65	95	71	59	59	63	67	73	101	101	98	2	2	1.14	1.11		
NF	65	97	71.4	59	59	63	67	73	101	101	99	2	2	1.3	1.12		
_	65	95	71	59	59	63	67	73	101	101	98	2	2	1.7	1.67		
NF	65	97	71.4	59	59	63	67	73	101	101	99	2	2	1.9	1.75		
NF	70.8	110.8	78.8	61	61	69	73	81	119	119	112	2	2	2.02	1.97		
_	64.5	80.5	67.7	60	61.5	63	66	68.5	83.5	85	81.5	1	1	0.442	0.435		
NF	66.5	88.5	70.8	61.5	63	65	68	73	92	93.5	91	1.5	1	0.638	0.626		
NF	66	90	70.8	61.5	63	65	68	73	92	92	91	1.5	1	0.675	0.635		
_	66.5	88.5	70.8	61.5	63	65	68	73	92	93.5	91	1.5	1	0.773	0.758		
NF	66	90	70.8	61.5	63	65	68	73	92	92	91	1.5	1	0.807	_		
NF		104.5	77.2	64	64	69	72	80	111	111	107	2	2	1.45	1.42		
NF	70.5	106.5	77.7	64	64	69	72	80	111	111	108.5	2	2	1.65	1.43		
_		104.5	77.2	64	64	69	72	80	111	111	107	2	2	2.17	2.13		
NF		106.5	77.7	64	64	69	72	80	111	111	108.5	2	2	2.37	2.23		
NF	77.2	117.2	85.2	66	66	76	79	87	129	129	119	2	2	2.48	2.42		
_	69.5	85.5	72.7	65	66.5	68	71	73.5	88.5	90	86.5	1	1	0.474	0.467		
NF	73.5	97.5	78.4	68	68	71	75	80	102	102	100	1.5	1.5	0.818	0.802		
NF	72	100	77.6	68	68	71	75	80	102	102	101	1.5	1.5	0.923	0.798		
_	73.5	97.5	78.4	68	68	71	75	80	102	102	100	1.5	1.5	1.06	1.04		
NF	72	100	77.6	68	68	71	75	80	102	102	101	1.5	1.5	1.21	1.08		

5) Does not apply to the sides of the outer ring rib of type NF bearings.





# d 60 $\sim$ 75mm

	Bound	lary di	mensio	ns	Basic lo	oad rating	Fatigue load	Allowable	speed 2)	Bearing number 3) 4)				
		mm	1		dvnami	c static	limit	mir	า-1					
					,	kN	kN	Grease	Oil					
d	D	B	$r_{\rm s min}^{1}$	$r_{1 \text{s min}^{1)}}$	$C_{\rm r}$	$C_{0r}$	$C_{\mathrm{u}}$	lubrication	lubrication	NU type	NJ type	NUP type	N type	
	130	31	2.1	2.1	137	126	15.4	5 500	6 500	* * NU312	NJ	NUP	N	
	130	31	2.1	2.1	177	157	19.1	4 900	7 000	* NU312EA	NJ	NUP	N	
~~	130	46	2.1	2.1	187	188	22.9	4 800	5 700	* * NU2312	NJ	NUP	N	
60	130	46	2.1	2.1	263	262	32.0	4 400	6 200	*NU2312EA	NJ	NUP	N	
	150	35	2.1	2.1	185	168	20.2	3 900	4 600	NU412	NJ	NUP	N	
	130	00	۷.۱	۷.۱	100	100	20.2	3 300	+ 000	110-112	140	NOI	.,	
	100	18	1.1	1	45.5	51.0	6.30	7 000	8 200	NU1013	NJ	NUP	N	
	120	23	1.5	1.5	93.0	94.5	11.5	5 900	7 000	* * NU213	NJ	NUP	N	
	120	23	1.5	1.5	127	119	14.5	5 400	7 600	*NU213EA	NJ	NUP	N	
	120	31	1.5	1.5	133	149	18.2	5 400	6 300	* * NU2213	NJ	NUP	N	
٥-	120	31	1.5	1.5	176	181	22.1	4 800	6 700	*NU2213EA	NJ	NUP	N	
65	140	33	2.1	2.1	150	139	16.8	5 100	6 000	* * NU313	NJ	NUP	N	
	140	33	2.1	2.1	213	191	23.1	4 600	6 500	* NU313EA	NJ	NUP	N	
	140	48	2.1	2.1	208	212	25.7	4 400	5 200	* * NU2313	NJ	NUP	N	
	140	48	2.1	2.1	293	287	34.5	4 100	5 800	* NU2313EA	NJ	NUP	N	
	160	37	2.1	2.1	202	186	21.9	3 600	4 300	NU413	NJ	NUP	Ν	
	110	20	1.1	1	64.5	70.5	8.60	6 500	7 600	NU1014	NJ	NUP	N	
	125	24	1.5	1.5	92.5	95.0	11.6	5 500	6 500	* * NU214	NJ	NUP	N	
	125	24	1.5	1.5	140	137	16.7	5 000	7 100	*NU214EA	NJ	NUP	N	
	125	31	1.5	1.5	132	151	18.4	5 000	5 900	* * NU2214	NJ	NUP	N	
70	125 150	31 35	1.5 2.1	1.5 2.1	184 175	194 168	23.7	4 500 4 700	6 200 5 500	*NU2214EA **NU314	NJ NJ	NUP NUP	N N	
	150	35	2.1	2.1	242	222	26.2	4 200	6 000	**NU314 *NU314EA	NJ	NUP	N	
	150	51	2.1	2.1	242	262	31.0	4 100	4 800	* * NU2314EA	NJ	NUP	N	
	150	51	2.1	2.1	325	325	38.0	3 800	5 300	*NU2314EA	NJ	NUP	N	
	180	42	3	3	253	236	26.8	3 400	4 000	NU414	NJ	NUP	N	
	100	72	3	<u> </u>	200	200	20.0	3 400	+ 000	110414	140	1101	.,	
	115	20	1.1	1	66.5	74.5	9.10	6 100	7 100	NU1015	NJ	NUP	N	
	130	25	1.5	1.5	107	111	13.4	5 100	6 000	* * NU215	NJ	NUP	N	
	130	25	1.5	1.5	154	156	18.9	4 700	6 600	*NU215EA	NJ	NUP	N	
	130	31	1.5	1.5	144	162	19.6	4 700	5 500	* * NU2215	NJ	NUP	N	
75	130	31	1.5	1.5	191	207	25.0	4 200	5 900	*NU2215EA	NJ	NUP	N	
75	160	37	2.1	2.1	211	205	23.8	4 400	5 200	* * NU315	NJ	NUP	N	
	160	37	2.1	2.1	284	263	30.5	4 000	5 600	*NU315EA	NJ	NUP	N	
	160	55	2.1	2.1	286	300	35.0	3 800	4 500	* * NU2315	NJ	NUP	N	
	160	55	2.1	2.1	390	395	45.5	3 500	4 900	*NU2315EA	NJ	NUP	N	
	190	45	3	3	291	274	30.5	3 200	3 700	NU415	NJ	NUP	N	

- Smallest allowable dimension for chamfer dimension r or r₁.
   This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.
   Bearing numbers marked "*" designate ULTAGE series bearings.
   Bearing marked "**" are going to be integrated with ULTAGE Series.



	C	Dimensi	on		Installation-related dimensions										Mass		
		mm						mr						kg			
ME	E.	T.	a	$d_{\rm a}$	$d_{ m e}$	$d_{ m b}$	$d_{ m c}$	$d_{ m d}$	$D_{\rm a}$		D _p	$r_{\rm as}$		NU type			
NF type	$F_{ m w}$	$E_{\rm w}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min. ⁵⁾	Max.	Max.	(appro	OX.)		
												_	_				
NF	77	113	84.2	71	71	75	79	86	119	119	116	2	2	1.8	1.76		
NF	77	115	84.6	71	71	75	79	86	119	119	117	2	2	2.05	1.77		
NF	77	113	84.2	71	71	75	79	86	119	119	116	2	2	2.71	2.66		
	77	115	84.6	71	71	75	79	86	119	119	117	2	2	2.96	2.73		
NF	83	127	91.8	71	71	82	85	94	139	139	128	2	2	3	2.93		
_	74.5	90.5	77.7	70	71.5	73	76	78.5	93.5	95	91.5	1	1	0.485	0.477		
NF	79.6	105.6	84.8	73	73	77	81	87	112	112	108	1.5	1.5	1.02	1		
NF	78.5	108.5	84.5	73	73	77	81	87	112	112	110	1.5	1.5	1.21	1.01		
_	79.6	105.6	84.8	73	73	77	81	87	112	112	108	1.5	1.5	1.4	1.37		
NF	78.5	108.5	84.5	73	73	77	81	87	112	112	110	1.5	1.5	1.6	1.44		
NF	83.5	121.5	91	76	76	81	85	93	129	129	125	2	2	2.23	2.18		
NF	82.5	124.5	91	76	76	81	85	93	129	129	127	2	2	2.54	2.2		
_	83.5	121.5	91	76	76	81	85	93	129	129	125	2	2	3.27	3.2		
NF	82.5	124.5	91	76	76	81	85	93	129	129	127	2	2	3.48	3.25		
NF	89.3	135.3	98.5	76	76	88	91	100	149	149	137	2	2	3.6	3.5		
_	80	100	84	75	76.5	78	82	85	103.5	105	101	1	1	0.699	0.689		
NF	84.5	110.5	89.6	78	78	82	86	92	117	117	114	1.5	1.5	1.12	1.1		
NF	83.5	113.5	89.5	78	78	82	86	92	117	117	115	1.5	1.5	1.3	1.13		
_	84.5	110.5	89.6	78	78	82	86	92	117	117	114	1.5	1.5	1.47	1.44		
NF	83.5	113.5	89.5	78	78	82	86	92	117	117	115	1.5	1.5	1.7	1.52		
NF	90	130	98	81	81	87	92	100	139	139	134	2	2	2.71	2.65		
NF	89	133	98	81	81	87	92	100	139	139	136	2	2	3.1	2.75		
_	90	130	98	81	81	87	92	100	139	139	134	2	2	3.98	3.9		
NF	89	133	98	81	81	87	92	100	139	139	136	2	2	4.25	3.95		
NF	100	152	110.5	83	83	99	102	112	167	167	153	2.5	2.5	5.24	5.1		
	85	105	89	80	81.5	83	87	90	108.5	110	106	1	1	0.738	0.727		
NF		116.5	94	83	83	87	90	96	122	122	120	1.5	1.5	1.23	1.21		
NF		118.5	94.5	83	83	87	90	96	122	122	120	1.5	1.5	1.41	1.28		
_		116.5	94	83	83	87	90	96	122	122	120	1.5	1.5	1.55	1.52		
NF		118.5	94.5	83	83	87	90	96	122	122	120	1.5	1.5	1.79	1.61		
NF		139.5	104.2	86	86	93	97	106	149	149	143	2	2	3.28	3.21		
NF	95	143	104.6	86	86	93	97	106	149	149	146	2	2	3.74	3.28		
_		139.5	104.2	86	86	93	97	106	149	149	143	2	2	4.87	4.77		
NF	95	143	104.6	86	86	93	97	106	149	149	_	2	2	5.25	4.85		
NF		160.5		88	88	103	107	118	177	177	162	2.5	2.5	6.22	6.06		
			he sides														

5) Does not apply to the sides of the outer ring rib of type NF bearings.

Static equivalent radial load Por=Fr



		Dimensi	on			In	stallati	on-rela	ted dime	ensions				Ma	SS
		mm						m	ım					ka	
		mm		$d_{\mathrm{a}}$	$d_{\mathrm{e}}$	$d_{ m b}$	$d_{\mathrm{c}}$	$d_{ m d}$	$D_{\rm a}$	D	) _{1.}	$r_{\rm as}$	$r_{1aa}$	NU type	
NF type	$F_{\mathrm{w}}$	$E_{\mathrm{w}}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min.5)	Max.	Max.	(appr	
ти сурс	11	-"	**1								IVIIII.			(арр.	<i></i>
_	91.5	113.5	95.9	85	86.5	90	94	97	118.5	120	114.5	1	1	0.98	0.965
NF		125.3	101.2	89	89	94	97	104	131	131	128	2	2	1.5	1.47
NF			101.7	89	89	94	97	104	131	131	128.5	2	2	1.67	1.56
_		125.3	101.2	89	89	94	97	104	131	131	128	2	2	1.93	1.89
NF		127.3	101.7	89	89	94	97	104	131	131	128.5	2	2	2.12	2.02
NF	103	147	111.8	91	91	99	105	114	159	159	151	2	2	3.86	3.77
NF	101	151	111	91	91	99	105	114	159	159	154	2	2	4.22	4.12
_	103	147	111.8	91	91	99	105	114	159	159	151	2	2	5.79	5.67
NF	101	151	111	91	91	99	105	114	159	159	154	2	2	6.25	5.78
NF	110	170	122	93	93	109	112	124	187	187	172	2.5	2.5	7.32	7.14
_	96.5	118.5	100.9	90	91.5	95	99	102	123.5	125	119.5	1	1	1.03	1.01
NF		133.8	108.2	94	94	99	104	110	141	141	137	2	2	1.87	1.83
NF		136.5	107.7	94	94	99	104	110	141	141	138	2	2	2.11	1.93
			108.2	94	94	99	104	110	141	141	137	2	2	2.44	2.39
NF	100.5		107.7	94	94	99	104	110	141	141	138	2	2	2.68	2.52
NF	108	156	117.5	98	98	106	110	119	167	167	160	2.5	2.5	4.54	4.44
_	108	_	118.4	98	_	106	110	119	167	_	_	2.5	2.5	4.81	
_	108	156	117.5	98	98	106	110	119	167	167	160	2.5	2.5	6.7	6.57
_	108	_	118.4	98	_	106	110	119	167	_	_	2.5	2.5	7.16	_
_	103	127	107.8	96.5	98	101	106	109	132	133.5	129	1.5	1	1.33	1.31
NF	107	143	114.2	99	99	105	109	116	151	151	146	2	2	2.3	2.25
NF	107	145	114.6	99	99	105	109	116	151	151	147	2	2	2.44	2.37
_	107	143	114.2	99	99	105	109	116	151	151	146	2	2	3.1	3.04
NF	107	145	114.6	99	99	105	109	116	151	151	147	2	2	3.33	3.2
NF	115	165	125	103	103	111	117	127	177	177	169	2.5	2.5	5.3	5.18
_	113.5	_	124.7	103	_	111	117	127	177	_	_	2.5	2.5	5.72	_
_	115	165	125	103	103	111	117	127	177	177	169	2.5	2.5	7.95	7.79
_	113.5	_	124.7	103	_	111	117	127	177	_	_	2.5	2.5	8.56	_
	108	132	112.8	101.5	103	106	111	114	137	138.5	13/	1.5	1	1.4	1.38
NF			121	101.3	106	111	116	123	159	159	155	2	2	2.78	2.72
NF			121	106	106	111	116	123	159	159	156.5	2	2	3.02	2.85
-	113.5	151.5	121	106	106	111	116	123	159	159	155	2	2	3.79	3.71
NF		154.5	121	106	106	111	116	123	159	159	156.5	2	2	4.14	3.84
NF		173.5	132	108	108	119	124	134	187	187	178	2.5	2.5	6.13	5.99
INE	121.5	173.5	132.7	108	100	119	124	134	187	107	170	2.5	2.5	6.62	5.55
_	121.5	_	134./	100	_	119	124	134	107	_	_	2.5	۷.5	0.02	_

5) Does not apply to the sides of the outer ring rib of type NF bearings.



#### d 80 $\sim$ 95mm

	Bound	l <b>ary di</b> mm	mensio		Basic lo	oad rating	Fatigue load limit		e speed ²⁾	Bearing	numbe	<b>r</b> 3) 4)	
d	D	В		$r_{1\mathrm{s}\mathrm{min}^{1)}}$	$C_{ m r}$	kN $C_{0r}$	$kN C_{ m u}$	Grease	Oil lubrication	<b>NU</b> type	<b>NJ</b> type	NUP type	<b>N</b> type
80	125 140 140 140 140 170 170 170	22 26 26 33 33 39 39 58 58	1.1 2 2 2 2 2 2.1 2.1 2.1 2.1	1 2 2 2 2 2 2.1 2.1 2.1 2.1	80.0 118 165 163 220 211 284 305 395	90.5 122 167 186 243 207 282 330 430	11.0 14.5 19.7 22.0 28.7 23.7 32.0 38.0 49.0	5 700 4 800 4 400 4 400 3 900 4 100 3 700 3 600 3 300	6 700 5 700 6 100 5 100 5 500 4 800 4 400 4 200 3 900	NU1016 **NU216 *NU216EA **NU2216 *NU2216EA NU316 NU316E NU2316	NJ NJ NJ NJ NJ NJ NJ	NUP NUP NUP NUP NUP NUP NUP NUP	N N N N N N
85	200 130 150 150 150 150 180 180 180	22 28 28 36 36 41 41 60 60	3 1.1 2 2 2 2 2 3 3 3 3	3 1 2 2 2 2 2 2 3 3 3 3 3	82.5 134 198 188 257 235 325 350 435	95.5 140 199 218 279 228 330 380 485	34.5 11.4 16.3 23.0 25.3 32.5 25.6 37.0 43.0 54.0	3 000 5 400 4 500 4 100 4 100 3 700 3 900 3 500 3 400 3 100	3 500 6 300 5 300 5 800 4 800 5 200 4 600 4 100 4 000 3 700	NU416 NU416 NU1017 **NU217 *NU217EA **NU2217 *NU2217EA NU317 NU317E NU2317 NU2317	NJ NJ NJ NJ NJ NJ NJ NJ NJ	NUP NUP NUP NUP NUP NUP NUP NUP	N N N N N N
90	140 160 160 160 160 190 190 190	24 30 30 40 40 43 43 64	1.5 2 2 2 2 2 3 3 3	1.1 2 2 2 2 2 3 3 3 3	98.0 169 215 219 286 266 350 360 485	114 178 217 248 315 265 355 395 535	13.4 20.3 24.7 28.3 35.5 29.3 39.0 43.5 58.5	5 100 4 300 3 900 3 900 3 500 3 700 3 300 3 200 2 900	5 900 5 000 5 500 4 600 4 900 4 300 3 900 3 800 3 400	NU1018 **NU218 *NU218EA **NU2218 *NU2218EA NU318 NU318E NU2318 NU2318E	NJ NJ NJ NJ NJ NJ	NUP NUP NUP NUP NUP NUP NUP NUP	N N N N N N
95	145 170 170 170 170 200 200	24 32 32 43 43 45 45	1.5 2.1 2.1 2.1 2.1 3	1.1 2.1 2.1 2.1 2.1 3	101 184 260 256 315 287 370	120 195 265 298 370 289 385	13.9 21.8 29.6 33.5 41.5 31.5 42.0	4 800 4 000 3 600 3 600 3 300 3 400 3 100	5 600 4 700 5 200 4 300 3 800 4 000 3 600	NU1019 **NU219 *NU219EA NU2219 NU2219E NU319 NU319E	NJ NJ NJ NJ NJ	NUP NUP NUP NUP NUP NUP	N N N N

- Smallest allowable dimension for chamfer dimension r or r₁.
   This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.
   Bearing numbers marked "*" designate ULTAGE series bearings.
   Bearing marked "**" are going to be integrated with ULTAGE Series.





d 95  $\sim$  130mm



- 1) Smallest allowable dimension for chamfer dimension r or  $r_1$ .
- 2) This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.



		Dimensi	on			In	stallati	on-rela	ted din	nensions				Ma	ass
		mm						n	nm						g
		_		$d_{\mathrm{a}}$	$d_{ m e}$	$d_{ m b}$	$d_{ m c}$	$d_{ m d}$	$D_{\rm a}$	L		$r_{\rm as}$		<b>NU</b> type	
NF typ	e $F_{ m w}$	$E_{\mathrm{w}}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min.3)	Max.	Max.	(арр	rox.)
_	121.5	173.5	132	108	108	119	124	134	187	187	178	2.5	2.5	9.2	9.02
_	121.5	_	132.7	108	_	119	124	134	187	—	_	2.5	2.5	9.8	-
	121.0		102.7	100		110		101	107					0.0	
_	113	137	117.8	106.5	108	111	116	119	142	143.5	139	1.5	1	1.45	1.43
NF	120	160	128	111	111	117	122	130	169	169	164	2	2	3.33	3.26
_	119	_	128	111	_	117	122	130	169	_	_	2	2	3.66	_
_	120	160	128	111	111	117	122	130	169	169	164	2	2	4.57	4.48
_	119	_	128	111	_	117	122	130	169	_	_	2	2	5.01	_
NF	129.5	185.5	140.5	113	113	125	132	143	202	202	190	2.5	2.5	7.49	7.32
_	127.5	_	140.3	113	_	125	132	143	202	_	_	2.5	2.5	8.57	_
_	129.5	185.5	140.5	113	113	125	132	143	202	202	190	2.5	2.5	11.7	11.5
_	127.5	_	140.3	113	_	125	132	143	202	_	_	2.5	2.5	12.8	_
_	119.5	145.5	124.7	111.5	114	118	122	126	151	153.5	147.5	2	1	1.84	1.81
NF	126.8	168.8	135	116	116	124	129	137	179	179	173	2	2	3.95	3.87
NF	135	195	147	118	118	132	137	149	212	212	199	2.5	2.5	8.53	8.33
_	125	155	131	116.5	119	124	128	132	161	163.5		2	1	2.33	2.3
NF	132.5	178.5	141.5	121	121	130	135	144	189	189	182	2	2	4.63	4.54
_	132.5	_	142.1	121	_	130	135	144	189	_	_	2	2	4.27	_
_	132.5	178.5	141.5	121	121	130	135	144	189	189	182	2	2	6.56	6.43
_	132.5	_	142.1	121	_	130	135	144	189	_	_	2	2	7.4	_
NF	143	207	155.5	123	123	140	145	158	227	227	211	2.5	2.5	10	9.77
_	143	_	156.6	123	_	140	145	158	227	_	_	2.5	2.5	11.1	11.4
_	143	207	155.5	123	123	140	145	158	227	227	211	2.5	2.5	17.1	16.8
_	143	_	156.6	123	_	140	145	158	227	_	_	2.5	2.5	19.4	_
	405	105		100 -	100	101	400	4.40		4=0 =	407	•		0.4:	0.4
	135	165	141	126.5	129	134	138	142	171	173.5		2	1	2.44	2.4
NF	143.5	191.5	153	131	131	141	146	156	204	204	196	2	2	5.57	5.46
_	143.5		153.9	131	. —	141	146	156	204		. —	2	2	5.97	
_		191.5	153	131	131	141	146	156	204	204	196	2	2	8.19	8.03
_	143.5	_	153.9	131	_	141	146	156	204		_	2	2	9.18	
NF	154	226	168.5	133	133	151	156	171	247	247	230	2.5	2.5	12.8	12.5
_	154	_	169.2	133	_	151	156	171	247	_	_	2.5	2.5	13.9	_
_	154	226	168.5	133	133	151	156	171 171	247	247	230	2.5	2.5	21.5	21.1
_	4 - 4										_				
	154	_	169.2	133	_	151	156	171	247	_	_	2.5	2.5	26.1	_
_	154 148	182	154.8	133		146	151	156	191	193.5		2.5	1	3.69	3.63

Does not apply to the sides of the outer ring rib of type NF bearings.

B-106 B-107





#### *d* 130 ∼ 160mm

	Boun	dary di	mensio	ons	Basic	load rating	Fatigue load	Allowable	e speed 2)	Bearin	g numl	oer	
		mn	า		dvnan	nic static	limit	mir	า-1				
					,	kN	kN	Grease	Oil				
d	D	B	$r_{\rm s  min}^{1}$	$r_{ m 1smin^1}$	$C_{\rm r}$	$C_{0\mathbf{r}}$	$C_{\mathrm{u}}$	lubrication	lubrication	<b>NU</b> type	NJ type	NUP type	N type
	230	40	3	3	300	340	35.0	2 900	3 400	NU226	NJ	NUP	N
	230	40	3	3	405	455	46.0	2 600	3 100	NU226E	NJ	NUP	IN
	230	64	3	3	420	530	54.0	2 600	3 100	NU2226	NJ	NUP	N
	230	64	3	3	590	735	75.0	2 300	2 700	NU2226E	NJ	NUP	
130	280	58	4	4	620	665	65.5	2 500	2 900	NU326	NJ	NUP	N
	280	58	4	4	685	735	72.0	2 200	2 600	NU326E	NJ	NUP	
	280	93	4	4	930		111	2 200	2 600	NU2326	NJ	NUP	N
	280	93	4		1 020		121	2 000	2 300	NU2326E	NJ	NUP	_
			•	·									
	210	33	2	1.1	195	250	25.7	3 200	3 800	NU1028	NJ	NUP	N
	250	42	3	3	345	400	39.5	2 700	3 100	NU228	NJ	NUP	N
	250	42	3	3	435	515	51.0	2 400	2 800	NU228E	NJ	NUP	_
	250	68	3	3	495	635	63.5	2 400	2 800	NU2228	NJ	NUP	N
140	250	68	3	3	635	835	83.0	2 100	2 500	NU2228E	NJ	NUP	_
	300	62	4	4	685	745	72.0	2 300	2 700	NU328	NJ	NUP	N
	300	62	4	4	735	795	76.5	2 100	2 400	NU328E	NJ	NUP	_
	300	102	4	4	1 020	1 250	120	2 000	2 300	NU2328	NJ	NUP	N
	300	102	4	4	1 130	1 380	133	1 800	2 100	NU2328E	NJ	NUP	_
	225	35	2.1	1.5	224	294	29.6	3 000	3 500	NU1030	NJ	NUP	N
	270	45	3	3	380	435	42.5	2 500	2 900	NU230	NJ	NUP	N
	270	45	3	3	495	595	58.0	2 200	2 600	NU230E	NJ	NUP	_
450	270	73	3	3	555	710	69.5	2 200	2 600	NU2230	NJ	NUP	N
150		73	3	3	735	980	95.5	2 000	2 400	NU2230E	NJ	NUP	_
	320	65	4	4	735	805	76.0	2 100	2 500	NU330	NJ	NUP	N
	320	65	4	4	840	920	86.5	1 900	2 300	NU330E	NJ	NUP	_
	320	108	4		1 130		132	1 900	2 200	NU2330	NJ	NUP	N
	320	108	4	4	1 290	1 600	150	1 700	2 000	NU2330E	NJ	NUP	_
	040	00	0.1	4.5	000	0.40	04.0	0.000	0.000	NII 14 000	NI I	NUID	N.
	240	38	2.1	1.5	263 475	340	34.0	2 800	3 300	NU1032 NU232	NJ	NUP NUP	N N
	290 290	48	3	3		570	54.5	2 300	2 700		NJ	_	
	290	48 80	3	3	555 700	665 940	63.5 90.0	2 100 2 100	2 400 2 400	NU232E NU2232	NJ NJ	NUP NUP	N
160	290	80	3	3	895		114	1 900	2 200	NU2232 NU2232E	NJ	NUP	N
100	340	68	4	4	775	875	81.0	2 000	2 300	NU332	NJ	NUP	N
	340	68	4	4	950			1 800		NU332E	NJ	NUP	IN
													N
													14
	340 340 340	114 114	4 4 4	4	1 190 1 460		97.5 141 168	1 700 1 600	2 100 2 000 1 900	NU332E NU2332 NU2332E	NJ NJ	NUP NUP	N



¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.



		Dimensi	on			In	stallati	on-rela	ted din	nensions	5			М	ass
		mm						m	nm					ļ	(g
				$d_{\mathrm{a}}$	$d_{ m e}$	$d_{ m b}$	$d_{ m c}$	$d_{ m d}$	$D_{\rm a}$	I	$O_{\rm b}$	$r_{\rm as}$	$r_{1as}$		<b>N</b> type
NF typ	e $F_{ m w}$	$E_{\mathrm{w}}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min.3)	Max.	Max.	(app	orox.)
NF	156	204	165.5	143	143	151	158	168	217	217	208	2.5	2.5	6.3	6.17
_	153.5		164.7	143	_	151	158	168	217			2.5	2.5	6.9	_
_	156	204	165.5	143	143	151	158	168	217	217	208	2.5	2.5	10.2	10
_	153.5	_	164.7	143	_	151	158	168	217	_	_	2.5	2.5	11.8	_
NF	167	243	182	146	146	164	169	184	264	264	247	3	3	17.4	17
_	167	_	183	146	_	164	169	184	264	_	_	3	3	19.4	_
_	167	243	182	146	146	164	169	184	264	264	247	3	3	26.9	26.4
_	167	_	183	146	_	164	169	184	264	_	_	3	3	30.9	_
_	158	192	164.8	146.5	149	156	161	166	201	203.5		2	1	4.05	3.98
NF	169	221	179.5	153	153	166	171	182	237	237	225	2.5	2.5	7.88	7.72
_	169	_	180.2	153	_	166	171	182	237	_	_	2.5	2.5	8.73	_
—	169	221	179.5	153	153	166	171	182	237	237	225	2.5	2.5	12.9	12.6
_	169	_	180.2	153	_	166	171	182	237	_	_	2.5	2.5	15.8	_
NF	180	260	196	156	156	176	182	198	284	284	265	3	3	21.2	20.7
_	180	_	196.8	156	_	176	182	198	284	_	_	3	3	23.2	_
_	180	260	196	156	156	176	182	198	284	284	265	3	3	33.8	33.1
_	180	_	196.8	156	_	176	182	198	284	_	_	3	3	38.7	_
		205.5	176.7	158	161	167	173	178	214	217	207.5	2	1.5	4.77	4.7
NF	182	238	193	163	163	179	184	196	257	257	242	2.5	2.5	9.92	9.72
_	182	_	194	163	_	179	184	196	257		_	2.5	2.5	11	_
_	182	238	193	163	163	179	184	196	257	257	242	2.5	2.5	16.3	16
	182		194	163	_	179	184	196	257	_	_	2.5	2.5	19.7	
NF	193	277	210	166	166	190	195	213	304	304	282	3	3	25.3	24.7
_	193 193	— 077	211	166	166	190	195	213	304 304	204	282	3	3	28.4	20.0
_	193	277	210 211	166 166	166	190 190	195 195	213 213	304	304	202	3	3	40.6 47.2	39.8
_	193	_	211	100		190	195	213	304			3	3	47.2	_
_	180	220	188	168	171	178	184	189	229	232	222	2	1.5	5.9	5.81
NF	195	255	207	173	173	192	197	210	277	277	259	2.5	2.5	13.7	13.4
_	195		207.8	173	- T	192	197	210	277			2.5	2.5	15.6	
_	195	255	207.0	173	173	192	197	210	277	277	259	2.5	2.5	22	21.6
_	193	_	206.6	173	_	192	197	210	277			2.5	2.5	25.1	
NF	208	292	225	176	176	200	211	228	324	324	297	3	3	31.3	30.6
_	204	_	223.2	176	_	200	211	228	324			3	3	34	_
_	208	292	225	176	176	200	211	228	324	324	297	3	3	50.5	49.5
	204	_	223.2	176		200	211	228	324	_		3	3	56	
2) D-									<b>-</b> .			•	•		

³⁾ Does not apply to the sides of the outer ring rib of type NF bearings.

B-108 B-109





d 170 ~ 220mm





²⁾ This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.



	I	Dimens	ion			In	stallati	on-rela	ted din	ension	s			М	ass
		mm						m	ım					1	κg
NE.	E.	$E_{\mathrm{w}}$	a	$d_{\rm a}$	$d_{ m e}$	$d_{ m b}$	$d_{ m c}$	$d_{ m d}$	$D_{\rm a}$		) _р	$r_{\rm as}$	$r_{1as}$	NU type	
NF typ	$e$ $F_{ m w}$	$L_{ m W}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min. ³⁾	Max.	Max.	(ар	orox.)
	100	007	001.0	101	101	100	107	000	040	040	000	0	_	7.00	7.70
NF	193 208	237 272	201.8	181 186	181 186	190 204	197 211	203 223	249 294	249 294	239 277	2	2	7.88 17	7.76 16.7
INF	207	212	221.4	186	100	204	211	223	294	294	211	3	3	19.6	10.7
	208	272	220.5	186	186	204	211	223	294	294	277	3	3	27.2	26.7
	205	_	220.3	186	-	204	211	223	294	294	211	3	3	31	20.7
NF	220	310	238	186	186	216	223	241	344	344	315	3	3	37	36.1
INF	220	310	238	186	186	216	223	241	344	344	315	3	3	59.5	58.3
	220	310	230	100	100	210	223	241	344	344	313	3	3	59.5	36.3
_	205	255	215	191	191	203	209	216	269	269	257	2	2	10.3	10.1
NF	218	282	230.5	196	196	214	221	233	304	304	287	3	3	17.7	17.3
_	217	_	231.4	196	_	214	221	233	304	_	_	3	3	20.4	_
_	218	282	230.5	196	196	214	221	233	304	304	287	3	3	28.4	27.8
_	215	_	230.2	196	_	214	221	233	304	_	_	3	3	31.9	_
NF	232	328	252	196	196	227	235	255	364	364	333	3	3	44.2	43.2
_	232	328	252	196	196	227	235	255	364	364	333	3	3	69.5	68.1
	015	005	005	001	001	010	010	000	070	070	007	0	_	10.7	10.5
-	215	265	225	201	201	213	219	226	279	279	267	2	2	10.7	10.5
NF	231	299	244.5	206	206	227	234	247	324	324	304	3	3	21.3	20.8
_	230	_	245.2	206		227	234	247	324			3	3	24.2	00.7
_	231 228	299	244.5	206	206	227	234	247	324	324	304	3	3	34.4	33.7
NF.			244	206		227	234	247	324		351	3 4	3	39.5	40.0
NF	245	345	265	210	210	240	248	268	380	380		4	4	49.4	48.3
	245	345	265	210	210	240	248	268	380	380	351	4	4	80.5	78.9
_	229	281	239.4	211	211	226	233	241	299	299	283	2	2	13.9	13.7
NF	244	316	258	216	216	240	247	261	344	344	321	3	3	25.3	24.8
_	243	_	259	216	_	240	247	261	344	_	_	3	3	28.1	_
_	244	316	258	216	216	240	247	261	344	344	321	3	3	41.3	40.5
_	241	_	257.8	216	_	240	247	261	344	_	_	3	3	47.8	_
NF	260	360	280	220	220	254	263	283	400	400	366	4	4	55.8	54.5
_	260	360	280	220	220	254	263	283	400	400	366	4	4	92.6	90.7
	OFO	210	060	000	000	040	OE 4	064	207	207	212	0.5	0.5	10.0	17.0
NF	250 270	310 350	262 286	233 236	233 236	248 266	254 273	264 289	327 384	327 384	313 355	2.5	2.5	18.2 37.7	17.9 37
INF	270	350	286	236	236	266	273	289	384	384	355	3	3	37.7 59	
NF	284					279	287			384 440	402		4	73.4	57.8 71.7
ME	284	396	307 307	240	240 240	279	287	307	440 440	440	402	4	4	116	
_	284	396	307	240	240	2/9	287	307	440	440	402	4	4	110	114

Does not apply to the sides of the outer ring rib of type NF bearings.

B-110 B-111





#### *d* 240 ∼ 440mm

	-		-										
	Boun	dary di	mensio	ns		load rating	load	Allowable	•	Bearin	ng numb	er	
		mm	า		dynan		limit	mi					
d	D	В	ar . 1	$r_{1 \mathrm{s}  \mathrm{min}^1}$	$C_{\rm r}$	kN $C_{0\mathbf{r}}$	kN	Grease	Oil	Militure	Miltuna	MIID tuno.	Mtuno
a	D	D	7 s min	/ Is min*	, Cr	C0r	$C_{ m u}$	lubrication	lubrication	<b>NU</b> type	ил туре	NUP type I	<b>v</b> type
	360	56	3	3	585	820	72.0	1 800	2 100	NU1048	NJ	NUP	N
	440	72	4		1 040	1 340	113	1 500	1 700	NU248	NJ	NUP	N
240		120	4		1 590	2 320	196	1 300	1 600	NU2248	NJ	NUP	N
	500	95	5	5	1 590	1 950	160	1 300	1 500	NU348	NJ	NUP	N
	500	155	5	5	2 330	3 200	262	1 100	1 300	NU2348	NJ	NUP	N
	400	65	4	4	715	1 000	85.0	1 600	1 900	NU1052	NJ	NUP	N
	480	80	5	5	1 270	1 660	137	1 300	1 600	NU252	NJ	NUP	N
260	480	130	5	5	1 980	2 930	241	1 200	1 400	NU2252	NJ	NUP	N
	540	102	6	6	1 790	2 230	180	1 200	1 400	NU352	NJ	NUP	N
	540	165	6	6 2	2 600	3 600	289	1 000	1 200	NU2352	NJ	NUP	N
	420	65	4	4	730	1 050	88.0	1 500	1 800	NU1056	NJ	NUP	N
	500	80	5	5	1 320	1 760	143	1 200	1 400	NU256	NJ	NUP	N
280		130	5		2 050	3 100	252	1 100	1 300	NU2256	NJ	NUP	N
_0	580	108	6		2 010	2 540	200	1 100	1 200	NU356	NJ	NUP	N
	580	175	6	6	3 000	4 250	335	920	1 100	NU2356	NJ	NUP	N
	460	74	4	4	950	1 340	109	1 400	1 600	NU1060	NJ	NUP	N
300	540	85	5	5	1 560	2 070	164	1 100	1 300	NU260	NJ	NUP	N
	540	140	5		2 420	3 650	290	1 000	1 200	NU2260	NJ	NUP	N
	480	74	4	4	970	1 410	113	1 300	1 500	NU1064	NJ	NUP	N
320		92	5		1 780	2 390	186	1 000	1 200	NU264	NJ	NUP	N
020	580	150	5		2 830	4 350	340	950	1 100	NU2264	NJ	NUP	N
240	520	82	5	5	1 160	1 670	132	1 200	1 400	NU1068	NJ	NUP	N
340	520	02	5	5	1 100	1 6/0	132	1 200	1 400	NUTUO	INJ	NUP	IN
360	540	82	5	5	1 190	1 750	136	1 100	1 300	NU1072	NJ	NUP	N
380	560	82	5	5	1 220	1 840	141	1 100	1 200	NU1076	NJ	NUP	N
400	600	00		<b>5</b>	1 460	2.100	164	000	1 200	NILIADOO	NI I	MIID	NI .
400	600	90	5	5	1 460	2 190	164	990	1 200	NU1080	NJ	NUP	N
420	620	90	5	5	1 500	2 290	170	950	1 100	NU1084	NJ	NUP	N
440	650	94	6	6	1 590	2 430	178	900	1 100	NU1088	NJ	NUP	N



¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.



		Dimens	ion			In	stallati	on-rela	ted dim	ension	s			r	/lass
		mm		$d_{\mathrm{a}}$	$d_{ m e}$	$d_{ m b}$	$d_{ m c}$	$d_{ m d}$	$D_{ m a}$	1	$\mathcal{D}_{\mathrm{b}}$	$r_{ m as}$	$r_{\mathrm{las}}$	NU tvn	kg e <b>N</b> type
NF typ	e $F_{ m w}$	$E_{\rm w}$	$d_1$	Min.	Min.	Max.	Min.	Min.	Max.	Max.	Min. ³⁾	Max.	Max.		oprox.)
_	270	330	282	253	253	268	275	284	347	347	333	2.5	2.5	19.6	19.3
NF	295	385	313	256	256	293	298	316	424	424	390	3	3	50.2	49.2
_	295	385	313	256	256	293	298	316	424	424	390	3	3	80	78.4
NF	310	430	335	260	260	305	313	333	480	480	436	4	4	93.4	91.3
_	310	430	335	260	260	305	313	333	480	480	436	4	4	147	144
_	296	364	309.6	276	276	292	300	312	384	384	367	3	3	29.1	28.7
NF	320	420	340	280	280	318	323	343	460	460	426	4	4	66.9	65.6
_	320	420	340	280	280	318	323	343	460	460	426	4	4	104	102
NF	336	464	362	284	284	331	339	359	516	516	471	5	5	117	114
_	336	464	362	284	284	331	339	359	516	516	471	5	5	182	178
_	316	384	329.6	296	296	312	320	332	404	404	387	3	3	30.9	30.4
NF	340	440	360	300	300	336	343	365	480	480	446	4	4	70.8	69.4
_	340	440	360	300	300	336	343	365	480	480	446	4	4	109	107
NF	362	498	390	304	304	356	366	386	556	556	505	5	5	142	139
_	362	498	390	304	304	356	366	386	556	556	505	5	5	222	218
_	340	420	356	316	316	336	344	358	444	444	423	3	3	43.6	42.9
NF	364	476	387	320	320	361	368	392	520	520	482	4	4	88.2	86.4
_	364	476	387	320	320	361	368	392	520	520	482	4	4	138	135
_	360	440	376	336	336	356	364	378	464	464	443	3	3	46	45.3
NF	390	510	415	340	340	386	393	419	560	560	516	4	4	111	109
_	390	510	415	340	340	386	393	419	560	560	516	4	4	172	168
_	385	475	403	360	360	381	390	405	500	500	479	4	4	61.8	60.8
_	405	495	423	380	380	401	410	425	520	520	499	4	4	64.7	63.7
_	425	515	443	400	400	421	430	445	540	540	519	4	4	67.5	66.5
_	450	550	470	420	420	446	455	473	580	580	554	4	4	87.6	86.3
_	470	570	490	440	440	466	475	493	600	600	574	4	4	91	89.6
_	493	597	513.8	464	464	488	499	517	626	626	602	5	5	105	103

³⁾ Does not apply to the sides of the outer ring rib of type NF bearings.

B-112 B-113



### d 460 $\sim$ 500mm

	Bound	dary di	mensio	ns	Basic	load rating	Fatigue load	Allowable	speed 2)	Bearing	g numb	er	
		mm			dynam	nic static	limit kN	mir Grease	n-1 Oil				
d	D	B	$r_{\rm s min}^{1)}$	$r_{ m 1smin^{1)}}$	$C_{\rm r}$	$C_{0r}$	$C_{\mathrm{u}}$	lubrication		<b>NU</b> type	NJ type	NUP type 1	<b>\</b> type
		400	•				404	252	4 000				
460	680	100	6	6 1	710	2 630	191	850	1 000	NU1092	NJ	NUP	N
480	700	100	6	6 1	750	2 750	197	810	960	NU1096	NJ	NUP	N
500	720	100	6	6 1	790	2 870	203	770	910	NU10/500	NJ	NUP	N



ı	Dimens	ion			In	stallati	ion-rela	ited din	ension	s				Mass
	mm		d	d	d.	d		nm $D_{\mathbf{a}}$	,	n.	aa	00-	NII I +	kg
NF type $F_{ m w}$	$E_{\rm w}$	$d_1$	$d_{ m a}$ Min.	$d_{ m e}$ Min.	$d_{ m b}$ Max.	$d_{ m c}$ Min.	$d_{ m d}$ Min.	Max.	Max.	O _b Min. ³⁾	$r_{ m as}$ Max.	Max		ype <b>N</b> type (approx.)
<b>—</b> 516	624	537.6	484	484	511	522	541	656	656	629	5	5	122	120
— 536	644	557.6	504	504	531	542	561	676	676	649	5	5	126	124
<b>—</b> 556	664	577.6	524	524	551	562	581	696	696	669	5	5	130	128

3) Does not apply to the sides of the outer ring rib of type NF bearings.

B-114 B-115

¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) This value is for machined cages; when pressed cages are used, 80% of this value is acceptable.





NH=NJ+HJ

NUJ=NU+HJ

#### $d 20 \sim 60 \text{mm}$

d	$20 \sim 60$	Jmm											
	D	)imen	sion		Ltype	Mass			Dimen	sion		L type	Mass
		mm			collar ring number	ka			mn	_		collar ring number	ka
		111111	'		Hulliber	kg			11111	1		Hullibei	kg
d	$d_1$	$B_1$	$B_2$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$		(approx.)	d	$d_1$	$B_1$	$B_2$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$		(approx.)
	29.9	3	6.75	0.6	HJ204	0.012		54.2	5	9	1.1	HJ208	0.046
	29.5	3	5.5	0.6	HJ204E	0.009		53.9	5	8.5	1.1	HJ208E	0.042
	29.9	3	7.5	0.6	HJ2204	0.013		54.2	5	9.5	1.1	HJ2208	0.047
	29.5	3	6.5	0.6	HJ2204E	0.01		53.9	5	9	1.1	HJ2208E	0.045
20	31.8	4	7.5	0.6	HJ304	0.017	40	58.4	7	12.5	1.5	HJ308	0.083
	31.1	4	6.5	0.6	HJ304E	0.014		57.6	7	11	1.5	HJ308E	0.07
	31.8	4	8.5	0.6	HJ2304	0.018		58.4	7	14.5	1.5	HJ2308	0.09
	31.1	4	7.5	0.6	HJ2304E	0.015		57.6	7	12.5	1.5	HJ2308E	0.08
		_						64.8	8	13	2	HJ408	0.14
	34.8	3	7.25		HJ205	0.015			_	0.5	4.4		0.050
	34.5	3	6	0.6	HJ205E	0.012		59	5 5	9.5	1.1	*HJ209	0.053
	34.8 34.5	3	7.5 6.5	0.6	HJ2205	0.015		58.9 58.9		8.5	1.1	HJ209E	0.047 0.05
O.F.	34.5	4	8	0.6 1.1	HJ2205E HJ305	0.013 0.025		64	5 7	9 12.5	1.1 1.5	HJ2209E HJ309	0.05
25	38	4	7	1.1	HJ305E	0.025	45	64.5	7	11.5	1.5	HJ309E	0.099
	39	4	9	1.1	HJ2305	0.021		64.5	7	15	1.5	HJ2309E	0.093
	38	4	8	1.1	HJ2305E	0.027		64.5	7	13	1.5	HJ2309 HJ2309E	0.109
	43.6	6	10.5	1.5	HJ405	0.024		71.8	8	13.5	2	HJ409	0.103
	43.0	О	10.5	1.5	HJ4U3	0.057		/1.0	0	13.5		HJ409	0.175
	41.7	4	8.25	0.6	HJ206	0.025		64.6	5	10	1.1	HJ210	0.063
	41.1	4	7	0.6	HJ206E	0.017		63.9	5	9	1.1	* HJ210E	0.055
	41.7	4	8.5	0.6	HJ2206	0.025		64.6	5	9.5	1.1	HJ2210	0.061
	41.1	4	7.5	0.6	HJ2206E	0.02		71	8	14	2	HJ310	0.142
30	45.9	5	9.5	1.1	HJ306	0.039	50	71.4	8	13	2	HJ310E	0.134
	44.9	5	8.5	1.1	HJ306E	0.035		71	8	17	2	HJ2310	0.157
	45.9	5	11.5	1.1	HJ2306	0.043		71.4	8	14.5	2	HJ2310E	0.15
	44.9	5	9.5	1.1	HJ2306E	0.035		78.8	9	14.5	2.1	HJ410	0.23
	50.5	7	11.5	1.5	HJ406	0.08							
			_					70.8	6	11	1.1	* HJ211	0.084
	47.6	4	8	0.6	HJ207	0.03		70.8	6	9.5	1.1	HJ211E	0.072
	48	4	7	0.6	HJ207E	0.027		70.8	6	10	1.1	HJ2211E	0.076
			8.5	0.6	HJ2207	0.031	55	77.2	9	15	2	HJ311	0.182
	47.6	4											
	48	4	8.5	0.6	HJ2207E	0.031	-	77.7	9	14	2	HJ311E	0.168
35	48 50.8	4	8.5 11	0.6 1.1	HJ2207E HJ307	0.056		77.2	9	18.5	2	HJ2311	0.203
35	48 50.8 51	4 6 6	8.5 11 9.5	0.6 1.1 1.1	HJ2207E HJ307 HJ307E	0.056 0.048		77.2 77.7	9	18.5 15.5	2	HJ2311 HJ2311E	0.203 0.185
35	48 50.8 51 50.8	4 6 6 6	8.5 11 9.5 14	0.6 1.1 1.1 1.1	HJ2207E HJ307 HJ307E HJ2307	0.056 0.048 0.064		77.2	9	18.5	2	HJ2311	0.203
35	48 50.8 51	4 6 6	8.5 11 9.5	0.6 1.1 1.1	HJ2207E HJ307 HJ307E	0.056 0.048	60	77.2 77.7	9	18.5 15.5	2	HJ2311 HJ2311E	0.203 0.185

¹⁾ Smallest allowable dimension for chamfer dimension r. Note: 1 This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. Refer to pages B-98 to B-101 for bearing dimensions, allowable rotations, and mass. 2. "*" indicates L type collar rings that can also be used with dimension series 22 bearings.

B-116



NH=NJ+HJ

J NUJ=NU+HJ

#### $d 60 \sim 105 \text{mm}$

		Dimen	sion		L type collar ring	Mass		[	Dimen	sion		L type collar ring	Mass
		mn	า		number	kg			mn	ı		number	kg
d	$d_1$	$B_1$	$B_2$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$		(approx.)	d	$d_1$	$B_1$	$B_2$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$		(approx.)
	84.2	9	15.5	2.1	HJ312	0.22	90	111	11	20	2.1	HJ2316E	0.45
	84.6	9	14.5	2.1	HJ312E	0.205	80	122	13	22	3	HJ416	0.78
60	84.2	9	19	2.1	HJ2312	0.245							
	84.6	9	16	2.1	HJ2312E	0.23		108.2	8	14	2	* HJ217	0.25
	91.8	10	16.5	2.1	HJ412	0.34		107.7	8	12.5	2	HJ217E	0.21
								107.7	8	13	2	HJ2217E	0.216
	84.8	6	11	1.5	HJ213	0.123	85	117.5	12	20.5	3	HJ317	0.56
	84.5	6	10	1.5	HJ213E	0.111		118.4	12	18.5	3	HJ317E	0.505
	84.8	6	11.5	1.5	HJ2213	0.126		117.5	12	24	3	HJ2317	0.606
	84.5	6	10.5	1.5	HJ2213E	0.118		118.4	12	22	3	HJ2317E	0.55
65	91	10	17	2.1	HJ313	0.28		4440	_	4-	_	111040	0.005
	91	10	15.5	2.1	HJ313E	0.25		114.2	9	15	2	HJ218	0.305
	91	10	20	2.1	HJ2313	0.304		114.6	9	14	2	HJ218E	0.272
	91	10	18	2.1	HJ2313E	0.29		114.2	9	16	2	HJ2218	0.315
	98.5	11	18	2.1	HJ413	0.42	90	114.6	9	15	2	HJ2218E	0.308
	00.0	-	40.5	4 -		0.45	00	125	12	21	3	HJ318	0.63
	89.6	7	12.5	1.5	* HJ214	0.15		124.7	12	18.5	3	HJ318E	0.548
	89.5	7	11	1.5	HJ214E	0.13		125	12	26	3	HJ2318	0.704
	89.5	7	11.5	1.5	HJ2214E	0.138		124.7	12	22	3	HJ2318E	0.69
70	98	10 10	17.5 15.5	2.1	HJ314	0.33		101	0	15.5	0.1	111040	0.050
	98 98	10	20.5	2.1 2.1	HJ314E HJ2314	0.293		121	9		2.1	HJ219	0.352
	98	10	18.5		HJ2314E	0.358		121 121	9	14 16.5	2.1	HJ219E	0.304
	110.5	12	20	2.1	HJ2314E	0.35 0.605		121	9	15.5	2.1 2.1	HJ2219 HJ2219E	0.363
	110.5	12	20	3	NJ414	0.605	95	132	13	22.5	3	HJ319	0.335
	94	7	12.5	1.5	* HJ215	0.156		132.7	13	20.5	3	HJ319E	0.76
	94.5	7	12.5	1.5	* HJ215 HJ215E	0.156		132.7	13	26.5	3	HJ2319E	0.7
	94.5	7	11.5	1.5	HJ2215E	0.141		132.7	13	24.5	3	HJ2319	0.826
	104.2	11	18.5	2.1	HJ315	0.104		132.7	10	24.5	3	1102313L	0.0
75	104.2	11	16.5	2.1	HJ315E	0.4		128	10	17	2.1	HJ220	0.444
	104.0	11	21.5	2.1	HJ2315	0.33		128	10	15	2.1	HJ220E	0.38
	104.2	11	19.5	2.1	HJ2315E	0.432		128	10	18	2.1	HJ2220	0.456
	116	13	21.5	3	HJ415	0.71		128	10	16	2.1	HJ2220E	0.430
	110	10	21.3	J	110-113	0.71	100	140.5	13	22.5	3	HJ320	0.895
	101.2	8	13.5	2	* HJ216	0.207		140.3	13	20.5	3	HJ320E	0.8
	101.7	8	12.5	2	*HJ216E	0.193		140.5	13	27.5	3	HJ2320	0.986
80	111.8	11	19.5	2.1	HJ316	0.133		140.3	13	23.5	3	HJ2320E	0.92
	111	11	17	2.1	HJ316E	0.405		. 10.0	.0	20.0	U	.1020232	0.02
	111.8	11	23	2.1	HJ2316	0.511	105	135	10	17.5	2.1	HJ221	0.505
1) Sm					r dimension r.								

1) Smallest allowable dimension for chamfer dimension r. Note: 1 This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. Refer to pages B-102 to B-107 for bearing dimensions, allowable rotations, and mass. 2. "*" indicates L type collar rings that can also be used with dimension series 22 bearings.

B-117







NH=NJ+HJ

NUJ=NU+HJ

#### $d = 105 \sim 200 \text{mm}$

d 1	$.05 \sim 1$	200n	nm										
		Dimen	sion		L type	Mass			Dimen	sion		L type	Mass
					collar ring							collar ring	
		mn	n		number	kg			mn	n		number	kg
d	$d_1$	$B_1$	$B_2$	$r_{1 \text{s min}^{1)}}$		(approx.)	d	$d_1$	$B_1$	$B_2$	$r_{1 \text{s min}^{1)}}$		(approx.)
CC	W1	21	22	, 13 Hilli		(= - /		ω,	21	22	, 19 111111		(
405	4.47	40	00.5	0	111004	0.07		101	10	10.5	0	1110005	4.40
105	147	13	22.5	3	HJ321	0.97		194 193	12 12	19.5 26.5	3	HJ230E HJ2230	1.18 1.39
	141.5	11	18.5	2.1	HJ222	0.615		193	12	24.5	3	HJ2230E	1.42
	142.1	11	17	2.1	HJ222E	0.553	150	210	15	26.5	4	HJ330	2.37
	141.5	11	20.5	2.1	HJ2222	0.645	150	211	15	25	4	HJ330E	2.25
	1/12 1	11	19.5	2.1	HJ2222E	0.605		210	15	34	4	HJ2330	2.69
110	155.5	14	23	3	HJ322	1.17		211	15	31.5	4	HJ2330E	2.6
	156.6	14	22	3	HJ322E	1.09				01.0		11020002	
	155.5	14	28	3	HJ2322	1.28		207	12	21	3	HJ232	1.48
	156.6	14	26.5	3	HJ2322E	1.25		207.8	12	20	3	HJ232E	1.34
								207	12	28	3	HJ2232	1.69
	153	11	19	2.1	HJ224	0.715	400	206.6	12	24.5	3	HJ2232E	1.61
	153.9	11	17	2.1	HJ224E	0.634	160	225	15	28	4	HJ332	2.75
	153	11	22	2.1	HJ2224	0.767		223.2	15	25	4	HJ332E	2.4
	153.9	11	20	2.1	HJ2224E	0.705		225	15	37	4	HJ2332	3.16
120	168.5	14	23.5	3	HJ324	1.4		223.2	15	32	4	HJ2332E	2.85
	169.2	14	22.5	3	HJ324E	1.28							
	168.5	14	28	3	HJ2324	1.53		220.5	12	22	4	HJ234	1.7
	169.2	14	26	3	HJ2324E	1.42		221.4	12	20	4	HJ234E	1.51
							170	220.5	12	29	4	HJ2234	1.93
	165.5	11	19	3	HJ226	0.84	170	220.2	12	24	4	HJ2234E	1.82
	164.7	11	17	3	HJ226E	0.684		238	16	29.5	4	HJ334	3.25
	165.5	11	25	3	HJ2226	0.953		238	16	38.5	4	HJ2334	3.71
130	164.7	11	21	3	HJ2226E	0.831							
	182	14	24	4	HJ326	1.62		230.5	12	22	4	HJ236	1.8
	183	14	23	4	HJ326E	1.53		231.4	12	20	4	HJ236E	1.7
	182	14	29.5	4	HJ2326	1.8	180	230.5	12	29	4	HJ2236	2.04
	183	14	28	4	HJ2326E	1.75	.00	230.2	12	24	4	HJ2236E	1.91
								252	17	30.5	4	HJ336	3.85
	179.5	11	19	3	HJ228	1		252	17	40	4	HJ2336	4.42
	180.2	11	18	3	HJ228E	0.929		0445	40	00.5		111000	0.0
	179.5	11	25	3	HJ2228	1.14		244.5	13	23.5	4	HJ238	2.2
140	180.2	11	23	3	HJ2228E	1.11		245.2	13	21.5	4	HJ238E	1.94
	196	15	26	4	HJ328	1.93	190	244.5	13	31.5	4	HJ2238	2.52
	196.8	15	25	4	HJ328E	1.91		244	13	26.5 32	4	HJ2238E	2.38
	196 196.8	15 15	33.5 31	4 4	HJ2328 HJ2328E	2.21		265 265	18 18	41.5	5 5	HJ338 HJ2338	4.45
	190.8	15	31	4	MJZJZ8E	2.3		205	10	41.5	5	ಗರ∠ಎಎಠ	5.05
150	193	12	20.5	3	HJ230	1.24	200	258	14	25	4	HJ240	2.6

150 193 12 20.5 3 HJ230 1.24 2UU 258 14 25 ....

1) Smallest allowable dimension for chamfer dimension r.

Note: 1 This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. Refer to pages B-106 to B-111 for bearing dimensions, allowable rotations, and mass.

B-118

Cylindrical Roller Bearings



NH=NJ+HJ

NUJ=NU+HJ

#### $d_{200} \sim 320 \text{mm}$

a 2	$00\sim 3$	320m	٦m			
	0	Dimen	sion		L type collar ring	Mass
		mm	1		number	kg
d	$d_1$	$B_1$	$B_2$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$		(approx.)
	259	14	23	4	HJ240E	2.35
	258	14	34	4	HJ2240	2.99
200	257.8	14	28	4	HJ2240E	2.86
	280	18	33	5	HJ340	5
	280	18	44.5	5	HJ2340	5.76
220	286	15	27.5	4	HJ244	3.55
220	307	20	36	5	HJ344	7.05
240	313	16	29.5	4	HJ248	4.65
240	335	22	39.5	5	HJ348	8.2
260	340	18	33	5	HJ252	6.2
200	362	24	43	6	HJ352	11.4
280	360	18	33	5	HJ256	7.39
200	390	26	46	6	HJ356	13.9
300	387	20	34.5	5	HJ260	9.14
320	415	21	37	5	HJ264	11.3

1) Smallest allowable dimension for chamfer dimension r.

Note: 1 This L type collar ring is used with NU type cylindrical roller bearings; in duplex arrangements with NJ or NU type bearing numbers, they become NH type and NUJ type respectively. Refer to pages B-110 to B-113 for bearing dimensions, allowable rotations, and mass.

B-119







#### d 25 ~ 110mm





^{2) &}quot;K" indicates bearings having a tapered bore with a taper ratio of 1:12.



Bearing	number 2)	Dime	nsion		Ins	tallat	ion-re	ated di	mensio	ns		I	i	approx.)	
	type	m	ım	_1	_1	-1		nm	D	n		NNU	type	(g NN ty	
Cylindrical bore	Tapered bore	$F_{\mathrm{w}}$	$E_{\rm w}$	$d_{ m a}$ Min.	$d_{ m e}$ Min.	$d_{ m b}$ Max.	$d_{ m c}$ Min.	$D_{ m a}$ Max.	$D_{ m b}$ Max.	$D_{ m b}$ Min.	$r_{ m as}$ Max.	bore	bore	Cylindrical bore	bore
NN3005	NN3005K	_	41.3	29	30	_	_	_	43	42	0.6		_	0.124	0 121
	NN3006K	_	48.5	35	36.5				50	49	1			0.199	
											•				
NN3007	NN3007K	_	55	40	41.5	_		_	57	56	1	_	_	0.242	0.235
NN3008	NN3008K	_	61	45	47	_	_	_	63	62	1	_	_	0.312	0.303
NN3009	NN3009K	_	67.5	50	52	_	_	_	70	69	1	_	_	0.405	0.393
NN3010	NN3010K	_	72.5	55	57	_	_	_	75	74	1	_	_	0.433	0.419
NN3011	NN3011K	_	81	61.5	63.5	_	_	_	83.5	82	1	_	_	0.651	0.631
NN3012	NN3012K	_	86.1	66.5	68.5	_	_	_	88.5	87	1	_	_	0.704	0.683
NN3013	NN3013K	_	91	71.5	73.5	_	_	_	93.5	92	1	_	_	0.758	0.735
NN3014	NN3014K	_	100	76.5	79	_	_	_	103.5	101	1	_	_	1.04	1.01
NN3015	NN3015K	_	105	81.5	84	_	_	_	108.5	106	1	_	_	1.14	1.11
NN3016	NN3016K	_	113	86.5	89.5	_	_	_	118.5	114	1	_	_	1.52	1.47
NN3017	NN3017K	_	118	91.5	94.5	_	_	_	123.5	119	1	_	_	1.61	1.56
NN3018	NN3018K	_	127	98	101	_	_	_	132	129	1.5	_	_	2.07	2.01
NN3019	NN3019K	_	132	103	106	_	_	_	137	134	1.5	_	_	2.17	2.1
NN4920 NN3020	NN4920K NN3020K	113	129 137	106.5 108	110 111	111	115	133.5	133.5 142	131 139	1 1.5	1.83	1.75	1.75 2.26	1.67 2.19
		110				440	100	100 5				4.04	4 00		
NN4921 NN3021	NN4921K NN3021K	118	134 146	111.5 114	115 117	116	120 —	138.5	138.5 151	136 148	1 2	1.91 —	1.82	1.82 2.89	1.73 2.8
	NN4922K NN3022K	123	139 155	116.5 119	120 123	121	125	143.5 —	143.5 161	141 157	1 2	1.99	1.9	1.9 3.69	1.81 3.56



#### d 120 ~ 280mm





^{2) &}quot;K" indicates bearings having a tapered bore with a taper ratio of 1:12.



Dynamic equivalent radial load $P_r = F_r$
Static equivalent radial load
$P_{0r} = F_r$

Bearing number 2)		Dime	nsion	Installation-related dimensions							<b>Mass</b> (approx.) kg				
	type	m	m			_		nm	_	_			<b>J</b> type	NN.	
Cylindrical bore	Tapered bore	$F_{\mathrm{w}}$	$E_{\rm w}$	$d_{ m a}$ Min.	$d_{ m e}$ Min.	$d_{ m b}$ Max.	$d_{ m c}$ Min.	$D_{ m a}$ Max.	$D_{ m b}$ Max.	$D_{ m b}$ Min.	$r_{ m as}$ Max.	Cylindrica bore	l Tapered bore	Cylindrical bore	Tapered bore
		- **	- "												
	NN4924K					133	137	158.5	158.5		1	2.75	2.63	2.63	2.51
NN3U24	NN3024K	_	165	129	133	_	_	_	171	167	2	_	_	3.98	3.83
	NN4926K		168	138	142	144	148	172	172	170	1.5	3.69	3.52	3.52	3.35
NN3026	NN3026K	_	182	139	143	_	_	_	191	183	2	_	_	5.92	5.71
	NN4928K		178	148	152	154	158	182	182	180	1.5	3.94	3.76	3.76	3.58
NN3028	NN3028K	_	192	149	153	_	_	_	201	194	2	_	_	6.44	6.21
	NN4930K				164	166	171	201	201	198.5	2	6.18	5.9	5.9	5.62
NN3030	NN3030K	_	206	161	166	_	_	_	214	208	2	_	_	7.81	7.53
	NN4932K				174	176	182	211	211	208.5	2	6.53	6.23	6.24	5.94
NN3032	NN3032K	_	219	171	176	_	_	_	229	221	2	_	_	8.92	8.59
NN4934	NN4934K	188.5	216.5	179	184	186	192	221	221	218.5	2	6.87	6.55	6.56	6.24
NN3034	NN3034K	_	236	181	187	_	_	_	249	238	2	_	_	12.6	12.2
NN4936	NN4936K	202	234	189	195	199	205	241	241	236	2	9.9	9.46	9.45	9.01
NN3036	NN3036K	—	255	191	197	_	_	_	269	257	2	_	_	16.6	16
NN4938	NN4938K	212	244	199	205	209	215	251	251	246	2	10.4	9.94	9.93	9.47
NN3038	NN3038K	_	265	201	207	_	_	_	279	267	2	_	_	18	17.4
NN4940	NN4940K	225	261	211	218	222	228	269	269	264	2	14.7	14	14	13.3
NN3040	NN3040K	_	282	211	218	_	_	_	299	285	2	_	_	21.6	20.8
NN4944	NN4944K	245	281	231	238	242	248	289	289	284	2	15.9	15.2	15.2	14.5
NN3044	NN3044K	_	310	233	240	_	_	_	327	313	2.5	_	_	29.3	28.2
NN4948	NN4948K	265	301	251	258	262	269	309	309	304	2	17.2	16.4	16.4	15.6
	NN3048K	_	330	253	261	_	_	_	347	333	2.5	_	_	32.8	31.6
NN4952	NN4952K	292	336	271	279	288	296	349	349	339	2	29.6	28.3	28.3	27
	NN3052K		364	276	285	_		_	384	367	3		_	47.4	45.8
NN4956	NN4956K	312	356	291	299	308	316	369	369	359	2	31.6	30.2	30.2	28.8
	NN3056K	_	384	296	305	_	_	_	404	387	3	_	_	51.1	49.3





# d 300 ∼ 500mm

I	Boundar	y dimens	sions	Basic	load rating	Fatigue load	Allowabl	e speed	Bearing number 2)		
		mm		dynam		limit	mi		NNU ty		
d	D	B	$r_{\mathrm{s}\mathrm{min}^{1)}}$	$C_{ m r}$	kN $C_{0\mathrm{r}}$	$KN C_{ m u}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore	
300	420	118	3	1 330	2 800	231	1 300	1 500	NNU4960	NNU4960K	
	460	118	4	1 470	2 560	209	1 200	1 500	—	—	
320	440	118	3	1 370	2 970	242	1 200	1 400	NNU4964	NNU4964K	
	480	121	4	1 500	2 670	214	1 100	1 300	—	—	
340	460	118	3	1 410	3 150	252	1 100	1 300	NNU4968	NNU4968K	
	520	133	5	1 800	3 200	251	1 100	1 300	—	—	
360	480	118	3	1 430	3 250	255	1 100	1 300	NNU4972	NNU4972K	
	540	134	5	1 830	3 300	258	1 000	1 200	—	—	
380	520	140	4	1 810	4 050	315	1 000	1 200	NNU4976	NNU4976K	
	560	135	5	1 870	3 450	265	940	1 100	—	—	
400	540	140	4	1 870	4 300	325	940	1 100	NNU4980	NNU4980K	
	600	148	5	2 260	4 150	310	880	1 000	—	—	
420	560	140	4	1 930	4 500	340	900	1 100	NNU4984	NNU4984K	
	620	150	5	2 300	4 300	320	840	990	—	—	
440	600	160	4	2 380	5 550	410	850	1 000	NNU4988	NNU4988K	
	650	157	6	2 680	5 100	370	800	940	—	—	
460	620	160	4	2 460	5 850	430	800	950	NNU4992	NNU4992K	
	680	163	6	2 830	5 350	385	750	890	—	—	
480	650	170	5	2 530	5 900	425	770	910	NNU4996	NNU4996K	
500	670	170	5	2 670	6 400	455	730	860	NNU49/500	NNU49/500K	



Dynamic equivalent radial load  $P_{\rm r}$  =  $F_{\rm r}$ Static equivalent radial load  $P_{0r} = F_r$ 

Bearing	number ²⁾	Dim	ension		Ins	stallati	on-rel	ated di	mensio	ns				(approx	.)
NN Cylindrical bore	type Tapered bore	$F_{ m w}$	nm $E_{ m w}$	$d_{\mathrm{a}}$ Min.	$d_{ m e}$ Min.	$d_{ m b}$ Max.	$d_{ m c}$ Min.	nm $D_{ m a}$ Max.	$D_{ m b}$ Max.	$D_{ m b}$ Min.	$r_{ m as}$ Max.		type		I type al Tapered bore
NN4960 NN3060	NN4960K NN3060K		391 418	313 316	323 326	335 —	343	407 —	407 444	394 421	2.5 3	48.6 —	46.4 —	46.4 70.8	44.2 68.6
	NN4964K NN3064K		411 438	333 336	343 346	355 —	363 —	427 —	427 464	414 441	2.5 3	51.4 —	49.1 —	49 76.2	46.7 73.5
 NN3068	 NN3068K	379 —	 473	353 360	363 371	375 —	383 —	447 —	 500	 477	2.5 4	54.2 —	51.7 —	 102	 98.5
 NN3072	 NN3072K	398 —	 493	373 380	383 391	394 —	402 —	467 —	 520	 497	2.5 4	57 —	54.4 —	 107	_ 103
 NN3076	 NN3076K	425 —	 512	396 400	408 411	420 —	430 —	504 —	— 540	 516	3 4	84.5 —	80.6 —	_ 113	 109
 NN3080	 NN3080K	445 —	 547	416 420	428 432	440 —	450 —	524 —	— 580	 551	3 4	88.2 —	84.1 —	— 146	 141
 NN3084	 NN3084K	465 —	 567	436 440	448 452	460 —	470 —	544 —	 600	_ 571	3 4	92 —	87.7 —	 154	 148
 NN3088	 NN3088K	492 —	 596	456 464	469 477	487 —	497 —	584 —	— 626	 601	3 5	127 —	121 —	— 178	 172
 NN3092	 NN3092K	512 —	<u> </u>	476 484	489 498	507 —	517 —	604 —	<u> </u>	 627	3 5	132 —	126 —	<u> </u>	 195
_	_	534	_	500	514	531	541	630	_	_	4	156	149	_	_
_	_	556	_	520	534	551	561	650	_	_	4	162	155	_	_

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) "K" indicates bearings having a tapered bore with a taper ratio of 1:12.

# **Tapered Roller Bearings**



# Tapered Roller Bearings







Double row tapered roller bearing

# 1. Types, design features, and characteristics

Tapered roller bearings are designed so the tapered vertex of the raceway surfaces of the inner and outer rings and rollers converge at one point on the centerline of the bearing (see Fig. 1).

The tapered rollers are guided by the compound force of the inner and outer raceway surfaces which keep the rollers pressed up against the large rib on the inner ring.

A large variety of these bearings, including single, double, and four row arrangements, are available in both metric and inch series. Each

type and associated characteristics are shown in Table 1. For four-row tapered roller bearings, see section "C. Special application bearings."



Fig. 1

Table 1 Taper	ed roller bearing types and characteristics
Туре	Characteristics
	(1) There are both metric and inch series adhering to the standards shown in <b>the following table.</b> Dimension series
	Metric series Inch series
	Standard JIS B 1534  • JIS B 1512  • ISO 355  • ABMA (includes metric J-series)
	Basic number  *T2EE040  Basic number  *T2EE040  Basic number in the case of J-series.)    Inner ring no. / outer ring no. ("J" appears at the beginning of the basic number in the case of J-series.)
Single row tapered roller bearings	*Dimension series previously not covered by 3XX are regulated under JIS B 1512; dimensions previously missing from 3XX will henceforth use the bearing number.  (2) In addition to the standard design, there are also medium contact angle and large contact angle types, denoted by the contact angle codes at the end of the part numbers (C and D, respectively).  (3) Subunits  Tapered roller bearings can be disassembled into parts: the inner ring, rollers, and cage (collectively known as the "CONE") and the outer ring (known as the "CUP"). These are the bearing's "subunits". Subunit dimensions are standardized under ISO or ABMA standards, and unified subunits are interchangeable within each dimensional standard. However, high precision grade bearings are generally not interchangeable, and these subunits must be used by assembling only subunits with identical manufacturing numbers.  Aside from any cautionary notes that may appear, the single row tapered roller bearings listed in the dimension tables have subunits standardized for both metric and inch systems (including J series). (Refer to Fig. 2)  Subunit dimensions  E: Outer ring (cup) nominal small-end diameter α: Nominal contact angle  Fig. 2  Continued to the next page

#### Table 1 (continued)

Туре	Characteristics	
Single row tapered roller bearings	<ul> <li>(4) These bearings are constructed to have a high capacity for radial loads, axial loads, and combined loads. The larger the contact angle, the greater the axial load capacity. When a pure radial load is applied to a tapered roller bearing, an induced load in the axial direction is also generated, so these bearings are generally used in pairs.</li> <li>(5) Single row tapered roller bearings are separable, so both the inner and outer rings can be used with tight fits.</li> <li>(6) Tapered roller bearings are also manufactured with flanges attached to the outer rings. For more details, contact NTN Engineering. (Refer to Fig. 3)</li> </ul>	Fig. 3
Duplex tapered roller bearings	<ul> <li>(1) When two single-row tapered roller bearings are to be used in combination, the bearing clearance and preload are adjusted by the inner ring spacer or the outer ring spacer (see Fig. 4).</li> <li>(2) A product number and a combination code are indicated on inner rings, outer rings, and spacers. Parts displaying the same number and code must be used in combination.</li> <li>(3) See A-96 Table 8.14 for the axial internal clearance.</li> </ul>	Back-to-back (DB) Face-to-face (DF) Fig. 4
Double row tapered roller bearings	(1) Back-to-back arrangement (using double row outer rings) and face-to-face arrangement (using double row inner rings) are both available. The assemblies have been adjusted so that each type's internal clearance values are fixed. Only parts with identical manufacturing numbers can be used and they must be assembled according to their code numbers. (Refer to Fig. 5)  (2) See A-96 Table 8.14 for the axial internal clearance of double-row and duplex bearings.	Face-to-face Back-to-back Fig. 5

# 2. Standard cage type

In general, pressed cages (see Fig. 6) are used in tapered roller bearings. For large sized bearings, machined or pin type cages may also be used, while resin cages may also be used for smaller sized bearings.



Fig. 6 Pressed steel cage

# 3. Allowable misalignment

In order to avoid edge loading and potential for premature failure, the maximum allowable misalignment based on bearing series can be found below.

Tapered Roller Bearings

The allowable misalignment of combined bearings is influenced by the load center position, so please consult NTN Engineering.

• Single row (standard) ...... 1/ 2 000 • Single row (ULTAGE) ..... 1/600

#### 4. Precautions

If bearing load is light during operation, or if the ratio of axial to radial load for duplex and double row bearings exceeds the value of e, slipping may develop between the rollers and raceway surface, sometimes resulting in smearing. The mass of rollers and cages particularly tends to be large for large tapered roller bearings. For additional details, please contact NTN Engineering.

In tapered roller bearings, the cage may protrude beyond the inner and/or outer ring side faces. Care should be taken when designing the housing and shaft to ensure contact with the cage does not occur.

## 5. Tapered roller bearing (ULTAGE) series

The ULTAGE tapered roller bearings have been developed for "long operating life," "improved load capacity," and "higher speed" required for various types of industrial machinery.

For details, see the special catalog (CAT. No. 3035/E).



# Tapered Roller Bearings



# Inch Series Tapered Roller Bearings (Single Row) Index

# Inch Series Tapered Roller Bearings (Single Row) Index

Series number	Bearing number CONE / CUP	Page of bearing dimension table	Series number	Bearing number CONE / CUP	Page of bearing dimension table	Series number	Bearing number CONE / CUP	Page of bearing dimension table
335	336 / 332	B-167	495	498 / 493	B-185	745	749 / 742	B-185
335	339 / 332	B-163	525	527 / 522	B-167	745	749A / 742	B-183
335	344 / 332	B-165	525	528 / 522	B-169	755	756A / 752	B-183
355	350A / 354A	B-165	525	529 / 522	B-173	755	757 / 752	B-183
355	355 / 354A	B-167	535	537 / 532X	B-173	755	758 / 752	B-185
355	358 / 354A	B-169	535	539 / 532X	B-173	755	759 / 752	B-185
355	359A / 354A	B-169	535	543 / 532X	B-165	755	760 / 752	B-185
355	3595 / 352	B-169	555	555 / 552A	B-173	775	780 / 772	B-187
365	365 / 362A	B-171	555	555S / 552A	B-175	775	782 / 772	B-187
365	366 / 362A	B-171	555	557S / 552A	B-173	795	799 / 792	B-189
365	367 / 362A	B-169	555	558 / 552A	B-177	795	799A / 792	B-189
365	368 / 362A	B-171	555	559 / 552A	B-177	835	835 / 832	B-179
365	368A / 362	B-171	555	560 / 552A	B-179	835	842 / 832	B-183
365	368S / 362A	B-173	555	560S / 552A	B-179	835	850 / 832	B-185
365	369A / 362A	B-169	565	565 / 563	B-177	855	861 / 854	B-187
365	370A / 362A	B-171	565	566 / 563	B-179	895	896 / 892	B-191
385	385 / 382A	B-175	565	567 / 563	B-181	895	898 / 892	B-191
385	385A / 382A	B-171	565	567A / 563	B-181	935	936 / 932	B-187
385	386A / 382A	B-169	565	568 / 563	B-181	935	938 / 932	B-189
385	387 / 382A	B-175	575	575 / 572	B-181	935	941 / 932	B-187
385	387A / 382A	B-175	575	575S / 572	B-181	1200	1280 / 1220	B-157
385	387AS / 382A	B-175	575	576 / 572	B-181	1300	1380 / 1328	B-155
385	387S / 382A	B-175	575	577 / 572	B-181	1300	1380 / 1329	B-155
385	388A / 382A	B-175	575	580 / 572	B-183	1700	1755 / 1729	B-157
385	389 / 382A	B-175	575	581 / 572	B-183	1700	1775 / 1729	B-155
385	389A / 382A	B-173	575	582 / 572	B-183	1700	1779 / 1729	B-157
395	390 / 394A	B-175	595	593 / 592A	B-185	1700	1780 / 1729	B-157
395 395	390A / 394A 392 / 394A	B-177 B-177	595 595	594 / 592A 594A / 592XE	B-187 B-187	1900 1900	1985 / 1930 1985 / 1931	B-157 B-159
395	395A / 394A	B-177	595	595 / 592A	B-183	1900	1985 / 1932	B-159
395	396 / 394A	B-179 B-171	595	596 / 592A	B-185	2400	2474 / 2420	B-159
395	397 / 394A	B-171	595	598A / 592A	B-185	2500	2558 / 2523	B-159
395	399A / 394A	B-179	615	619 / 612	B-173	2500	2578 / 2523	B-159
415	418 / 414	B-165	615	621 / 612	B-173	2500	2580 / 2520	B-161
415	420 / 414	B-165	615	623 / 612	B-175	2500	2580 / 2523	B-161
435	436 / 432	B-169	635	639 / 632	B-177	2500	2582 / 2523	B-161
435	438 / 432	B-167	635	641 / 632	B-179	2500	2585 / 2523	B-161
455	455 / 453X	B-173	635	641 / 633	B-179	2600	2682 / 2631	B-157
455	460 / 453X	B-167	635	643 / 632	B-179	2600	2687 / 2631	B-157
455	462 / 453X	B-175	635	644 / 632	B-181	2600	2688 / 2631	B-157
455	463 / 453X	B-169	655	655 / 653	B-179	2600	2689 / 2631	B-159
455	469 / 453A	B-175	655	659 / 653	B-181	2600	2690 / 2631	B-159
455	469 / 453X	B-175	655	661 / 653	B-183	2700	2776 / 2720	B-165
455	469 / 454	B-175	655	663 / 652	B-183	2700	2780 / 2720	B-163
475	477 / 472	B-177	655	663 / 653	B-183	2700	2785 / 2720	B-161
475	480 / 472	B-179	655	665 / 653	B-185	2700	2788 / 2720	B-165
475	482 / 472	B-179	675	681 / 672	B-185	2700	2789 / 2720	B-165
475	483 / 472	B-177	675	683 / 672	B-187	2700	2793 / 2720	B-161
475	484 / 472	B-181	675	685 / 672	B-187	2700	2796 / 2729	B-163
495	495 / 493	B-183	675	687 / 672	B-187	2700	2793 / 2735X	B-161
495	495A / 493	B-181	745	740 / 742	B-183	2800	2878 / 2820	B-161
495	495AS / 493	B-183	745	744 / 742	B-181	2800	2879 / 2820	B-161
495	496 / 493	B-183	745	745A / 742	B-179	2900	2984 / 2924	B-169
495	497 / 492A	B-185	745	748S / 742	B-181	3100	3187 / 3120	B-159

Series number	Bearing number CONE / CUP	Page of bearing dimension table	Series number	Bearing number CONE / CUP	Page of bearing dimension table	Series number	Bearing number CONE / CUP	Page of bearing dimension table
3100	3188 / 3120	B-161	6500	6576 / 6535	B-183	15000	15112 / 15245	B-159
3100	3193 / 3120	B-161	6500	6580 / 6535	B-185	15000	15116 / 15245	B-159
3100	3196 / 3120	B-161	02400	02474 / 02420	B-159	15000	15117 / 15245	B-159
3300	3379 / 3320	B-163	02400	02475 / 02420	B-161	15000	15118 / 15245	B-159
3300	3382 / 3321	B-165	02400	02476 / 02420	B-161	15000	15119 / 15245	B-159
3300	3382 / 3339	B-165	02800	02872 / 02820	B-159	15000	15120 / 15245	B-159
3300	3386 / 3320	B-165	02800	02875 / 02820	B-161	15000	15123 / 15245	B-159
3400	3476 / 3420	B-161	02800	02877 / 02820	B-161	15000	15125 / 15245	B-159
3400	3478 / 3420	B-163	02800	02878 / 02820	B-161	15000	15126 / 15245	B-161
3400	3479 / 3420	B-163	03000	03062 / 03162	B-155	15500	15580 / 15523	B-157
3400	3490 / 3420	B-165	05000	05062 / 05185	B-155	15500	15590 / 15520	B-157
3500	3576 / 3525	B-163	05000	05066 / 05185	B-155		15590 / 15523	B-157
						15500		
3500	3578 / 3520	B-167	05000	05075 / 05185	B-155	16000	16137 / 16284	B-161
3500	3578 / 3525	B-167	05000	05079 / 05185	B-155	16000	16150 / 16282	B-163
3500	3579 / 3525	B-167	07000	07079 / 07196	B-155	17000	17118 / 17244	B-159
3500	3580 / 3525	B-165	07000	07087 / 07196	B-155	17000	17119 / 17244	B-159
3500	3586 / 3525	B-169	07000	07093 / 07196	B-157	17500	17580 / 17520	B-155
JS3500	JS3549A / JS351		07000	07096 / 07196	B-157	18500	18590 / 18520	B-165
3700	3767 / 3720	B-173	07000	07097 / 07196	B-157	18600	18685 / 18620	B-167
3700	3775 / 3720	B-171	07000	07098 / 07196	B-157	18600	18690 / 18620	B-169
3700	3776 / 3720	B-169	07000	07100 / 07196	B-157	18700	18790 / 18720	B-171
3700	3777 / 3720	B-169	07000	07100 / 07204	B-157	18700	18790 / 18724	B-171
3700	3778 / 3720	B-169	07000	07100S / 07196	B-157	19000	19150 / 19281	B-163
3700	3780 / 3720	B-171	09000	09062 / 09195	B-155	21000	21075 / 21212	B-155
3700	3780 / 3726	B-171	09000	09067 / 09195	B-155	22700	22780 / 22720	B-167
3700	3780 / 3732	B-171	09000	09067 / 09196	B-155	23000	23100 / 23256	B-157
3700	3781 / 3720	B-171	09000	09078 / 09195	B-155	24700	24780 / 24720	B-165
3700	3782 / 3720	B-167	09000	09081 / 09195	B-155	25500	25572 / 25520	B-165
3800	3872 / 3820	B-163	11000	11162 / 11300	B-165	25500	25577 / 25520	B-167
3800	3875 / 3820	B-165	11000	11162 / 11315	B-165	25500	25578 / 25520	B-167
3800	3880 / 3820	B-167	11500	11590 / 11520	B-155	25500	25580 / 25520	B-167
3900	3975 / 3920	B-173	LM11700	LM11749 / LM117	710 B-155	25500	25582 / 25520	B-167
3900	3979 / 3920	B-175	LM11900	LM11949 / LM119	910 B-155	25500	25584 / 25520	B-169
3900	3980 / 3920	B-177	12000	12175 / 12303	B-167	25500	25590 / 25519	B-169
3900	3982 / 3920	B-177	12500	12580 / 12520	B-155	25500	25590 / 25520	B-169
3900	3984 / 3925	B-179	M12600	M12648 / M1261	0 B-155	25500	25590 / 25522	B-169
3900	3994 / 3920	B-179	M12600	M12649 / M1261	0 B-155	25500	25590 / 25526	B-169
A4000	A4050 / A4138	B-155	LM12700	LM12749 / LM127	711 B-155	25500	25592 / 25520	B-169
A4000	A4059 / A4138	B-155	13600	13685 / 13621	B-163	25800	25877 / 25820	B-161
4300	4388 / 4335	B-167	13600	13687 / 13621	B-163	25800	25877 / 25821	B-161
4300	4395 / 4335	B-167	13800	13889 / 13830	B-163	25800	25880 / 25821	B-163
5300	5395 / 5335	B-171	14000	14116 / 14274	B-159	26800	26878 / 26822	B-165
5500	5578 / 5535	B-173	14000	14116 / 14276	B-159	26800	26880 / 26822	B-165
5500	5583 / 5535	B-177	14000	14117A / 14276	B-159	26800	26882 / 26823	B-165
5500	5584 / 5535	B-177	14000	14124 / 14276	B-161	26800	26882 / 26824	B-167
5700	5760 / 5735	B-181	14000	14125A / 14276	B-161	26800	26883 / 26822	B-163
A6000	A6075 / A6157	B-155	14000	14130 / 14276	B-161	26800	26884 / 26822	B-167
6200	6277 / 6220	B-169	14000	14137A / 14276	B-161	26800	26885 / 26822	B-165
6300	6379 / 6320	B-179	14000	14139 / 14276	B-163	27600	27687 / 27620	B-183
6300	6386 / 6320	B-179	15000	15100 / 15245	B-103	27600	27689 / 27620	B-183
6400	6460 / 6420	B-181	15000	15100 / 15243	B-157	27600	27690 / 27620	B-183
6400	6461 / 6420	B-183	15000	15101 / 15245	B-157	27600	27691 / 27620	B-183
6400	6461A / 6420	B-181	15000	15102 / 15245	B-157	27800	27880 / 27820	B-165
6500	6559C / 6535	B-183	15000	15106 / 15245	B-157	28000	28150 / 28300	B-165
	03370 / 0333	D-103	13000	10100/ 10270	0-137	20000	20130 / 20300	D-103

B-130 B-131

# Inch Series Tapered Roller Bearings (Single Row) Index

Inch Series Tapered Roller Bearings (Single Row) Index

								- 4.
Series number		Page of bearing dimension table	Series number	Bearing number CONE / CUP	Page of bearing dimension table	Series number	Bearing number I CONE / CUP	Page of bear dimension ta
28000	28150 / 28315	B-165	44000	44143 / 44348	B-163	67300	67389 / 67322	B-1
28000	28158 / 28300	B-165	44000	44150 / 44348	B-165	67300	67390 / 67322	B-1
28500	28579 / 28521	B-171	44000	44158 / 44348	B-165	67300	67391 / 67322	B-1
28500	28580 / 28521	B-171	L44600	L44640 / L44610	B-157	67700	67790 / 67720	B-1
28500	28584 / 28521	B-173	L44600	L44643 / L44610	B-157	68000	68450 / 68712	B-1
28600	28678 / 28622	B-171	L44600	L44649 / L44610	B-157	68000	68462 / 68712	B-1
28600	28680 / 28622	B-175	45200	45280 / 45220	B-169	L68100	L68149 / L68111	B-1
28600	28682 / 28622	B-175	45200	45282 / 45220	B-171	L69300	JL69349 / JL6931	0 B-1
28900	28985 / 28921	B-177	45200	45284 / 45220	B-173	71000	71453 / 71750	B-1
28900	28990 / 28920	B-177	45200	45287 / 45220	B-173	72000	72188 / 72487	B-1
28900	28995 / 28920	B-177	45200	45289 / 45220	B-175	72000C	72200C / 72487	B-1
29500	29580 / 29520	B-175	L45400	L45449 / L45410		72000C	72212C / 72487	B-1
29500	29585 / 29520	B-177	46000	46162 / 46368	B-167	72000C	72218C / 72487	B-1
29500	29585 / 29521	B-177	46000	46175 / 46368	B-167	72000C	72225C / 72487	B-1
29500	29586 / 29520	B-179	46700	46780 / 46720	B-191	LM72800	LM72849 / LM728	
29500	29590 / 29520	B-179	46700	46790 / 46720	B-191	74000	74500 / 74850	B-1
29600	29675 / 29620	B-179	47400	47487 / 47420	B-179	74000	74525 / 74850	B-1
29600	29675 / 29630	B-181	47400	47490 / 47420	B-181	74000	74550 / 74850	B-1
29600	29685 / 29620	B-181	47600	47678 / 47620	B-181	78000	78225 / 78551	B-1
29600	29688 / 29620	B-163	47600	47681 / 47620	B-183	78000	78250 / 78551	B-1
LM29700	LM29748 / LM29		47600	47686 / 47620	B-183	78000C	78214C / 78551	B-1
31500	31593 / 31520	B-163	47800	47890 / 47820	B-185	LM78300	LM78349 / LM783	
31500	31594 / 31520	B-163	47800	47896 / 47820	B-187	LM78300	LM78349A / LM78	
31500	31597 / 31520	B-163	48200	48286 / 48220	B-189	M84500	M84548 / M8451	
33000	33225 / 33462	B-175	48200	48290 / 48220	B-189	M86600	M86643 / M8661	
33000	33275 / 33462	B-179	48300	48385 / 48320	B-191	M86600	M86647 / M8661	
33000	33281 / 33462	B-181	48300	48393 / 48320	B-191	M86600	M86649 / M8661	
33000	33287 / 33462	B-181	LM48500	LM48548 / LM48		M88000	M88048 / M8801	
33800	33885 / 33821		LM48500	LM48548A / LM4			JHM88540 / JHM8	
33800	33889 / 33821	B-167 B-171	48600	48684 / 48620	B-191	HM88500 HM88500	HM88542 / HM88	
33800	33890 / 33821	B-171	48600	48685 / 48620	B-191	HM88500	HM88542 / HM88	
							HM88547 / HM88	
33800	33895 / 33822	B-173	49500 52000	49585 / 49520	B-173	HM88500		
34000	34274 / 34478	B-179		52375 / 52618	B-187	HM88600	HM88648 / HM88	
34000	34300 / 34478	B-181	52000	52387 / 52618	B-187	HM88600	HM88648 / HM88	
34000	34301 / 34478	B-181	52000	52393 / 52618	B-187	HM88600	HM88649 / HM88	
34000	34306 / 34478	B-183	52000	52400 / 52618	B-187	HM89200	HM89249 / HM89	
36600	36690 / 36620	B-191	53000	53162 / 53375	B-167	HM89400	HM89440 / HM89	
36900	36990 / 36920	B-191	53000	53177 / 53375	B-167	HM89400	HM89443 / HM89	
37000	37425 / 37625	B-187	55000C	55175C / 55437	B-169	HM89400	HM89444 / HM89	
37000	37431 / 37625	B-187	55000C	55176C / 55437	B-169	HM89400	HM89446 / HM89	
39500	39575 / 39520	B-173	55000C	55187C / 55437	B-171	HM89400	HM89448 / HM89	
39500	39580 / 39520	B-175	55000C	55200C / 55443	B-173	HM89400	HM89449 / HM89	
39500	39581 / 39520	B-175	56000	56425 / 56650	B-187	90000	J90354 / J90748	B-1
39500	39585 / 39520	B-177	59000	59200 / 59412	B-173	90000	90381 / 90744	B-1
39500	39590 / 39520	B-179	64000	64433 / 64700	B-189	95000	95475 / 95925	B-1
41000	41125 / 41286	B-159	64000	64450 / 64700	B-189	95000	95500 / 95905	B-1
42000	42346 / 42584	B-185	65000	65237 / 65500	B-177	95000	95525 / 95925	B-1
42000	42350 / 42584	B-185	65300	65390 / 65320	B-171	97000	97500 / 97900	B-1
42000	42368 / 42584	B-185	66000	66200 / 66462	B-173	99000	99550 / 99100	B-1
42000	42375 / 42584	B-187	66000	66225 / 66462	B-175	99000	99575 / 99100	B-1
42000	42381 / 42584	B-187	66500	66584 / 66520	B-173	LM102900		
42600	42687 / 42620	B-181	66500	66589 / 66520	B-175	LM104900		
42600	42690 / 42620	B-183	LM67000	LM67048 / LM67	'010 B-159	LM104900	LM104947A / LM:	104911 B-1
12000	/2121 / /2212	D 161	67200	67200 / 67222	D 100	LM104000	LM104040 / LM14	0/011 D 1

67388 / 67322

B-189

Series B number		f bearing ion table		Bearing number CONE / CUP	Page of b	
M205100	JM205149 / JM205110	B-171	M714200	JM714249 / JM7	14210	B-18
M207000	JM207049 / JM207010	B-175	H715300	H715334 / H715	311	B-17
H211700	JH211749 / JH211710	B-179	H715300	H715343 / H715	311	B-17
HM212000	HM212044 / HM212011	B-177	H715300	H715345 / H715	311	B-18
HM212000	HM212046 / HM212011	B-177	H715300	H715348 / H715	311	B-18
HM212000	HM212049 / HM21210	B-179	M716600	JM716648 / JM7	16610	B-18
L217800	L217849 / L217810	B-185	M718100	JM718149 / JM7	18110	B-18
LL217800	LL217849 / LL217810	B-185	M719100	JM719149 / JM7	19113	B-18
HM218200	HM218248 / HM218210	B-185	M720200	JM720249 / JM7	20210	B-18
HH221400	HH221430 / HH221410	B-183	L724300	JL724348 / JL724	4314	B-18
HH221400	HH221431 / HH221410	B-183	M736100	JM736149 / JM7	36110	B-19
HH221400	HH221440 / HH221410	B-187	M738200	JM738249 / JM7	38210	B-19
HH221400	HH221449 / HH221410	B-187	HM801300	HM801346 / HM	801310	B-16
HH221400	HH221449A / HH221410	B-187	HM801300	HM801349 / HM	801310	B-16
HH224300	HH224334 / HH224310	B-187	M802000	M802048 / M802	2011	B-16
HH224300	HH224335 / HH224310	B-187	HM803100	HM803145 / HM	803110	B-16
HH224300	HH224346 / HH224310	B-189	HM803100	HM803149 / HM	803110	B-16
HH228300	HH228349 / HH228310	B-189	M804000	M804048 / M804	4010	B-16
M231600	M231648 / M231610	B-191	HM804800	HM804840 / HM	804810	B-16
LM300800	LM300849 / LM300811	B-165	HM804800	HM804842 / HM	804810	B-16
H307700	JH307749 / JH307710	B-175	HM804800	M804846 / M804	4810	B-16
HM318400	JHM318448 / JHM31841					B-17
L319200	L319249 / L319210	B-187	HM804800	M804849 / M804	4810	B-17
L327200	L327249 / L327210	B-189				B-17
H414200	H414242 / H414210	B-179				B-16
H414200	H414245 / H414210	B-179				B-17
H414200	H414249 / H414210	B-181				B-17
H415600	JH415647 / JH415610	B-181				B-17
L432300	L432349 / L432310	B-191				B-17
LM501300	LM501349 / LM501310	B-165	HM807000			B-17
LM501300	LM501349 / LM501314	B-165		L812148 / L8121		B-17
LM503300	LM503349A / LM503310	B-169				B-17
HH506300	HH506348 / HH506310	B-171				B-17
HH506300	HH506349 / HH506310	B-171	HM813800			B-17
LM506800	JLM506849 / JLM506810					B-17
LM508700	JLM508748 / JLM508710					B-17
M511900	JM511946 / JM511910	B-177		L814749 / L8147		B-18
M515600	JM515649 / JM515610	B-183	LM814800	LM814849 / LM8	314810	B-18
HM516400	HM516442 / HM516410	B-181	M822000	JM822049 / JM8	22010	B-18
HM516400	HM516448 / HM516410	B-183				B-16
HM516800	JHM516849 / JHM51681	D B-185	HM903200	HM903249 / HM	903210	B-16
LM522500	LM522546 / LM522510	B-187		M903345 / M903		B-16
LM522500	LM522548 / LM522510	B-189				B-17
HM522600	JHM522649 / JHM52261					B-17
HM534100	JHM534149 / JHM53411					B-17
LM603000	LM603049 / LM603011	B-169				B-17
L610500	L610549 / L610510	B-177		H913840 / H913		B-17
M612900	JM612949 / JM612910	B-179		H913842 / H913		B-17
HM617000	HM617049 / HM617010	B-185		JH913848 / JH91		B-18
L630300	L630349 / L630310	B-191		H917840 / H917		B-18
LL639200	LL639249 / L639210	B-191		H924045 / H924		B-18
LM704600	JLM704649 / JLM704610					B-18
LM710900	JLM710949 / JLM710910					B-18
LM714100	JLM714149 / JLM714110			/ INVIDENTE / INVI	J20110	5-10
	/ / / / / / / / / / / / / / / /	- 101	· —			

B-133

LM104900 LM104949 / LM104911

43131 / 43312

B-161

67300

43000





*d* 15 ∼ 30mm

	13	50	J										
			Bounda	ry dim	ensions	;		Basic load	l rating	Fatigue		wable	Bearing number 2)
				mm				dynamic kN	static	load limit kN		<b>eed</b> in-1 Oil	
a	l	D	T	B	C	$r_{\rm s min}^{12}$	$r_{ m ls~min}^{1)}$	$C_{ m r}$	$C_{0\mathrm{r}}$			lubrication	
15	5 4	12	14.25	13	11	1	1	25.8	20.8	_	9 900	13 000	4T-30302
	4	10	13.25	12	11	1	1	22.7	20.3	_	9 900	13 000	4T-30203
	, 4	10	17.25	16	14	1	1	30.5	28.3	_	9 900	13 000	4T-32203
17	′ ′	10	17.25	16	14	1	1	29.1	28.2	_	9 900	13 000	O 4T-32203R
	4	17	15.25	14	12	1	1	32.0	26.3	_	9 000	12 000	4T-30303
		12	15	15	12	0.6	0.6	27.6	27.9	_		13 000	4T-32004X
		17	15.25	14	12	1	1	31.0	28.7	_	8 800	12 000	4T-30204
20	n 4	17	19.25	18	15	1	1	40.5	39.5	_		12 000	4T-32204
20		52	16.25	16	13	1.5	1.5	39.0	34.0	_		11 000	4T-30304A
		52	16.25	16	12	1.5	1.5	34.5	31.0	_		10 000	4T-30304CA
		52	22.25	21	18	1.5	1.5	51.5	48.5	_	8 000	11 000	4T-32304
22	2 4	14	15	15	11.5	0.6	0.6	30.0	31.5	_	8 900	12 000	4T-320/22X
		17	15	15	11.5	0.6	0.6	31.0	33.5	_	7 900	11 000	4T-32005X
		17	17	17	14	0.6	0.6	36.0	40.5	_	8 000	11 000	4T-33005
		52	16.25	15	13	1	1	35.0	34.0	_	7 300	9 800	4T-30205
		52	19.25	18	16	1	i	46.5	47.0	_	7 300	9 800	4T-32205
		52	19.25	18	15	1	1	42.0	43.0	_	7 300	9 800	○ 4T-32205R
		52	19.25	18	15	1	1	42.5	46.5	_	7 100	9 400	4T-32205C
25		52	19.25	18	15	1	1	38.0	42.0		7 100	9 400	○ 4T-32205CR
		52	22	22	18	1	1	52.5	57.5	_	7 300	9 800	4T-33205
		52	18.25	17	15	1.5	1.5	54.0	47.5		6 700	8 900	4T-30305
		52 52	18.25	17	14	1.5	1.5	46.0	41.5		6 400	8 500	4T-30305C
		52 52	18.25	17	13	1.5	1.5	45.0	43.5		5 900	7 800	4T-30305D
		52	25.25	24	20	1.5	1.5	68.0	64.5	_	6 700	8 900	4T-32305
		52	16	16	12	1	1	37.0	40.5	_	7 300	9 700	4T-320/28X
28		58	24	24	19	1	1	64.5	69.5	_	6 700	8 900	4T-332/28
	ı	55	17	17	13	1	1	41.5	46.0	_	6 900	9 200	4T-32006X
		55	20	20	16	1	1	47.0	54.0		6 900	9 200	4T-33006
		52	17.25	16	14	1	i	48.5	48.0	_	6 300	8 400	4T-30206
30		52	21.25	20	17	1	1	60.5	64.0		6 300	8 400	4T-32206
30		52 52	21.25	20	17	1	1	55.5	60.0	_	6 100	8 100	4T-32206C
		52 52	25	25	19.5	1	1	72.0	77.0	_		8 400	4T-33206
		72									6 300		
		12	20.75	19	16	1.5	1.5	66.5	61.0	_	5 700	7 600	4T-30306

¹⁾ Smallest allowable dimension for chamfer dimension r or r1. 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions.





Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

	$\frac{Fa}{Fr}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{r_a}{r} > e$
	X	Y	X	Y
Ξ	1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO			Instal	lation-re	elated di	imensior	ns			Load	Constant	Axial	load	Mass
Dimension										center		fact	ors	1
series	$d_{\rm a}$	$d_{\mathrm{b}}$	D		$D_{\rm b}$	$S_{\rm a}$	$S_{\mathrm{b}}$	$r_{ m as}$	$r_{\mathrm{las}}$	mm				kg
	Min.	Max.	Max.	a Min.	Min.	Min.	Min.	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
2FB	20.5	22	36.5	34.5	38	2	3	1	1	9.5	0.29	2.11	1.16	0.096
2DB	22.5	23	34.5	32.5	37.5	2	2	1	1	9.5	0.35	1.74	0.96	0.08
2DD	22.5	22.5	34.5	32	37.5	2	3	1	1	11.5	0.31	1.92	1.06	0.102
	22.5	22	34.5	31	37.5	2	3	1	1	11	0.35	1.74	0.96	0.105
2FB	22.5	24.5	41.5	38.5	42.5	3	3.5	1	1	10.5	0.29	2.11	1.16	0.132
зсс	24.5	25	37.5	33.5	39.5	3	3	0.6	0.6	10.5	0.37	1.6	0.88	0.097
2DB	25.5	27	41.5	38.5	44	2	3	1	1	11.5	0.35	1.74	0.96	0.124
2DD	25.5	26	41.5	37	43	2	4	1	1	12.5	0.33	1.81	1.00	0.161
2FB	28.5	28	43.5	42.5	47.5	3	3	1.5	1.5	10.5	0.30	2.00	1.10	0.172
	28.5	27.5	43.5	39.5	48	3	4	1.5	1.5	13.5	0.55	1.10	0.60	0.17
2FD	28.5	27	43.5	41	47.5	3	4	1.5	1.5	14	0.30	2.00	1.10	0.242
3CC	26.5	27	39.5	35.5	41.5	3	3.5	0.6	0.6	11	0.40	1.51	0.83	0.105
4CC	29.5	29.5	42.5	38.5	44.5	3	3.5	0.6	0.6	12	0.43	1.39	0.77	0.113
2CE	29.5	30	42.5	39	44.5	3	3	0.6	0.6	11	0.29	2.07	1.14	0.13
3CC	30.5	31	46.5	42	48.5	2	3	1	1	12.5	0.37	1.60	0.88	0.155
2CD	30.5	31	46.5	42.5	49.5	2	4	1	1	14	0.36	1.67	0.92	0.187
	30.5	30.5	46.5	41.5	49	2	4	1	1	13.5	0.37	1.60	0.88	0.185
5CD	30.5	30	46.5	38.5	50	2	4	1	1	16	0.58	1.03	0.57	0.192
	30.5	30.5	46.5	39.5	49.5	2	4	1	1	16	0.55	1.10	0.60	0.189
2DE	30.5	30.5	46.5	41	49.5	4	4	1	1	14	0.35	1.71	0.94	0.219
2FB	33.5	34	53.5	52	57.5	3	3	1.5	1.5	13	0.30	2.00	1.10	0.268
	33.5	34	53.5	48	58	3	4	1.5	1.5	16	0.55	1.10	0.60	0.264
7FB	33.5	33.5	53.5	45	59	3	5	1.5	1.5	20	0.83	0.73	0.40	0.266
2FD	33.5	33	53.5	50	57.5	3	5	1.5	1.5	16	0.30	2.00	1.10	0.377
4CC	33.5	33	46.5	43	49.5	3	4	1	1	12.5	0.43	1.39	0.77	0.146
2DE	33.5	33.5	52.5	47	55	5	5	1	1	15.5	0.34	1.77	0.97	0.293
4CC	35.5	35.5	49.5	45.5	52.5	3	4	1	1	13.5	0.43	1.39	0.77	0.172
2CE	35.5	35.5	49.5	46.5	52	3	4	1	1	13	0.29	2.06	1.13	0.201
3DB	35.5	37.5	56.5	51	58	2	3	1	1	13.5	0.37	1.60	0.88	0.236
3DC	35.5	36.5	56.5	50	58	2.5	4	1	1	15.5	0.37	1.60	0.88	0.299
5DC	35.5	36	56.5	48	59.5	2	5	1	1	18.5	0.56	1.07	0.59	0.297
2DE	35.5	36	56.5	50.5	59	5	5.5	1	1	16	0.34	1.76	0.97	0.348
2FB	38.5	40	63.5	60	65.5	3	4.5	1.5	1.5	15	0.31	1.90	1.05	0.404



#### *d* 30 ∼ 45mm

w 30		3111111										
		Bounda	ry dim	ensions	;		Basic loa	d rating	Fatigue load		vable eed	Bearing number 2)
			mm				dynamic kN	static	limit kN		in-1 Oil	
d	D	T	B	C	$r_{ m s~min}^{1}$	$r_{ m ls  min}^{1)}$	$C_{ m r}$	$C_{0r}$			lubrication	
	72	20.75	19	15	1.5	1.5	65.0	58.5	_	5 500	7 300	4T-30306CA
	72	20.75	19	14	1.5	1.5	53.5	51.5	_	5 000	6 700	4T-30306D
30	72	28.75	27	23	1.5	1.5	89.5	90.0	_	5 700	7 600	4T-32306
00	72	28.75	27	23	1.5	1.5	88.0	94.0	_	5 500	7 300	4T-32306C
	72	28.75	27	23	1.5	1.5	77.5	88.5	_	5 500	7 300	○ 4T-32306CR
	58	17	17	13	1	1	41.0	46.5	_	6 600	8 700	4T-320/32X
32	65	26	26	20.5	1	1	78.5	85.0	_	6 000	8 000	4T-332/32
-	75	29.75	28	23	1.5	1.5	93.5	102	_	5 200	6 900	4T-323/32C
	55	14	14	11.5	0.6	0.6	30.5	37.5	4.60	6 800	9 000	32907XU
	62	18	18	14	1	1	46.0	52.5	_	6 100	8 100	4T-32007X
	62	21	21	17	1	1	56.0	66.5	_	6 100	8 100	4T-33007
	72	18.25	17	15	1.5	1.5	61.5	61.5	_	5 500	7 400	4T-30207
	72	24.25	23	19	1.5	1.5	80.5	87.0	_	5 500	7 400	4T-32207
	72	24.25	23	19	1.5	1.5	75.5	85.5	_	5 300	7 100	4T-32207C
35	72	24.25	23	18	1.5	1.5	68.5	78.5	_	5 300	7 100	O 4T-32207CR
	72	28	28	22	1.5	1.5	97.0	109	_	5 500	7 400	4T-33207
	80	22.75	21	18	2	1.5	83.0	77.0	_	5 000	6 600	4T-30307
	80	22.75	21	17	2	1.5	73.5	68.5	_	4 800	6 400	4T-30307C
	80	22.75	21	15	2	1.5	70.5	70.0	_	4 400	5 800	4T-30307D
	80	32.75	31	25	2	1.5	112	115	_	5 000	6 600	4T-32307
	80	32.75	31	25	2	1.5	103	117		4 800	6 400	4T-32307C
	62	15	15	12	0.6	0.6	36.0	48.0	5.85	5 900	7 800	32908XU
	68	19	19	14.5	1	1	55.5	65.5	_	5 300	7 100	4T-32008X
	68	22	22	18	1	1	66.0	82.5	_	5 300	7 100	4T-33008
	75	26	26	20.5	1.5	1.5	88.0	103	_	5 200	6 900	4T-33108
	80	19.75	18	16	1.5	1.5	68.0	67.0	_	4 900	6 600	4T-30208
	80	24.75	23	19	1.5	1.5	88.0	93.5	_	4 900	6 600	4T-32208
40	80	32	32	25	1.5	1.5	115	132	_	4 900	6 600	4T-33208
	85	33	32.5	28	2.5	2	131	144	_	4 600	6 200	4T-T2EE040
	90	25.25	23	20	2	1.5	101	102	_	4 400	5 900	4T-30308
	90	25.25	23	19	2	1.5	92.0	87.0	_	4 200	5 600	4T-30308C
	90	25.25	23	17	2	1.5	85.5	85.5	10.0	3 900	5 200	4T-30308D
	90 90	35.25	33 33	27	2	1.5	136 122	150 140	18.3	4 400 4 200	5 900	32308U
	90	35.25	33	27	2	1.5	122	140	_	4 200	5 600	4T-32308C
45	68	15	15	12	0.6	0.6	37.5	51.5	6.3	5 300	7 000	32909XU



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F}{F}$	$\frac{r_a}{r_r} > e$
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO Dimension			Instal	lation-r	elated di	mension	ıs			Load center	Constant	Axial fact		Mass
series	,	,	D		mm	C	C			mm				kg
	$d_{ m a}$ Min.	$d_{ m b}$ Max.	Max.	Min.	$D_{ m b}$ Min.	$S_{ m a}$ Min.	$S_{ m b}$ Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
	38.5	39.5	63.5	58	67	3	5.5	1.5	1.5	17.5	0.47	1.27	0.70	0.399
7FB	38.5	39.5	63.5	53.5	68	3	6.5	1.5	1.5	23.5	0.83	0.73	0.40	0.394
2FD	38.5	39	63.5	57.5	66.5	3	5.5	1.5	1.5	18.5	0.31	1.90	1.05	0.577
5FD	38.5	38	63.5	52	69	2	5.5	1.5	1.5	23	0.55	1.10	0.60	0.591
	38.5	38	63.5	49.5	67.5	2	5.5	1.5	1.5	23	0.61	0.99	0.54	0.594
4CC	37.5	37.5	52.5	47.5	55.5	3	4	1	1	14.5	0.45	1.32	0.73	0.188
2DE	37.5	38	59.5	53	62	5	5.5	1	1	17	0.35	1.73	0.95	0.394
5FD	40.5	40	66.5	55	71.5	3	6.5	1.5	1.5	23	0.55	1.10	0.60	0.652
2BD	39.5	40	50.5	48	52.5	2.5	2.5	0.6	0.6	10.5	0.29	2.06	1.13	0.121
4CC	40.5	40.5	56.5	51.5	59.5	4	4	1	1	15.5	0.45	1.32	0.73	0.223
2CE	40.5	40.5	56.5	52	59	3	4	1	1	14	0.31	1.97	1.08	0.263
3DB	43.5	43.5	63.5	60.5	67.5	3	3	1.5	1.5	15	0.37	1.60	0.88	0.341
3DC	43.5	42.5	63.5	58.5	67.5	3	5	1.5	1.5	17.5	0.37	1.60	0.88	0.455
5DC	43.5	41.5	63.5	54.5	68.5	3	6	1.5	1.5	21.5	0.58	1.03	0.57	0.461
	43.5	42.5	63.5	55.5	68	3	6	1.5	1.5	20.5	0.55	1.10	0.60	0.462
2DE	43.5	42	63.5	58	68.5	5	6	1.5	1.5	18.5	0.35	1.70	0.93	0.539
2FB	45	45.5	71.5	67.5	75	3	4.5	2	1.5	17	0.31	1.90	1.05	0.535
	45	44	71.5	63.5	75.5	3	5.5	2	1.5	20.5	0.55	1.10	0.60	0.517
7FB	45	44.5	71.5	60.5	77	3	7.5	2	1.5	26	0.83	0.73	0.40	0.527
2FE	45	43.5	71.5	65	75	3	7.5	2	1.5	20.5	0.31	1.90	1.05	0.782
5FE	45	43.5	71.5	59	76	3	7.5	2	1.5	25	0.55	1.10	0.60	0.804
2BC	44.5	45.5	57.5	54	58.5	3	3	0.6	0.6	11.5	0.29	2.07	1.14	0.161
3CD	45.5	45.5	62.5	58	65	4	4.5	1	1	15	0.38	1.58	0.87	0.272
2BE	45.5	46	62.5	58.5	65	2.5	4	1	1	15	0.28	2.12	1.17	0.32
2CE	48.5	47	66.5	62.5	71.5	4	5.5	1.5	1.5	18	0.36	1.69	0.93	0.498
3DB	48.5	48.5	71.5	67.5	74.5	3	3.5	1.5	1.5	16.5	0.37	1.60	0.88	0.431
3DC	48.5	48.5	71.5	66.5	75	3	5.5	1.5	1.5	19	0.37	1.60	0.88	0.547
2DE	48.5	47	71.5	64.5	76.5	5	7	1.5	1.5	21	0.36	1.68	0.92	0.738
2EE	52	47.5	75	68	81	5	5	2	2	22.5	0.34	1.74	0.96	0.905
2FB	50	52.5	81.5	74.5	83.5	3	5	2	1.5	19.5	0.35	1.74	0.96	0.765
	50	50	81.5	72	85.5	3.5	6	2	1.5	23	0.55	1.10	0.60	0.726
7FB	50	51	81.5	68.5	86	3	8	2	1.5	29.5	0.83	0.73	0.40	0.727
2FD	50	49.5	81.5	71	83.5	3	8	2	1.5	23	0.35	1.74	0.96	1.08
5FD	50	49	81.5	65.5	84.5	3	8	2	1.5	27.5	0.55	1.10	0.60	1.1
2BC	49.5	51	63.5	59.5	64.5	3	3	0.6	0.6	12	0.32	1.88	1.04	0.187

¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions.



d 45  $\sim$  55mm

		Bounda	ry dim	ensions	3		Basic loa	d rating	Fatigue load		vable eed	Bearing number 2)
			mm				dynamic	static	limit	mi	n-1	
,	ъ	m.		~	1	1)	kl a		kN	Grease	Oil	
d	D	T	B	C	$r_{\rm s  min^{-}}$	$r_{ m ls\ min}^{1)}$	$C_{\mathrm{r}}$	$C_{0\mathbf{r}}$	$C_{\mathrm{u}}$	lubrication	lubrication	
	75	20	20	15.5	1	1	64.0	76.5	_	4 800	6 400	4T-32009X
	75	24	24	19	1	1	73.5	93.5	_	4 800	6 400	4T-33009
	80	26	26	20.5	1.5	1.5	94.0	115	_	4 700	6 200	4T-33109
	85	20.75	19	16	1.5	1.5	75.0	78.5	_	4 400	5 900	4T-30209
	85	24.75	23	19	1.5	1.5	91.0	100	_	4 400	5 900	4T-32209
45	85	32	32	25	1.5	1.5	119	141	_	4 400	5 900	4T-33209
	95	29	26.5	20	2.5	2.5	99.5	108	_	4 100	5 500	4T-T7FC045
	100	27.25	25	22	2	1.5	123	126	_	4 000	5 300	4T-30309
	100	27.25	25	18	2	1.5	106	109	_	3 500	4 600	4T-30309D
	100	38.25	36	30	2	1.5	170	191	23.3	4 000	5 300	32309U
	100	38.25	36	30	2.5	0.6	145	175	21.4	3 800	5 100	32309CU
	72	15	15	12	0.6	0.6	39.5	57.0	6.95	4 700	6 300	32910XU
	72	15	14	12	0.6	0.6	35.0	50.5	6.15	4 700	6 300	○32910
	80	20	20	15.5	1	1	69.5	88.0	_	4 400	5 800	4T-32010X
	80	24	24	19	1	1	77.5	103	_	4 400	5 800	4T-33010
	85	26	26	20	1.5	1.5	96.0	121	_	4 200	5 600	4T-33110
	90	21.75	20	17	1.5	1.5	85.5	93.0	_	4 000	5 300	4T-30210
50	90	24.75	23	19	1.5	1.5	97.0	109	_	4 000	5 300	4T-32210
30	90	32	32	24.5	1.5	1.5	127	158	_	4 000	5 300	4T-33210
	100	36	35	30	2.5	2.5	167	190	_	3 800	5 100	4T-T2ED050
	105	32	29	22	3	3	119	132	_	3 400	4 500	4T-T7FC050
	110	29.25	27	23	2.5	2	147	152	_	3 600	4 800	4T-30310
	110	29.25	27	19	2.5	2	126	130	_	3 200	4 200	4T-30310D
	110	42.25	40	33	2.5	2	204	232	28.3	3 600	4 800	32310U
	110	42.25	40	33	2.5	2.5	178	220	_	3 500	4 600	4T-32310C
	80	17	17	14	1	1	49.5	73.5	8.95	4 300	5 700	32911XU
	90	23	23	17.5	1.5	1.5	89.0	118	_	4 000	5 400	4T-32011X
	90	27	27	21	1.5	1.5	102	138	_	4 000	5 400	4T-33011
	95	30	30	23	1.5	1.5	123	155	_	3 900	5 200	4T-33111
	100	22.75	21	18	2	1.5	103	111	_	3 600	4 900	4T-30211
	100	26.75	25	21	2	1.5	120	134	_	3 600	4 900	4T-32211
55	100	35	35	27	2	1.5	153	188	_	3 600	4 900	4T-33211
	115	34	31	23.5	3	3	137	156	_	3 300	4 400	4T-T7FC055
	120	31.5	29	25	2.5	2	172	179	_	3 300	4 400	4T-30311
	120	31.5	29	21	2.5	2	146	154	_	2 900	3 800	4T-30311D
	120	45.5	43	35	2.5	2	238	275	33.5	3 300	4 400	32311U
	120	45.5	43	35	2.5	2.5	204	252	30.5	3 100	4 200	32311CU

¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions.



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{a}{r} > e$
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO Dimension series			Insta	llation-r	related di	mensio	ıs			Load center mm	Constant	Axial fact		<b>Mass</b> kg
Julius	$d_{\mathrm{a}}$	$d_{ m b}$	D	a	$D_{\rm b}$	$S_{\rm a}$	$S_{\rm b}$	$r_{\rm as}$	$r_{\rm las}$					1/6
	Min.	Max.	Max.	Min.	Min.	Min.	Min.	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
зсс	50.5	51	69.5	64	72.5	4	4.5	1	1	16.5	0.39	1.53	0.84	0.341
2CE	50.5	51.5	69.5	64	71.5	4	5	1	1	16	0.29	2.04	1.12	0.405
3CE	53.5	51.5	71.5	67.5	76.5	4	5.5	1.5	1.5	19.5	0.38	1.57	0.86	0.544
3DB	53.5	53.5	76.5	72	80	3	4.5	1.5	1.5	18	0.40	1.48	0.81	0.493
3DC	53.5	53.5	76.5	71	81	3	5.5	1.5	1.5	20	0.40	1.48	0.81	0.604
3DE	53.5	52	76.5	69	82	5	7	1.5	1.5	22	0.39	1.56	0.86	0.795
7FC	57	53	83	69	91	3	9	2	2	33	0.87	0.69	0.38	0.907
2FB	55	58.5	91.5	84	93.5	3	5	2	1.5	21	0.35	1.74	0.96	1.01
7FB	55	56.5	91.5	76	96.5	3	9	2	1.5	32.5	0.83	0.73	0.40	0.966
2FD	55	56.5	91.5	80.5	93.5	3	8	2	1.5	25.5	0.35	1.74	0.96	1.45
5FD	55	55.5	91.5	73.5	95	4	9	2.5	0.6	30	0.55	1.10	0.60	1.47
2BC	54.5	55	67.5	63.5	69	3	3	0.6	0.6	13.5	0.34	1.76	0.97	0.192
	54.5	56.5	67.5	63.5	69.5	3	3	0.6	0.6	14.5	0.36	1.67	0.92	0.193
3CC	55.5	55.5	74.5	68.5	77.5	4	4.5	1	1	17.5	0.42	1.42	0.78	0.373
2CE	55.5	56	74.5	69	76.5	4	5	1	1	17.5	0.32	1.90	1.04	0.44
3CE	58.5	56.5	76.5	71	81.5	4	6	1.5	1.5	20.5	0.41	1.46	0.80	0.583
3DB	58.5	58	81.5	76.5	85.5	3	4.5	1.5	1.5	19.5	0.42	1.43	0.79	0.56
3DC	58.5	57.5	81.5	76	86	3	5.5	1.5	1.5	21	0.42	1.43	0.79	0.639
3DE	58.5	56.5	81.5	73.5	87	5	7.5	1.5	1.5	23.5	0.41	1.45	0.80	0.862
2ED	62	58	88	82	94.5	6	6	2	2	25.5	0.34	1.75	0.96	1.3
7FC	64	59	91	82	94.5	4	10	2.5	2.5	36.5	0.87	0.69	0.38	1.22
2FB	62	64.5	100	92.5	103	3	6	2	2	23	0.35	1.74	0.96	1.31
7FB	62	61.5	100	83.5	104.5	3	10	2	2	35	0.83	0.73	0.40	1.25
2FD	62	61.5	100	88	102.5	3	9	2	2	28.5	0.35	1.74	0.96	1.92
5FD	62	61.5	100	80.5	104	3	9	2	2.5	33.5	0.55	1.1	0.60	1.97
2BC	60.5	61	74.5	70.5	76.5	3	3	1	1	14.5	0.31	1.94	1.07	0.274
3CC	63.5	63	81.5	77.5	87	4	5.5	1.5	1.5	20	0.41	1.48	0.81	0.56
2CE	63.5	63	81.5	78	86	5	6	1.5	1.5	19.5	0.31	1.92	1.06	0.654
3CE	63.5	62.5	86.5	80	91	5	7	1.5	1.5	22	0.37	1.60	0.88	0.858
3DB	65	64	91.5	86	95.5	4	4.5	2	1.5	21	0.40	1.48	0.81	0.725
3DC	65	63	91.5	85	96	4	5.5	2	1.5	22.5	0.40	1.48	0.81	0.873
3DE	65	62.5	91.5	82	96.5	6	8	2	1.5	25.5	0.40	1.50	0.83	1.17
7FC	69	65.5	101	83.5	110	4	10.5	2.5	2.5	43.5	0.87	0.69	0.38	1.57
2FB	67	70.5	110	101	112	4	6.5	2	2	24.5	0.35	1.74	0.96	1.65
7FB	67	67	110	91.5	113.5	4	10.5	2	2	38	0.83	0.73	0.40	1.58
2FD	67	67.5	110	96.5	111.5	4	10.5	2	2	30.5	0.35	1.74	0.96	2.44
5FD	67	67	110	88.5	113.5	4	10	2	2.5	36.5	0.55	1.10	0.60	2.47



### d 60 $\sim$ 75mm

		Bounda	ry dime	ensions	5		Basic loa	nd rating	Fatigue load		vable eed	Bearing number ²⁾
			mm				dynamic kl	static N	limit kN		n-1 Oil	
d	D	T	B	C	$r_{\rm s min}^{1}$	$r_{ m ls\ min}^{1)}$	$C_{ m r}$	$C_{0r}$	$C_{ m u}$		lubrication	
	85	17	17	14	1	1	56.5	83.0	10.1	4 000	5 300	○32912XA
	95	23	23	17.5	1.5	1.5	91.0	123	_	3 700	4 900	4T-32012X
	95	27	27	21	1.5	1.5	104	145	_	3 700	4 900	4T-33012
	100	30	30	23	1.5	1.5	126	164	_	3 600	4 700	4T-33112
	110	23.75	22	19	2	1.5	116	125	_	3 400	4 500	4T-30212
	110	29.75	28	24	2	1.5	144	164	20.1	3 400	4 500	32212U
60	110	38	38	29	2	1.5	179	223	27.1	3 400	4 500	33212U
	115	40	39	33	2.5	2.5	209	249	_	3 200	4 300	4T-T2EE060
	125	37	33.5	26	3	3	161	186	_	2 800	3 700	4T-T7FC060
	130	33.5	31	26	3	2.5	199	210	25.6	3 000	4 000	30312U
	130	33.5	31	22	3	2.5	167	176	_	2 700	3 600	4T-30312D
	130	48.5	46	37	3	2.5	271	315	38.5	3 000	4 000	32312U
	130	48.5	46	37	3	2.5	237	296	_	2 900	3 900	4T-32312C
	90	17	17	14	1	1	53.5	85.0	10.4	3 700	4 900	32913XU
	100	23	23	17.5	1.5	1.5	92.0	128	_	3 400	4 600	4T-32013X
	100	27	27	21	1.5	1.5	108	156	_	3 400	4 600	4T-33013
	110	34	34	26.5		1.5	160	211	_	3 300	4 400	4T-33113
65	120	24.75	23	20	2	1.5	136	148	_	3 100	4 200	4T-30213
03	120	32.75	31	27	2	1.5	176	206	25.1	3 100	4 200	32213U
	120	41	41	32	2	1.5	216	265	32.5	3 100	4 200	33213U
	140	36	33	28	3	2.5	225	238	28.7	2 800	3 700	30313U
	140	36	33	23	3	2.5	192	204	_	2 500	3 300	4T-30313D
	140	51	48	39	3	2.5	305	350	42.5	2 800	3 700	32313U
	100	20	20	16	1	1	76.0	110	13.4	3 400	4 600	32914XU
	110	25	25	19	1.5	1.5	116	160	_	3 200	4 200	4T-32014X
	110	31	31	25.5		1.5	140	204	_	3 200	4 200	4T-33014
	120	37	37	29	2.5	0.6	190	251	30.5	3 100	4 100	33114U
	125	26.25	24	21	2	1.5	146	162	_	2 900	3 900	4T-30214
70	125	33.25	31	27	2	1.5	184	220	26.8	2 900	3 900	32214U
70	125	41	41	32	2	1.5	223	282	34.5	2 900	3 900	33214U
	140	39	35.5	27	3	3	191	231	_	2 400	3 200	4T-T7FC070
	150	38	35	30	3	2.5	255	272	32.0	2 600	3 500	30314U
	150	38	35	25	3	2.5	214	229	_	2 300	3 000	4T-30314D
	150	54	51	42	3	2.5	345	405	48.0	2 600	3 500	32314U
	150	54	51	42	3	2.5	300	380	45.0	2 500	3 300	32314CU
75	105	20	20	16	1	1	77.0	114	13.9	3 200	4 300	32915XU



¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions.



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{a}{r} > e$
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO Dimension			Insta	llation-r	elated d	imensio	าร			Load center	Constant	Axial fact		Mass
series					mm	~				mm				kg
	$d_{ m a}$ Min.	$d_{ m b}$ Max.	Max.	Min.	$D_{ m b}$ Min.	$S_{ m a}$ Min.	$S_{ m b}$ Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
	65.5	66	79.5	76.5	82.5	3	3	1	1	15.5	0.33	1.80	0.99	0.281
4CC	68.5	67.5	86.5	81.5	91.5	4	5.5	1.5	1.5	21	0.43	1.39	0.77	0.596
2CE	68.5	67	86.5	82	90	5	6	1.5	1.5	20.5	0.33	1.83	1.01	0.693
3CE	68.5	67	91.5	84.5	96.5	5	7	1.5	1.5	23.5	0.40	1.51	0.83	0.913
3EB	70	69.5	101.5	94	103.5	4	4.5	2	1.5	22	0.40	1.48	0.81	0.929
3EC	70	68.5	101.5	92	105	4	5.5	2	1.5	25	0.40	1.48	0.81	1.18
3EE	70	68.5	101.5	90	105.5	6	9	2	1.5	27.5	0.40	1.48	0.82	1.53
2EE	72	69.5	103	95	109	6	7	2	2	28.5	0.33	1.80	0.99	1.86
7FC	74	71.5	111	92	120	4	11	2.5	2.5	42	0.82	0.73	0.40	2
2FB	74	77	118	109.5	121.5	4	7.5	2.5	2	26.5	0.35	1.74	0.96	2.05
7FB	74	73	118	99	124	4	11.5	2.5	2	40.5	0.83	0.73	0.40	1.95
2FD	74	73.5	118	106	121.5	4	11.5	2.5	2	32	0.35	1.74	0.96	3.01
5FD	74	73	118	96.5	122	5	11	2.5	2	39	0.55	1.10	0.60	3.07
2BC	70.5	70.5	84.5	80	86	3	3	1	1	16.5	0.35	1.70	0.93	0.315
4CC	73.5	72.5	91.5	86	97	4	5.5	1.5	1.5	22.5	0.46	1.31	0.72	0.631
2CE	73.5	72	91.5	87	95.5	5	6	1.5	1.5	21.5	0.35	1.72	0.95	0.742
3DE	73.5	73	101.5	92.5	106.5	6	7.5	1.5	1.5	26	0.39	1.55	0.85	1.27
3EB	75	77	111.5	103	114.5	4	4.5	2	1.5	23.5	0.40	1.48	0.81	1.18
3EC	75	75.5	111.5	101.5	115.5	4	5.5	2	1.5	27	0.40	1.48	0.81	1.57
3EE	75	74	111.5	99	115.5	7	9	2	1.5	29.5	0.39	1.54	0.85	2
2GB	79	83	128	119	131.5	4	8	2.5	2	28.5	0.35	1.74	0.96	2.54
7GB	79	79	128	107.5	133	4	13	2.5	2	44	0.83	0.73	0.40	2.41
2GD	79	79.5	128	115	131.5	4	12	2.5	2	34.5	0.35	1.74	0.96	3.63
2BC	75.5	76.5	94.5	90	96.5	4	4	1	1	18	0.32	1.90	1.05	0.475
4CC	78.5	78	101.5	94.5	105.5	5	6	1.5	1.5	24	0.43	1.38	0.76	0.863
2CE	78.5	79	101.5	96.5	105.5	5	5.5	1.5	1.5	22.5	0.28	2.11	1.16	1.07
3DE	80	79	111.5	101.5	115.5	6	8	2.5	0.6	28	0.38	1.58	0.87	1.68
3EB	80	81	116.5	107.5	119	4	5	2	1.5	25.5	0.42	1.43	0.79	1.3
3EC	80	79.5	116.5	105.5	120.5	4	6	2	1.5	28.5	0.42	1.43	0.79	1.68
3EE	80	78.5	116.5	104	121.5	7	9	2	1.5	31	0.41	1.47	0.81	2.12
7FC	84	81.5	126	104.5	135	5	12	2.5	2.5	47.5	0.87	0.69	0.38	2.62
2GB	84	88.5	138	128	141	4	8	2.5	2	30	0.35	1.74	0.96	3.05
7GB	84	84.5	138	115.5	142.5	4	13	2.5	2	47	0.83	0.73	0.40	2.92
2GD	84	85	138	122.5	141	4	12	2.5	2	36.5	0.35	1.74	0.96	4.44
5GD	84	85	138	112.5	143	5	12	2.5	2	44	0.55	1.10	0.60	4.53
2BC	80.5	81	99.5	94	101	4	4	1	1	19	0.33	1.80	0.99	0.508



### d 75 $\sim$ 90mm

		Bounda	ry dim	nensions	;		Basic lo	ad rating	Fatigue load	Allow spe		Bearing number
			mm				dynamic		limit	mi		
,	D	m	D	a	1	) 1)		κN	kN	Grease	Oil	
d	D	T	B	C	r _{s min}	$r_{\rm ls  min}^{1)}$	$C_{\mathbf{r}}$	$C_{0r}$	$C_{\mathrm{u}}$	lubrication	lubrication	
	115	25	25	19	1.5	1.5	118	167	20.3	3 000	4 000	32015XU
	115	31	31	25.5	1.5	1.5	123	186	22.7	3 000	4 000	33015U
	130	27.25	25	22	2	1.5	154	175	_	2 700	3 600	4T-30215
	130	33.25	31	27	2	1.5	186	224	27.1	2 700	3 600	32215U
75	130	41	41	31	2	1.5	231	298	36.0	2 700	3 600	33215U
	160	40	37	31	3	2.5	283	305	35.0	2 400	3 200	30315U
	160	40	37	26	3	2.5	238	256	29.8	2 100	2 800	30315DU
	160	58	55	45	3	2.5	395	470	54.5	2 400	3 200	32315U
	160	58	55	45	3	2.5	365	480	56.0	2 300	3 100	32315CU
	110	20	20	16	1	1	79.5	121	14.8	3 000	4 000	32916XU
	125	29	29	22	1.5	1.5	154	216	26.1	2 800	3 700	32016XU
	125	36	36	29.5	1.5	1.5	192	284	34.5	2 800	3 700	33016U
	130	37	37	29	2.5	0.6	199	276	33.0	2 700	3 600	33116U
	140	28.25	26	22	2.5	2	177	200	23.7	2 500	3 400	30216U
80	140	35.25	33	28	2.5	2	221	265	31.5	2 500	3 400	32216U
80	140	46	46	35	2.5	2	278	365	43.5	2 500	3 400	33216U
	160	45	41	31	3	2	238	297	_	2 400	3 200	4T-T7FC080
	170	42.5	39	33	3	2.5	325	350	39.5	2 300	3 000	30316U
	170	42.5	39	27	3	2.5	262	283	32.5	2 000	2 700	30316DU
	170	61.5	58	48	3	2.5	440	525	60.0	2 300	3 000	32316U
	170	61.5	58	48	3	2.5	390	505	58.0	2 200	2 900	32316CU
	120	23	23	18	1.5	1.5	104	157	19.1	2 800	3 800	32917XU
	130	29	29	22	1.5	1.5	157	224	26.7	2 600	3 500	32017XU
	130	36	36	29.5	1.5	1.5	195	296	35.5	2 600	3 500	33017U
	140	41	41	32	2.5	2.5	234	330	39.0	2 500	3 400	33117U
	150	30.5	28	24	2.5	2	203	232	27.0	2 400	3 200	30217U
85	150	38.5	36	30	2.5	2	249	300	35.0	2 400	3 200	32217U
	150	49	49	37	2.5	2	315	420	49.0	2 400	3 200	33217U
	180	44.5	41	34	4	3	335	365	40.5	2 100	2 900	30317U
	180	44.5	41	28	4	3	274	293	33.0	1 900	2 500	30317DU
	180	63.5	60	49	4	3	445	525	59.0	2 100	2 900	32317U
	180	63.5	60	49	4	3	435	575	64.5	2 100	2 700	32317CU
	125	23	23	18	1.5	1.5	108	168	20.0	2 700	3 600	32918XU
90	140	32	32	24	2	1.5	187	270	31.5	2 500	3 300	32018XU
55	140	39	39	32.5	2	1.5	238	360	42.0	2 500	3 300	33018U
	150	45	45	35	2.5	2.5	280	400	46.0	2 400	3 200	33118U

¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{ m r}}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{a}{r} > e$
$\overline{X}$	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

ISO Dimension			Insta	llation-r	elated di	imensio	ns			Load center	Constant	Axial fact		Mass
series					mm					mm		iuce	0.5	kg
	$d_{\mathrm{a}}$	$d_{ m b}$	D		$D_{\mathrm{b}}$	$S_{\rm a}$	$S_{\mathrm{b}}$	$r_{\rm as}$	$r_{1as}$					_
	Min.	Max.	Max.	Min.	Min.	Min.	Min.	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
4CC	83.5	83	106.5	99.5	111	5	6	1.5	1.5	25.5	0.46	1.31	0.72	0.912
2CE	83.5	85	106.5	101	110.5	6	5.5	1.5	1.5	23	0.30	2.01	1.11	1.11
4DB	85	85.5	121.5	112.5	124.5	4	5	2	1.5	27	0.44	1.38	0.76	1.4
4DC	85	84.5	121.5	111	126	4	6	2	1.5	30	0.44	1.38	0.76	1.74
3EE	85	83	121.5	107.5	125	7	10	2	1.5	32	0.43	1.40	0.77	2.23
2GB	89	95	148	137	150.5	4	9	2.5	2	32	0.35	1.74	0.96	3.61
7GB	89	91	148	124	152.5	6	14	2.5	2	50	0.83	0.73	0.40	3.46
2GD	89	91	148	131	150.5	4	13	2.5	2	39	0.35	1.74	0.96	5.4
5GD	89	90	148	119.5	152	6	15	2.5	2	47	0.55	1.10	0.60	5.65
2BC	85.5	86	104.5	99	106.5	4	4	1	1	20	0.35	1.71	0.94	0.54
3CC	88.5	89	116.5	108.5	120.5	6	7	1.5	1.5	27	0.42	1.42	0.78	1.28
2CE	88.5	88.5	116.5	108.5	119.5	6	6.5	1.5	1.5	25	0.28	2.16	1.19	1.61
3DE	90	88.5	121.5	110.5	126	6	15	2.5	2	30.5	0.42	1.44	0.79	1.87
3EB	92	91	130	121	133	4	6	2	2	27.5	0.42	1.43	0.79	1.71
3EC	92	90	130	119.5	134.5	4	7	2	2	31	0.42	1.43	0.79	2.17
3EE	92	89	130	116	135.5	7	11	2	2	35	0.43	1.41	0.78	2.94
7FC	94	94	146	119	153.5	6	15	2	2.5	55	0.87	0.69	0.38	3.92
2GB	94	101.5	158	145	160	4	9.5	2.5	2	34	0.35	1.74	0.96	4.41
7GB	94	97	158	131	160.5	6	15.5	2.5	2	53.5	0.83	0.73	0.40	4.17
2GD	94	97	158	138.5	161.5	4	13.5	2.5	2	41.5	0.35	1.74	0.96	6.48
5GD	94	96	158	127.5	162	4	13.5	2.5	2	50.5	0.55	1.10	0.60	6.61
2BC	93.5	92	111.5	107.5	115.5	4	5	1.5	1.5	21	0.33	1.83	1.01	0.773
4CC	93.5	93.5	121.5	113	126	6	7	1.5	1.5	28.5	0.44	1.36	0.75	1.34
2CE	93.5	94	121.5	114	125.5	6	6.5	1.5	1.5	26	0.29	2.06	1.13	1.69
3DE	97	95	130	118	135.5	7	9	2	2	33	0.41	1.48	0.81	2.44
3EB	97	96.5	140	128.5	141.5	5	6.5	2	2	30	0.42	1.43	0.79	2.13
3EC	97	96	140	127	143.5	5	8.5	2	2	33.5	0.42	1.43	0.79	2.75
3EE	97	95	140	124	144.5	7	12	2	2	37.5	0.42	1.43	0.79	3.61
2GB	103	106.5	166	153.5	168	5	10.5	3	2.5	35.5	0.35	1.74	0.96	5.01
7GB	103	102.5	166	140.5	170	6	16.5	3	2.5	56	0.83	0.73	0.40	4.74
2GD	103	103.5	166	147	169	5	14.5	3	2.5	43	0.35	1.74	0.96	7.22
5GD	103	102	166	135.5	170	7	13	2	2.5	53	0.55	1.10	0.60	7.71
2BC	98.5	97	116.5	112.5	120.5	4	5	1.5	1.5	22	0.34	1.75	0.96	0.815
3CC	100	100	131.5	121	134.5	6	8	2	1.5	30	0.42	1.42	0.78	1.78
2CE	100	100.5	131.5	123.5	135	7	6.5	2	1.5	28	0.42	2.23	1.23	2.22
3DE	102	100.5	140	127.5	145.5	7	10	2	2	35.5	0.40	1.51	0.83	3.1
UDL	102	.01	140	127.0	170.0	,	10	_	_	30.0	0.40	1.01	5.00	0.1

B-142 B-143



*d* 90 ∼ 110mm

α J(	<i>-</i>	10111111										
		Bounda	ary dime	ension	s		Basic	load rating	Fatigue load		vable eed	Bearing number ²⁾
			mm				dynam		limit	mi	n-1	
d	D	T	B	C	.a. 1	$r_{ m ls\ min}^{1)}$	$C_{ m r}$	kN $C_{0\mathrm{r}}$	kN	Grease	Oil	
a	D	1	D	C	Ts min	7 ls min ⁻⁷	$C_{\rm r}$	$C_{0r}$	$C_{ m u}$	lubrication	lubrication	
	100	00.5	00	00	0.5	0	000	007	00.5	0.000	0.000	0004011
	160 160	32.5 42.5	30 40	26 34	2.5 2.5	2	230 291	267 360	30.5 41.0	2 200	3 000	30218U 32218U
	160	42.5 55	55	42	2.5	2.5	360	490	56.0	2 300	3 000	33218U
90	190	46.5	43	36	4	3	375	490	44.5	2 000	2 700	30318U
	190	46.5	43	30	4	3	300	320	35.5	1 800	2 400	30318DU
	190	67.5	64	53	4	3	500	595	65.5	2 000	2 700	32318U
	100	07.0	0-7	50	7	U	500	333	00.0	2 000	2700	020100
	130	23	23	18	1.5	1.5	112	178	21.0	2 500	3 400	32919XU
	145	32	32	24	2	1.5	190	280	32.5	2 300	3 100	32019XU
	145	39	39	32.5		1.5	243	375	43.0	2 300	3 100	33019U
95	170	34.5	32	27	3	2.5	250	290	32.5	2 100	2 800	30219U
95	170	45.5	43	37	3	2.5	330	415	47.0	2 100	2 800	32219U
	200	49.5	45	38	4	3	405	445	48.5	1 900	2 500	30319U
	200	49.5	45	32	4	3	330	355	38.5	1 700	2 200	30319DU
	200	71.5	67	55	4	3	560	670	73.0	1 900	2 500	32319U
	4.40	0=					404	222		0.400		00000111
	140	25	25	20	1.5	1.5	134	206	23.8	2 400	3 200	32920XU
	140	25	24	20	1.5	1.5	108	162	18.6	2 400	3 200	○ 32920
	145 150	24 32	22.5 32	17.5 24		3 1.5	119 188	153 281	32.0	1 800	2 400 3 000	4T-T4CB100
	150	39	39	32.5	2	1.5	248	390	32.0 44.5	2 200	3 000	32020XU 33020U
100	180	37	34	29	3	2.5	286	335	37.0	2 000	2 700	30220U
100	180	49	46	39	3	2.5	365	465	51.0	2 000	2 700	32220U
	180	63	63	48	3	2.5	465	650	71.5	2 000	2 700	33220U
	215	51.5	47	39	4	3	455	500	53.0	1 800	2 400	30320U
	215	56.5	51	35	4	3	395	435	46.0	1 800	2 400	31320XU
	215	77.5	73	60	4	3	635	770	82.0	1 800	2 400	32320U
	145	25	25	20	1.5	1.5	139	219	25.0	2 300	3 000	○32921XA
	160	35	35	26	2.5	2	223	335	37.5	2 100	2 800	32021XU
	160	43	43	34	2.5	2	272	420	47.0	2 100	2 800	33021U
105	190	39	36	30	3	2.5	320	380	41.0	1 900	2 500	30221U
103	190	53	50	43	3	2.5	420	540	59.0	1 900	2 500	32221U
	225	53.5	49	41	4	3	485	535	56.0	1 700	2 300	30321U
	225	58	53	36	4	3	420	470	49.0	1 700	2 300	31321XU
	225	81.5	77	63	4	3	680	825	87.0	1 700	2 300	32321U
	150	25	25	20	1.5	1.5	141	226	25.5	2 200	2 900	○32922XA
110	170	38	38	29	2.5	2	261	390	43.0	2 000	2 700	32022XA
4) 0	170	30	30	29	2.5	۷.	201	390	43.0	2 000	2 / 00	JZUZZAU



Dynamic equivalent radial load  $P_T = XF_T + YF_a$ 

$\frac{F_{\rm a}}{F_{ m r}}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{a}{r} > e$
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO Dimension			Insta	llation-r	elated di	mensio	ns			Load center	Constant	Axial fact		Mass
series					mm					mm				kg
	$d_{ m a}$ Min.	$d_{ m b}$ Max.	Max.	) _a Min.	$D_{ m b}$ Min.	$S_{ m a}$ Min.	$S_{ m b}$ Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
3FB	102	103	150	137	151	5	6.5	2	2	32	0.42	1.43	0.79	2.66
3FC	102	101.5	150	134.5	153.5	5	8.5	2	2	36	0.42	1.43	0.79	3.49
3FE	102	101.5	150	131.5	154.5	9	13	2	2.5	41	0.42	1.43	0.78	4.62
2GB	108	112.5	176	162	177.5	5	10.5	3	2.5	37.5	0.35	1.74	0.96	5.83
7GB	108	108.5	176	148.5	180.5	6	16.5	3	2.5	59	0.83	0.73	0.40	5.58
2GD	108	108.5	176	154.5	179	5	14.5	3	2.5	45.5	0.35	1.74	0.96	8.66
2BC	103.5	102	121.5	117	125.5	4	5	1.5	1.5	23.5	0.36	1.68	0.92	0.851
4CC	105	105	136.5	126	140	6	8	2	1.5	31.5	0.44	1.36	0.75	1.85
2CE	105	104.5	136.5	127.5	139.5	7	6.5	2	1.5	28.5	0.28	2.16	1.19	2.3
3FB	109	109.5	158	146.5	160.5	5	7.5	2.5	2	34	0.42	1.43	0.79	3.12
3FC	109	107.5	158	142.5	163	5	8.5	2.5	2	39	0.42	1.43	0.79	4.29
2GB	113	118	186	168	185.5	5	11.5	3	2.5	40	0.35	1.74	0.96	6.69
7GB	113	113.5	186	154.5	189	6	17.5	3	2.5	62.5	0.83	0.73	0.40	6.35
2GD	113	114.5	186	163.5	187.5	5	16.5	3	2.5	49	0.35	1.74	0.96	10.1
2CC	108.5	109	131.5	127.5	135.5	4	5	1.5	1.5	24.5	0.33	1.82	1.00	1.12
	108.5	110	131.5	127	135	4	5	1.5	1.5	25	0.35	1.73	0.95	1.08
4CB	114	108.5	131	130	140.5	4	6.5	2.5	2.5	30	0.47	1.27	0.70	1.14
4CC	110	109.5	141.5	130.5	145	6	8	2	1.5	32.5	0.46	1.31	0.72	1.91
2CE	110	108.5	141.5	132.5	144.5	7	6.5	2	1.5	29.5	0.29	2.09	1.15	2.4
3FB	114	115.5	168	154.5	169.5	5	8	2.5	2	36	0.42	1.43	0.79	3.76
3FC	114	113.5	168	151	172	5	10	2.5	2	41.5	0.42	1.43	0.79	5.11
3FE	114	113	168	147	173	10	15	2.5	2	45.5	0.40	1.48	0.82	6.76
2GB	118	126	201	181.5	199.5	5	12.5	3	2.5	41.5	0.35	1.74	0.96	8.3
7GB	118	122.5	201	165.5	203	7	21.5	3	2.5	69	0.83	0.73	0.40	8.7
2GD	118	122.5	201	174.5	201.5	5	17.5	3	2.5	53	0.35	1.74	0.96	12.8
	113.5	113.5	136.5	131.5	140.5	5	5	1.5	1.5	25	0.34	1.76	0.97	1.2
4DC	117	115.5	150.0	138.5	153.5	6	9	2	2	34.5	0.44	1.35	0.74	2.44
2DE	117	116	150	141.5	153.5	7	9	2	2	31	0.28	2.12	1.17	3
3FB	119	121.5	178	163	178.5	6	9	2.5	2	38	0.42	1.43	0.79	4.45
3FC	119	119	178	158.5	181.5	6	10	2.5	2	44	0.42	1.43	0.79	6.23
2GB	123	132	211	190.5	208.5	6	12.5	3	2.5	43.5	0.35	1.74	0.76	9.37
7GB	123	128.5	211	173.5	213.5	7	22	3	2.5	71.5	0.83	0.73	0.40	9.65
2GD	123	120.5	211	182.5	210.5	6	18.5	3	2.5	55	0.35	1.74	0.40	14.7
	110.5	110.5		100 5	1.10					00.5	2.22	4.05	0.05	1.01
400	118.5	118.5	141.5	136.5	146	5	5	1.5	1.5	26.5	0.36	1.69	0.93	1.24
4DC	122	122	160	147.5	164	7	9	2	2	36.5	0.43	1.39	0.77	3.07

¹⁾ Smallest allowable dimension for chamfer dimension r or r. 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions.



#### *d* 110 ∼ 140mm

			•									
		Bounda	ry din	nensions			Basic	load rating	Fatigue load		vable eed	Bearing number 2) 3)
			mm				dynami	ic static	limit		n-1	
		_	_					kN	kN	Grease	Oil	
d	D	T	B	C	$r_{ m s~min}^{ m 1}$	$r_{\rm ls\ min}^{1)}$	$C_{\mathbf{r}}$	$C_{0\mathrm{r}}$	$C_{ m u}$	lubrication	lubrication	
	170	47	47	37	2.5	2	320	500	55.5	2 000	2 700	33022U
	180	56	56	43	2.5	2.5	400	610	66.5	1 900	2 600	33122UE1
	200	41	38	32	3	2.5	360	435	46.5	1 800	2 400	30222U
110	200	56	53	46	3	2.5	465	605	65.0	1 800	2 400	32222U
	240	54.5	50	42	4	3	530	585	60.0	1 600	2 200	30322U
	240	63	57	38	4	3	480	535	55.0	1 600	2 200	31322XU
	240	84.5	80	65	4	3	785	970	99.5	1 600	2 200	32322U
	165	29	29	23	1.5	1.5	180	294	32.0	2 000	2 600	32924XU
	165	29	27	23	1.5	1.5	131	205	22.5	2 000	2 600	○32924
	170	27	25	19.5	3	2	171	235	_	1 900	2 600	4T-T4CB120
	180	38	38	29	2.5	2	272	420	45.5	1 800	2 500	32024XU
	180	48	48	38	2.5	2.5	325	520	56.5	1 800	2 500	33024U
120	200	62	62	48	2.5	2.5	510	760	80.5	1 800	2 300	33124U
	215	43.5	40	34	3	2.5	385	470	49.0	1 700	2 200	30224U
	215	61.5	58	50	3	2.5	510	680	71.5	1 700	2 200	32224U
	260	59.5	55	46	4	3	620	695	69.5	1 500	2 000	30324U
	260	68	62	42	4	3	570	655	66.0	1 500	2 000	31324XU
	260	90.5	86	69	4	3	905	1 130	114	1 500	2 000	32324U
					_							
	180	32	32	25	2	1.5	215	350	37.5	1 800	2 400	32926XU
	180	32	30	26	2	2	157	252	26.9	1 800	2 400	○32926
	200	45	45	34	2.5	2	350	545	57.0	1 700	2 200	32026XU
	200	55	55	43	2.5	2.5	415	660	69.5	1 700	2 300	33026U
130		43.75	40	34	4	3	415	505	51.5	1 500	2 000	30226U
	230	67.75	64	54	4	3	585	815	83.5	1 500	2 000	32226U
	280	63.75	58	49	5	4	830	830	81.0	1 400	2 000	* 30326UUTG
	280	72	66	44	5	4	670	780	77.0	1 400	1 800	31326XU
	280	98.75	93	78	4	4	1 140	1 240	122	1 400	2 000	* 32326UTG
	100	32	32	٥٢	0	4.5	221	375	00.0	1 700	0.000	00000VII
	190 195	29	27	25 21	2	1.5	208	299	39.0	1 700 1 700	2 200	32928XU 4T-T4CB140
	210	45	45	34	3 2.5	3	365	580	60.0	1 600	2 100	32028XU
	210	56	56	44	2.5	2	435	715		1 600	2 100	
140		45.75	42	36	4	3	465	570	74.0 57.0	1 400	1 900	33028U 30228U
140	250	71.75	68	58	4	3	675	920	92.0	1 400	1 900	30228U 32228U
	300	67.75	62	58 53	5	4	945	950	92.0	1 300	1 800	* 30328UUTG
	300	77	70		5	4	760	905		1 300		
				47 85	4	4			87.0		1 700	31328XU
	300	107.75	102	85	4	4	1 270	1 370	132	1 300	1 800	* 32328UTG





Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{a}{r} > e$
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO			Insta	llation-r	elated di	mension	ıs			Load	Constant	Axial		Mass
Dimension series					mm					center		fact	ors	kg
301103	$d_{\mathrm{a}}$	$d_{ m b}$	L	) _a	$D_{\rm b}$	$S_{\rm a}$	$S_{\mathrm{b}}$	$r_{\rm as}$	$r_{\rm las}$	111111				۸g
	Min.	Max.	Max.	Min.	Min.	Min.	Min.	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
2DE	122	121	160	148	162	7	10	2	2	33.5	0.29	2.09	1.15	3.84
3FE	122	121.5	170	150.5	174	9	13	2	2.5	44	0.42	1.43	0.79	5.52
3FB	124	128	188	170.5	188.5	6	9	2.5	2	40	0.42	1.43	0.79	5.19
3FC	124	125.5	188	167	192	6	10	2.5	2	47	0.42	1.43	0.79	7.44
2GB	128	141	226	203	222	6	12.5	3	2.5	45.5	0.35	1.74	0.96	11.1
7GB	128	137	226	184	225.5	7	25	3	2.5	76	0.83	0.73	0.40	11.9
2GD	128	136.5	226	195	224	6	19.5	3	2.5	57.5	0.35	1.74	0.96	17.6
2CC	128.5	129.5	156.5	150	160	6	6	1.5	1.5	29.5	0.35	1.72	0.95	1.76
	128.5	129.5	156.5	147.5	159.5	6	6	1.5	1.5	31	0.37	1.60	0.88	1.65
4CB	134	128.5	156	153	165	7	7.5	2.5	2.5	35	0.47	1.27	0.70	1.69
4DC	132	131	170	156	174.5	7	9	2	2	39	0.46	1.31	0.72	3.29
2DE	132	130	170	157	172	6	10	2	2.5	36	0.31	1.97	1.08	4.14
3FE	132	132.5	190	168	193	9	14	2	2.5	48	0.40	1.51	0.83	7.67
4FB	134	139.5	203	184.5	203	6	9.5	2.5	2	44	0.44	1.38	0.76	6.32
4FD	134	135.5	203	178	206	6	11.5	2.5	2	51.5	0.44	1.38	0.76	9.08
2GB	138	153	246	218	239	6	13.5	3	2.5	49	0.35	1.74	0.96	14.1
7GB	138	147	246	200	245	9	26	3	2.5	82.5	0.83	0.73	0.40	15.2
2GD	138	146.5	246	210	240.5	6	21.5	3	2.5	61.5	0.35	1.74	0.96	22.1
2CC	140	140.5	171.5	163	174	6	7	2	1.5	31.5	0.34	1.77	0.97	2.41
	140	141.5	170	161.5	174	6	6	2	2	34	0.37	1.60	0.88	2.24
4EC	142	144	190	173.5	193.5	8	11	2	2	43.5	0.43	1.38	0.76	5
2FE	142	143	190	173.5	193	8	12	2	2.5	42.5	0.34	1.76	0.97	6.09
4FB	148	151	216	199.5	218	7	9.5	3	2.5	45.5	0.44	1.38	0.76	7.05
4FD	148	147	216	190	220.5	7	13.5	3	2.5	57	0.44	1.38	0.76	11.3
2GB	152	165.5	262	235	257.5	8	14.5	4	3	53.5	0.35	1.74	0.96	17.4
7GB	152	154	262	214.5	263	9	28	4	3	87.5	0.83	0.73	0.40	19
	148	159	262	230	264	2.4	20	3	3	67.5	0.35	1.73	0.95	27.4
2CC	150	150	181.5	172.5	184	6	6	2	1.5	34	0.36	1.67	0.92	2.5
4CB	154	149	181	176	190	5	8	2.5	2.5	40.5	0.50	1.19	0.66	2.35
4DC	152	153	200	182.5	203	8	11	2	2	46	0.46	1.31	0.72	5.32
2DE	152	152	200	182.5	203	7	12	2	2	45.5	0.36	1.67	0.92	6.59
4FB	158	163	236	214	235	7	9.5	3	2.5	48.5	0.44	1.38	0.76	8.73
4FD	158	158.5	236	207	239.5	9	13.5	3	2.5	61	0.44	1.38	0.76	14.2
2GB	162	175.5	282	252	275.5	9	14.5	4	3	56.5	0.35	1.74	0.96	21.1
7GB	162	162.5	282	232	282.5	9	30	4	3	94	0.83	0.73	0.40	22.9
	158	168.5	282	244	281	1.5	20	3	3	74.5	0.35	1.73	0.95	33.5



#### *d* 150 ∼ 200mm

		Bound	lary din	nension	s			load rating	Fatigue load	spe	vable eed	Bearing number ^{2) 3)}
			mm				dynam		limit		in-1	
d	D	T	В	C	$r_{ m s min}^{1)}$	$r_{ m ls~min}^{1)}$	$C_{\mathrm{r}}$	kN $C_{0\mathrm{r}}$	$KN \ C_{ m u}$	Grease lubrication	Oil lubrication	
	210	38	38	30	2.5	2	297	490	50.0	1 600	2 100	32930XU
	225	48	48	36	3	2.5	410	655	66.0	1 400	1 900	32030XU
	270	49	45	38	4	3	500	605	59.0	1 300	1 700	30230U
150	270	77	73	60	4	3	775	1 070	105	1 300	1 700	32230U
	320	72	65	55	5	4	1 060	1 070	101	1 200	1 700	* 30330UUTG
	320	82	75	50	5	4	860	1 030	97.5	1 200	1 600	31330XU
	320	114	108	90	4	4	1 490	1 750	166	1 200	1 700	* 32330UTG
	220	38	38	30	2.5	2	305	520	52.5	1 500	1 900	32932XU
	240	51	51	38	3	2.5	485	790	78.5	1 400	1 800	32032XU
160	290	52	48	40	4	3	675	720	68.5	1 200	1 700	* 30232UUTG
100	290	84	80	67	4	3	1 140	1 420	136	1 200	1 700	* 32232UUTG
	340	75	68	58	5	4	1 170	1 200	110	1 100	1 600	* 30332UUTG
	340	121	114	95	4	4	1 580	1 840	170	1 100	1 600	* 32332UTG
	230	38	38	30	2.5	2	315	560	55.0	1 400	1 800	32934XU
	260	57	57	43	3	2.5	555	895	86.5	1 300	1 700	32034XU
170	310	57	52	43	5	4	780	845	79.5	1 100	1 600	* 30234UUTG
170	310	91	86	71	5	4	1 280	1 600	150	1 100	1 600	* 32234UUTG
	360	80	72	62	5	4	1 290	1 320	120	1 000	1 500	* 30334UUTG
	360	127	120	100	4	4	1 680	1 940	177	1 000	1 500	* 32334UTG
	250	45	45	34	2.5	2	390	700	68.0	1 300	1 700	32936XU
	280	64	64	48	3	2.5	825	1 170	111	1 200	1 700	* 32036XUUTG
180	320	57	52	43	5	4	805	890	82.5	1 100	1 500	* 30236UUTG
100	320	91	86	71	5	4	1 320	1 690	157	1 100	1 500	* 32236UUTG
	380	83	75	64	4	4	1 170	1 190	107	960	1 400	* 30336UTG
	380	134	126	106	4	4	1 850	2 150	192	960	1 400	* 32336UTG
	260	45	45	34	2.5	2	390	710	68.0	1 200	1 600	32938XU
	260	45	42	36	2.5	2.5	310	525	50.5	1 200	1 600	○ <b>32938</b>
	290	64	64	48	3	2.5	840	1 210	113	1 100	1 600	* 32038XUUTG
190	340	60	55	46	5	4	920	1 000	91.5	1 000	1 400	* 30238UUTG
	340	97	92	75	5		1 480	1 850	169	1 000	1 400	* 32238UUTG
	400	86	78	65	5	5	1 200	1 200	106	900	1 300	* 30338UTG
	400	140	132	109	5		2 040	2 390	211	900	1 300	* 32338UTG
200	280	51	51	39	3	2.5	620	895	84.0	1 100	1 600	* 32940XUUTG
200	310	70	70	53	3	2.5	1 030	1 470	135	1 100	1 500	* 32040XUUTG

1) Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions. 3) Bearing numbers marked "*" designate ULTAGE series bearings.



Dynamic equivalent radial load  $P_T = XF_T + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{a}{r} > e$
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

ISO Dimension			Insta	ıllation-r	elated di	mensior	ıs		Load center	Constant	Axial fact		Mass	
series	a	a	т	) _a	mm	$S_{\rm a}$	$S_{\mathrm{b}}$			mm				kg
	$d_{ m a}$ Min.	$d_{ m b}$ Max.	Max.	Min.	$D_{ m b}$ Min.	Min.	Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
2DC	162	162	200	189.5	202	7	8	2	2	36.5	0.33	1.83	1.01	3.93
4EC	164	164	213	195	217.5	8	12	2.5	2	49.5	0.46	1.31	0.72	6.45
4GB	168	175	256	230	251.5	7	11	3	2.5	51.5	0.44	1.38	0.76	11
4GD	168	169	256	222	256	8	17	3	2.5	64.5	0.44	1.38	0.76	18
2GB	172	188.5	302	270	294	8	17	4	3	61	0.35	1.74	0.96	25.4
7GB	172	173.5	302	248	302	9	32	4	3	100.5	0.83	0.73	0.40	27.7
	168	182.5	302	254	298	4.3	24	3	3	80	0.37	1.60	0.88	42.1
2DC	172	172	210	199	213	7	8	2	2	38.5	0.35	1.73	0.95	4.14
4EC	174	174.5	228	208	231.5	8	13	2.5	2	52.5	0.46	1.31	0.72	7.86
4GB	178	188.5	276	248	271	8	12	3	2.5	55.5	0.44	1.38	0.76	13.4
4GD	178	181	276	238	277	10	17	3	2.5	70	0.44	1.38	0.76	23.9
2GB	182	200.5	322	286.5	312.5	10	17	4	3	64	0.35	1.74	0.96	29.8
	178	196.5	322	272	318.5	2.3	26	3	3	85	0.37	1.60	0.88	48.9
3DC	182	181	220	208	223.5	7	8	2	2	42.5	0.38	1.56	0.86	4.4
4EC	184	187	248	224.5	250	10	14	2.5	2	56	0.44	1.35	0.74	10.6
4GB	192	202	292	265.5	290.5	8	14	4	3	60.5	0.44	1.38	0.76	16.9
4GD	192	194	292	255	297	10	20	4	3	75	0.44	1.38	0.76	29.2
2GB	192	212.5	342	305	332.5	10	18	4	3	68	0.35	1.74	0.96	35.2
	188	208	342	287	336	1.5	27	3	3	89.5	0.37	1.60	0.88	56.5
4DC	192	192	240	219.5	241.5	8	11	2	2	54	0.48	1.25	0.69	6.55
3FD	194	199	268	243	269	10	16	2.5	2	59.5	0.42	1.42	0.78	14.5
4GB	202	210.5	302	274	299.5	9	14	4	3	63	0.45	1.33	0.73	17.8
4GD	202	202	302	263	305.5	10	20	4	3	77.5	0.45	1.33	0.73	30.4
	198	227.5	362	314	345	1.5	19	3	3	72.5	0.37	1.60	0.88	38.9
	198	219	362	305	357	2.4	28	3	3	95	0.37	1.60	0.88	67.7
4DC	202	201.5	250	230	251	8	11	2	2	55	0.48	1.26	0.69	6.82
	202	205	248	233	250.5	8	9	2	2	48.5	0.37	1.60	0.88	6.27
4FD	204	206.5	278	252	281	10	16	2.5	2	62.5	0.44	1.36	0.75	15
4GB	212	223	322	293	320.5	9	14	4	3	64	0.44	1.38	0.76	21.5
4GD	212	214	322	283	325.5	11	22	4	3	87.5	0.44	1.38	0.76	36.1
	212	241	378	335	366.5	2.3	21	4	4	74.5	0.37	1.60	0.88	43.6
	212	233	378	320	373.5	1.5	31	4	4	100	0.37	1.60	0.88	77
3EC	214	213.5	268	251.5	272	9	12	2.5	2	53.5	0.39	1.52	0.84	9.28
4FD	214	218.5	298	269	298.5	11	17	2.5	2	66.5	0.43	1.39	0.77	19.2

B-149





*d* 200 ∼ 320mm

		Bound	lary dim	ensior	ıs		Basic	load rating	Fatigue load	Allov		Bearing number 2) 3)
			mm				dynam	nic static kN	limit kN	mi Grease		
d	D	T	B	C	$r_{\rm s min}^{12}$	$r_{ m ls~min}^{1)}$	$C_{\rm r}$	$C_{0r}$		lubrication		
	360	64	58	48	5	4	1 010	1 110	99.0	950	1 300	* 30240UUTG
200	360	104	98	82	5	4	1 690	2 130	191	950	1 300	* 32240UUTG
200	420	89	80	67	5	5	1 340	1 370	119	850	1 200	* 30340UTG
	420	146	138	115	5	5	2 240	2 650	230	850	1 200	* 32340UTG
	300	51	51	39	3	2.5	615	950	87.0	1 000	1 500	* 32944XUUTG
	300	51	48	41	2.5	2.5	385	670	61.0	1 000	1 400	O 32944E1
	340	76	76	57	4	3	1 180	1 690	152	960	1 400	* 32044XUUTG
220	400	72	65	54	4	4	1 050	1 220	106	840	1 200	* 30244UTG
	400	114	108	90	4	4	1 780	2 410	209	840	1 200	* 32244UTG
	460	97	88	73	5	5	1 620	1 690	142	770	1 100	* 30344UTG
	460	154	145	122	5	5	2 590	3 050	259	770	1 100	* 32344UTG
	320	51	51	39	3	2.5	625	1 000	90.0	940	1 300	* 32948XUUTG
	360	76	76	57	4	3	1 190	1 760	154	870	1 200	* 32048XUUTG
240	440	79	72	60	4	4	1 250	1 480	125	760	1 100	* 30248UTG
	440	127	120	100	4	4	2 180	2 750	232	760	1 100	* 32248UTG
	500	105	95	80	5	5	1 900	2 000	165	690	990	* 30348UTG
	360	63.5	63.5	48	3	2.5	905	1 430	124	860	1 200	* 32952XUUTG
260	400	87	87	65	5	4	1 540	2 270	193	800	1 100	* 32052XUUTG
200	480	89	80	67	5	5	1 500	1 810	149	690	990	* 30252UTG
	480	137	130	106	5	5	2 410	3 350	275	690	990	* 32252UTG
	380	63.5	63.5	48	3	2.5	930	1 520	129	790	1 100	* 32956XUUTG
280	420	87	87	65	5	4	1 570	2 350	197	740	1 000	* 32056XUUTG
200	500	89	80	67	5	5	1 590	1 910	155	630	900	* 30256UTG
	500	137	130	106	5	5	2 530	3 500	283	630	900	* 32256UTG
	420	76	76	57	4	3	1 290	2 090	173	720	1 000	* 32960XUUTG
300	460	100	100	74	5	4	1 920	2 830	232	680	960	* 32060XUUTG
300	540	96	85	71	5	5	1 820	2 220	176	580	830	* 30260UTG
	540	149	140	115	5	5	2 950	4 100	325	580	830	* 32260UTG
	440	76	76	57	4	3	1 300	2 150	176	670	960	* 32964XUUTG
	440	76	72	63	3	3	955	1 880	153	670	900	O 32964E1
320	480	100	100	74	5	4	1 940	2 940	237	630	900	* 32064XUUTG
	580	104	92	75	5	5	2 130	2 580	201	540	770	* 30264UTG
	580	159	150	125	5	5	3 350	4 650	360	540	770	* 32264UTG

1) Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions. 3) Bearing numbers marked "*" designate ULTAGE series bearings.



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F}{F}$	$\frac{a}{r} > e$
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO Dimension			Insta	allation-r	elated di	mension	ıs			center	Constant	Axial fact		Mass
series	$d_{\rm a}$	$d_{ m b}$	I	$O_a$	$D_{ m h}$	$S_{\rm a}$	$S_{\rm b}$	$r_{\rm as}$	$r_{\rm las}$	mm				kg
	Min.	Max.	Max.	Min.	Min.	Min.	Min.	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
4GB	222	235	342	311	338	10	16	4	3	70	0.44	1.38	0.76	25.2
3GD	222	224.5	342	299	342.5	11	22	4	3	85	0.41	1.48	0.81	43.8
	222	251	398	350	382.5	5.3	22	4	4	77	0.37	1.60	0.88	51.5
	222	242	398	335	391.5	3.2	31	4	4	105	0.37	1.60	0.88	89.6
3EC	234	233.5	288	269.5	291	10	12	2.5	2	59.5	0.43	1.41	0.78	9.98
	232	238	288	270	291	10	10	2	2	57	0.39	1.55	0.85	9.47
4FD	238	239.5	326	293.5	326	12	19	3	2.5	72.5	0.43	1.39	0.77	24.9
	238	262.5	382	334	368	3.4	18	3	3	82	0.49	1.23	0.68	34.8
	238	249	382	323	380.5	4.4	24	3	3	102	0.49	1.23	0.68	59.8
	242	270	438	383	418.5	4.2	24	4	4	86.5	0.37	1.60	0.88	66.6
	242	262.5	438	371	431	1.5	32	4	4	112	0.37	1.60	0.88	110
4EC	254	252.5	308	289	312.5	10	12	2.5	2	65.5	0.46	1.31	0.72	10.9
4FD	258	258.5	346	311.5	347	12	19	3	2.5	78	0.46	1.31	0.72	26.5
	258	284.5	422	368	406	3.9	19	3	3	91	0.49	1.23	0.68	47.7
	258	270.5	422	365	421.5	4.1	27	3	3	107	0.43	1.39	0.77	78.9
	262	294.5	478	417	456	8.1	25	4	4	94	0.37	1.60	0.88	88.3
3EC	274	278	348	323	348.5	11	15	2.5	2	69.5	0.41	1.48	0.81	18.7
4FC	282	283.5	382	346	383	14	22	4	3	85.5	0.43	1.38	0.76	39
	282	307	458	396	438.5	4.2	22	4	4	99.5	0.49	1.23	0.68	63.4
	282	297	458	385	453	2.9	31	4	4	121.5	0.49	1.23	0.68	100
4EC	294	297	368	341.5	369.5	11	15	2.5	2	75	0.43	1.39	0.76	19.9
4FC	302	301	402	363	403	14	22	4	3	90.5	0.46	1.31	0.72	40.5
	302	324.5	478	422	464.5	5.9	22	4	4	102	0.49	1.23	0.68	66.5
	302	312	478	405	473	6.4	31	4	4	123.5	0.49	1.23	0.68	110
3FD	318	322	406	377.5	406.5	13	19	3	2.5	80	0.39	1.52	0.84	31.4
4GD	322	324.5	442	398.5	441.5	15	26	4	3	98	0.43	1.38	0.76	57.2
. 0.2	322	349.5	518	453	498	4.9	25	4	4	111	0.49	1.23	0.68	83.5
	322	339	518	438	511.5	2.6	34	4	4	135.5	0.49	1.23		140
3FD	338	341	426	20E F	427	13	19	3	2.5	85	0.42	1.44	0.79	22.0
SFD	338	345.5	426	395.5 392	424.5	13	13	3	2.5	85	0.42	1.55	0.79	32.8 33.2
4GD	342	344.5	462	418.5	463	15	26	4	3	104	0.39	1.31	0.65	60.2
-GD	342	372	558	485	531.5	4.7	29	4	4	118.5	0.46	1.27	0.72	
	342	363	558	473	551.5	3.9	34	4	4	142	0.47	1.27	0.70	
	J72	300	550	770	551	0.5	0-	7	-	. 72	0.77	1.27	3.70	. , 0



#### *d* 340 ∼ 440mm

		Bound	dary dim	ension	s		Basic I	oad rating	Fatigue load	Allow		Bearing number 2) 3)
			mm				dynami	c static kN	limit kN	mi Grease		
d	D	T	B	C	$r_{ m s min}$	$^{1)} r_{ m ls min}^{1)}$	$C_{\rm r}$	$C_{0r}$	$C_{ m u}$		lubrication	
	460	76	76	57	4	3	1 340	2 270	183	630	900	* 32968XUUTG
340	460	76	72	63	3		1 010	1 980	159	630	900	○ 32968E1
J-10	520	112	106	90	5	_	2 120	3 150	249	590	840	* 32068UTG
360	480	76	76	57	4	3	1 350	2 330	185	590	840	* 32972XUUTG
300	540	112	106	90	5	5	2 230	3 300	258	550	780	* 32072UTG
	520	87	82	72	4	4	1 460	2 500	194	550	790	* 32976UTG
380	560	112	106	90	5	5	2 460	3 800	292	520	740	* 32076UTG
	540	87	82	71	4	4	1 530	2 710	207	520	740	* 32980UTG
400	600	125	118	100	5		2 790	4 250	320	490	700	* 32080UTG
	560	87	82	71	4	4	1 570	2 840	215	490	700	* 32984UTG
420	620	125	118	100	6	5	2 920	4 550	340	460	660	* 32084UTG
	600	100	95	82	4	4	2 060	3 450	258	470	670	* 32988UTG
440	650	130	122	104	6		3 250	5 000	365	440	620	* 32088UTG





Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

ISO			Insta	allation-r	elated d	imensior	าร			Load	Constant	Axial		Mass
Dimension series					mm					center mm		fact	ors	kg
5655	$d_{\mathrm{a}}$	$d_{ m b}$	I	$O_a$	$D_{\rm b}$	$S_{\rm a}$	$S_{\mathrm{b}}$	$r_{\rm as}$	$r_{1as}$					6
	Min.	Max.	Max.	Min.	Min.	Min.	Min.	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
4FD	358	360	446	414	447.5	13	19	3	2.5	90.5	0.44	1.37	0.75	34.5
	354	364	446	413	445.5	13	13	3	2.5	87	0.39	1.55	0.85	34
	362	368.5	498	452	496	3.5	22	4	4	103.5	0.37	1.60	0.88	78.5
4FD	378	379.5	466	431.5	467.5	13	19	3	2.5	96.5	0.46	1.31	0.72	36.3
	382	388	518	476	520	5.5	22	4	4	106	0.37	1.60	0.88	83
	398	404.5	502	464.5	503	4	15	3	3	101	0.40	1.49	0.82	51.3
	402	406.5	538	495	539	6.5	22	4	4	109.5	0.37	1.60	0.88	89.1
	418	422.5	522	482	521.5	4	16	3	3	106	0.42	1.43	0.79	54
	422	428.5	578	526	575	5	25	4	4	119	0.37	1.60	0.88	110
	438	442	542	501.5	543	3.5	16	3	3	111.5	0.44	1.37	0.76	56.2
	448	449.5	598	549	598	6.5	25	4	4	120	0.37	1.60	0.88	120
	458	465.5	582	543	580.5	3.5	18	3	3	106	0.35	1.70	0.93	76
	468	469.5	622	576.5	627.5	5	26	5	5	127	0.37	1.60	0.88	140

¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ . 2) Bearings with a  $\bigcirc$  mark do not incorporate the subunit dimensions. 3) Bearing numbers marked "*" designate ULTAGE series bearings.

Inch series



### *d* 12.700 ∼ 22.225mm

	Во	oundary dime	nsions		Basic load	rating	Allowab	le speed
		mm			dynamic	static	mi	
d	D	T	В	C	$C_{ m r}$ kN	$C_{0\mathrm{r}}$	Grease lubrication	Oil lubrication
12.700	34.988	10.998	10.988	8.730	13.7	11.6	12 000	16 000
14.989	34.988	10.998	10.988	8.730	13.7	11.6	12 000	16 000
	41.275 42.862	14.288 14.288	14.681 14.288	11.112 9.525	22.6 19.5	18.7 17.5	10 000 8 700	13 000 12 000
15.875	42.862 47.000 49.225	16.670 14.381 19.845	16.670 14.381 21.539	13.495 11.112 14.288	29.6 26.6 42.5	26.0 24.2 39.0	9 800 8 600 8 500	13 000 11 000 11 000
16.993	47.000	14.381	14.381	11.112	26.6	24.2	8 600	11 000
17.462	39.878	13.843	14.605	10.668	26.4	24.2	10 000	13 000
	39.992 45.237 47.000	12.014 15.494 14.381	11.153 16.637 14.381	9.525 12.065 11.112	14.2 31.5 26.6	12.8 28.6 24.2	10 000 8 900 8 600	13 000 12 000 11 000
19.050	49.225 49.225 49.225	18.034 19.845 21.209	19.050 21.539 19.050	14.288 14.288 17.462	42.5 42.5 42.5	39.0 39.0 39.0	8 500 8 500 8 500	11 000 11 000 11 000
	53.975 56.896	22.225 19.368	21.839 19.837	15.875 15.875	44.5 47.5	39.0 46.5	8 000 7 200	11 000 9 600
19.987	47.000	14.381	14.381	11.112	26.6	24.2	8 600	11 000
20.000	50.005	13.495	14.260	9.525	28.8	27.9	7 500	10 000
20.625	49.225	19.845	21.539	14.288	42.5	39.0	8 500	11 000
20.638	49.225	19.845	19.845	15.875	41.5	39.0	8 200	11 000
21.430	50.005	17.526	18.288	13.970	42.0	39.0	8 000	11 000
21.986	45.974	15.494	16.637	12.065	33.0	34.0	8 400	11 000
22.225	50.005 50.005 52.388	13.495 17.526 19.368	14.260 18.288 20.168	9.525 13.970 14.288	28.8 42.0 45.0	27.9 39.0 43.0	7 500 8 000 7 600	10 000 11 000 10 000
	53.975	19.368	20.168	14.288	45.0	43.0	7 600	10 000

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	In	stallati	<b>on-rela</b> mr					Constant	Axial load factors		<b>Mass</b> kg
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-A4050/A4138	18.5	17	29	32	1.3	1.3	2.5	0.45	1.32	0.73	0.053
4T-A4059†/A4138	19.5	19	29	32	0.8	1.3	2.5	0.45	1.32	0.73	0.049
4T-03062/03162	21.5	20	34	37.5	1.3	2	5.4	0.31	1.93	1.06	0.093
4T-11590/11520	24.5	22.5	34.5	39.5	1.5	1.5	1.2	0.70	0.85	0.47	0.103
4T-17580/17520	23	21	36.5	39	1.5	1.5	5.8	0.33	1.81	1.00	0.123
4T-05062/05185	23.5	21	40.5	42.5	1.5	1.3	4.2	0.36	1.68	0.92	0.131
4T-09062/09195	22	21.5	42	44.5	8.0	1.3	9.4	0.27	2.26	1.24	0.203
4T-05066/05185	24.5	22	40.5	42.5	1.5	1.3	4.2	0.36	1.68	0.92	0.13
4T-LM11749/LM11710	24	22	34	37	1.3	1.3	5.3	0.29	2.10	1.15	0.084
4T-A6075/A6157	24	23	34	37	1	1.3	1.5	0.53	1.14	0.63	0.065
4T-LM11949/LM11910	25	23.5	39.5	41.5	1.3	1.3	5.6	0.30	2.00	1.10	0.123
4T-05075/05185	25	23.5	40.5	42.5	1.3	1.3	4.2	0.36	1.68	0.92	0.121
4T-09067/09195	25.5	24	42	44.5	1.3	1.3	7.6	0.27	2.26	1.24	0.179
4T-09078/09195	25.5	24	42	44.5	1.3	1.3	9.4	0.27	2.26	1.24	0.19
4T-09067/09196	25.5	24	41.5	44.5	1.3	1.5	7.6	0.27	2.26	1.24	0.198
4T-21075/21212††	31.5	26	43	50	1.5	2.3	5.6	0.59	1.02	0.56	0.248
4T-1775/1729	27	25	49	51	1.5	1.3	6.5	0.31	1.95	1.07	0.268
4T-05079†/05185	26.5	24	40.5	42.5	1.5	1.3	4.2	0.36	1.68	0.92	0.118
4T-07079/07196	27.5	26	44.5	47	1.5	1	3.0	0.40	1.49	0.82	0.138
4T-09081/09195	27.5	25.4	42	44.5	1.5	1.3	9.4	0.27	2.26	1.24	0.18
4T-12580/12520	28.5	26	42.5	45.5	1.5	1.5	7.1	0.32	1.86	1.02	0.183
4T-M12649/M12610	29.5	27.5	44	46	1.3	1.3	6.4	0.28	2.16	1.19	0.169
4T-LM12749†/LM12711††	27.5	26	40	42.5	1.3	1.3	5.4	0.31	1.96	1.08	0.123
4T-07087/07196	28.5	27	44.5	47	1.3	1	3.0	0.40	1.49	0.82	0.128
4T-M12648/M12610	28.5	26.5	44	46	1.3	1.3	6.4	0.28	2.16	1.19	0.165
4T-1380/1328	29.5	27	45	48.5	1.5	1.5	7.4	0.29	2.05	1.13	0.196
4T-1380/1329††	29.5	27	46	49	1.5	1.5	7.4	0.29	2.05	1.13	0.22
1) As for the maximum value for inne			diamete								

 As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "t (inner ring) and "tt" (outer ring), the precision class is an integer for class 4 and class 2 bearings only. Inch series



#### d 22.225 ~ 28.575mm

~	5 ~ ∠6.5 <i>1</i> 51							
	В	oundary dime	nsions		Basic load	rating	Allowab	le speed
		mm			dynamic	static	mi	
					kN		Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0r}$	lubrication	lubrication
	50.000	10.000	10.007	45.075	47.5	40.5	7.000	0.000
22.225	56.896	19.368	19.837	15.875	47.5	46.5	7 200	9 600
	57.150	22.225	22.225	17.462	52.5	49.5	7 100	9 500
22.606	47.000	15.500	15.500	12.000	30.5	32.5	8 200	11 000
	50.005	13.495	14.260	9.525	28.8	27.9	7 500	10 000
23.812	50.292	14.224	14.732	10.668	32.0	34.0	7 400	9 900
	56.896	19.368	19.837	15.875	47.5	46.5	7 200	9 600
24.981	50.005	13.495	14.260	9.525	28.8	27.9	7 500	10 000
24.301	00.000	10.100	11.200	0.020	20.0	27.0	7 000	10 000
25.000	50.005	13.495	14.260	9.525	28.8	27.9	7 500	10 000
25.159	50.005	13.495	14.260	9.525	28.8	27.9	7 500	10 000
	50.005	13.495	14.260	9.525	28.8	27.9	7 500	10 000
	50.005	13.495	14.260	9.525	28.8	27.9	7 500	10 000
	50.292	14.224	14.732	10.668	32.0	34.0	7 400	9 900
	51.994	15.011	14.260	12.700	28.8	27.9	7 500	10 000
	56.896	19.368	19.837	15.875	47.5	46.5	7 200	9 600
25,400	57.150	19.431	19.431	14.732	47.0	48.5	6 900	9 200
25.400	61.912	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	64.292	21.433	21.433	16.670	57.5	64.5	6 100	8 100
	65.088	22.225	21.463	15.875	52.0	50.5	5 700	7 600
	66.421	23.812	25.433	19.050	71.5	72.5	6 200	8 200
26.157	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
26.162	66.421	23.812	25.433	19.050	71.5	72.5	6 200	8 200
	50.292	14.224	14.732	10.668	32.0	34.0	7 400	9 900
00.000	60.325	19.842	17.462	15.875	44.0	45.5	6 700	8 900
26.988	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	66.421	23.812	25.433	19.050	71.5	72.5	6 200	8 200
28.575	56.896	19.845	19.355	15.875	45.0	44.5	6 700	8 900
20.3/3	57.150	17.462	17.462	13.495	44.0	45.5	6 700	8 900
	07.100			10.100	1 1.0	.0.0	0,00	5 500

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	Installation-related dimensions  mm						Load center mm	Constant	Axial load factors		<b>Mass</b> kg	
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)	
4T-1755/1729	29	27.5	49	51	1.3	1.3	6.5	0.31	1.95	1.07	0.252	
4T-1280/1220	29.5	29	49	52	0.8	1.5	7.1	0.35	1.73	0.95	0.287	
4T-LM72849/LM72810	30	28	40.5	44	1.5	1	3.0	0.47	1.27	0.70	0.125	
4T-07093/07196	30.5	28.5	44.5	47	1.5	1	3	0.40	1.49	0.82	0.121	
4T-L44640/L44610	30.5	28.5	44.5	47	1.5	1.3	3.4	0.37	1.60	0.88	0.133	
4T-1779/1729	29.5	28.5	49	51	0.8	1.3	6.5	0.31	1.95	1.07	0.244	
4T-07098/07196	31	29	44.5	47	1.5	1	3.0	0.40	1.49	0.82	0.121	
4T-07097/07196	31	29	44.5	47	1.5	1	3.0	0.40	1.49	0.82	0.116	
4T-07096/07196	31.5	29.5	44.5	47	1.5	1	3.0	0.40	1.49	0.82	0.12	
4T-07100/07196	30.5	29.5	44.5	47	1	1	3.0	0.40	1.49	0.82		
4T-07100S/07196	31.5	29.5	44.5	47	1.5	1	3.0	0.40	1.49	0.82	0.114	
4T-L44643/L44610	32	30	44.5	47	1.3	1.3	3.4	0.37	1.60	0.88	0.13	
4T-07100/07204	30.5	29.5	45	48	1	1.3	3.0	0.40	1.49	0.82		
4T-1780/1729	30.5	30	49	51	0.8	1.3	6.5	0.31	1.95	1.07		
4T-M84548/M84510	38.5	33	48.5	54	1.5	1.5	3.4	0.55	1.10	0.60		
4T-15101/15243	32.5	31.5	54	58	0.8	2	6.0	0.35	1.71	0.94		
4T-15100/15245	38	31.5	55	58	3.5	1.3	6.0	0.35	1.71	0.94		
4T-15102/15245	34	31.5	55	58	1.5	1.3	6.0	0.35	1.71	0.94		
4T-M86643/M86610	38 39	36.5 34.5	54 53	60 63	1.5 1.5	1.5 1.5	3.3 2.0	0.55	1.10	0.60		
4T-23100/23256 4T-2687/2631	33.5	31.5	58	60	1.3	1.3	9.3	0.73 0.25	0.82 2.36	0.45 1.30		
4T-15103/15245	33	32.5	55	58	0.8	1.3	6.0	0.35	1.71	0.94	0.3	
4T-2682/2631	34.5	32	58	60	1.5	1.3	9.3	0.25	2.36	1.30	0.436	
4T-L44649†/L44610	37.5	31	44.5	47	3.5	1.3	3.4	0.37	1.60	0.88	0.12	
4T-15580†/15523	38.5	32	51	54	3.5	1.5	5.0	0.35	1.73	0.95		
4T-15106†/15245	33.5	33	55	58	0.8	1.3	6.0	0.35	1.71	0.94		
4T-2688†/2631	35	33	58	60	1.5	1.3	9.3	0.25	2.36	1.30	0.429	
4T-1985/1930	34	33.5	51	54	0.8	0.8	5.9	0.33	1.82	1.00	0.217	
4T-15590/15520	39.5	33.5	51	53	3.5	1.5	5.0	0.35	1.73	0.95	0.197	

 As for the maximum value for inner ring bore diameters of bearings whose bearing numbers are marked with "t" (inner ring, the precision class is an integer for class 4 and class 2 bearings only.

B-15/



### *d* 28.575 ∼ 31.750mm

	В	oundary dime	nsions		Basic load	rating	Allowab	le speed
		mm			dynamic	static	mi	
d	D	T	B	C	$C_{ m r}$ kN	$C_{0\mathrm{r}}$	Grease lubrication	Oil lubrication
	58.738	19.050	19.355	15.080	45.0	44.5	6 700	8 900
	60.325	19.842	17.462	15.875	44.0	45.5	6 700	8 900
	60.325	19.845	19.355	15.875	45.0	44.5	6 700	8 900
	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	64.292	21.433	21.433	16.670	57.5	64.5	6 100	8 100
28.575	66.421	23.812	25.433	19.050	71.5	72.5	6 200	8 200
	68.262	22.225	22.225	17.462	63.0	67.0	5 800	7 700
	68.262	22.225	23.812	17.462	64.0	65.5	5 700	7 700
	69.850	23.812	25.357	19.050	76.5	81.5	5 700	7 600
	72.626	24.608	24.257	17.462	64.5	55.5	5 800	7 700
	73.025	22.225	22.225	17.462	62.5	68.0	5 300	7 000
29.000	50.292	14.224	14.732	10.668	31.0	35.5	7 200	9 600
29.367	66.421	23.812	25.433	19.050	71.5	72.5	6 200	8 200
00 007	62.000	16.002	16.566	14.288	43.0	42.0	6 300	8 400
29.987	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
20.000	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
30.000	72.000	29.370	27.783	23.020	80.0	97.0	5 400	7 100
30.112	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	62.000	16.002	16.566	14.288	43.0	42.0	6 300	8 400
20.162	64.292	21.433	21.433	16.670	57.5	64.5	6 100	8 100
	69.850	23.812	25.357	19.050	76.5	81.5	5 700	7 600
	72.626	30.162	29.997	23.812	93.5	98.0	5 500	7 300
	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
30.213	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
30 226	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
30.220	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
	59.131	15.875	16.764	11.811	38.5	41.0	6 300	8 400
31.750	62.000	18.161	19.050	14.288	52.0	54.0	6 100	8 200
29.987 30.000 30.112 30.162 30.213 30.226	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{18}$  and  $r_{128}$ .

1) As for the maximum value for inner ring bore diameters of bearings whose bearing numbers are marked with "f" (inner ring), the precision class is an integer for class 4 and class 2 bearings only.

B-158



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	> <i>e</i>
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ . For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1) 2)	In	stallati	<b>on-rela</b> mr		mensions		Load center mm	Constant	Axi load fa		<b>Mass</b> kg
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}^{ m 3)}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-1985/1932	34	33.5	52	54	0.8	1.3	5.9	0.33	1.82	1.00	0.231
4T-15590/15523	39.5	33.5	51	54	3.5	1.5	5.0	0.35	1.73	0.95	0.25
4T-1985/1931	34	33.5	52	55	8.0	1.3	5.9	0.33	1.82	1.00	0.256
4T-15112/15245	40	34	55	58	3.5	1.3	6.0	0.35	1.71	0.94	0.279
4T-M86647/M86610	40	31	54	60	1.5	1.5	3.3	0.55	1.10	0.60	0.348
4T-2689/2631	37.5	36	58	60	1.3	1.3	9.3	0.25	2.36	1.30	0.363
4T-02474/02420	36.5	36	59	63	0.8	1.5	5.2	0.42	1.44	0.79	0.41
4T-2474/2420	36	35	60	63	0.8	1.5	6.5	0.34	1.77	0.97	0.38
4T-2578/2523 4T-41125/41286	39 48	35 36.5	61 61	64 68	2.3 4.8	1.3	9.1 3.7	0.27	2.19	1.21 0.55	0.484 0.475
4T-02872/02820	37.5	36.5	62	68	0.8	3.3	3.7	0.60 0.45	1.32	0.55	0.475
41-02072/02020	37.5	37	02	00	0.6	ა.ა	3.9	0.43	1.32	0.73	0.461
4T-L45449/L45410	40	33.5	44.5	48	3.5	1.3	3.5	0.37	1.62	0.89	0.113
4T-2690/2631	41	35	58	60	3.5	1.3	9.3	0.25	2.36	1.30	0.407
4T-17118†/17244	38.5	36	54	57	1.5	1.5	3.3	0.38	1.57	0.86	0.229
4T-15117†/15245	36.5	35	55	58	1.3	1.3	6.0	0.35	1.71	0.94	0.27
4T-14117A/14276	44	41	60	63	3.5	1.3	4.1	0.38	1.57	0.86	0.37
#4T-JHM88540/JHM88513	44.5	42.5	58	69	1.3	3.3	6.0	0.55	1.10	0.60	0.62
4T-15116/15245	36	35.5	55	58	0.8	1.3	6.0	0.35	1.71	0.94	0.27
4T-17119/17244	37	34.5	54	57	1.5	1.5	3.3	0.38	1.57	0.86	0.228
4T-M86649/M86610	44	38	54	60	1.5	1.5	3.3	0.55	1.10	0.60	0.336
4T-2558/2523	40	36.5	61	64	2.3	1.3	9.1	0.27	2.19	1.21	0.467
4T-3187/3120	39	38.5	61	67	0.8	3.3	9.9	0.33	1.80	0.99	0.621
4T-15118/15245	43	36.5	55	58	3.5	1.3	6.0	0.35	1.71	0.94	0.266
4T-15119/15245	37.5	35.5	55	58	1.5	1.3	6.0	0.35	1.71	0.94	0.269
4T-15120/15245	36	35.5	55	58	0.8	1.3	6.0	0.35	1.71	0.94	0.269
4T-14116/14274	38.5	38	59	63	0.8	3.3	4.1	0.38	1.57	0.86	0.369
4T-14116/14276	38.5	38	60	63	0.8	1.3	4.1	0.38	1.57	0.86	0.371
4T-LM67048/LM67010	42.5	36	52	56	*	1.3	2.8	0.41	1.46	0.80	0.183
4T-15123/15245	44	38	55	58	*	1.3	5.1	0.35	1.71	0.94	0.249
4T-15125/15245 2) Bearing numbers marked "#" design	42.5	36.5	55	58	3.5	1.3	6.0	0.35	1.71	0.94	0.254

Bearing numbers marked "#" designate J-series bearings. The tolerance of these bea
 Chamfer dimensions of the bearings marked "*" are shown in the above drawings.

B-159



Inch series J series



### d 31.750 ∼ 34.925mm

	В	oundary dime	nsions		Basic loa	d rating	Allowab	e speed
	mm			dynamic	static	min-1		
					k۱		Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0\mathrm{r}}$	lubrication	lubrication
	62.000	19.050	20.638	14.288	52.0	54.0	6 100	8 200
	66.421	25.400	25.357	20.638	76.5	81.5	5 700	7 600
	68.262	22.225	22.225	17.462	63.0	67.0	5 800	7 700
	68.262	22.225	22.225	17.462	63.0	67.0	5 800	7 700
	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
	69.850	23.812	25.357	19.050	76.5	81.5	5 700	7 600
31.750	69.850	23.812	25.357	19.050	76.5	81.5	5 700	7 600
31.730	72.626	30.162	29.997	23.812	93.5	98.0	5 500	7 300
	72.626	30.162	29.997	23.812	93.5	98.0	5 500	7 300
	73.025	22.225	22.225	17.462	62.5	68.0	5 300	7 000
	73.025	22.225	23.812	17.462	69.5	75.5	5 200	7 000
	73.025	29.370	27.783	23.020	80.0	97.0	5 400	7 100
	73.812	29.370	27.783	23.020	80.0	97.0	5 400	7 100
	76.200	29.370	28.575	23.020	86.5	105	5 100	6 800
	79.375	29.370	29.771	23.812	103	114	4 900	6 600
	68.262	22.225	22.225	17.462	62.5	71.0	5 700	7 500
	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
	69.850	23.812	25.357	19.050	76.5	81.5	5 700	7 600
	72.626	30.162	29.997	23.812	93.5	98.0	5 500	7 300
33.338	73.025	29.370	27.783	23.020	80.0	97.0	5 400	7 100
	76.200	23.812	25.654	19.050	81.0	90.5	5 100	6 800
	76.200	29.370	28.575	23.020	86.5	105	5 100	6 800
	76.200	29.370	28.575	23.020	86.5	105	5 100	6 800
	79.375	25.400	24.074	17.462	72.5	67.0	5 200	6 900
	65.088	18.034	18.288	13.970	51.5	56.0	5 700	7 600
	65.088	18.034	18.288	13.970	51.5	56.0	5 700	7 600
	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
	72.233	25.400	25.400	19.842	72.0	84.5	5 400	7 200
	72.238	20.638	20.638	15.875	53.0	58.5	5 300	7 000
34.925	73.025	22.225	22.225	17.462	62.5	68.0	5 300	7 000
34.323	73.025	22.225	22.225	17.462	62.5	68.0	5 300	7 000
	73.025	22.225	23.812	17.462	69.5	75.5	5 200	7 000
	73.025	23.812	24.608	19.050	78.5	85.0	5 300	7 100
	73.025	23.812	24.608	19.050	78.5	85.0	5 300	7 100
	73.025	23.812	25.654	19.050	81.0	90.5	5 100	6 800
	76.200	23.812	25.654	19.050	81.0	90.5	5 100	6 800

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≦</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ . For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	mm						Load Constant center mm		Axial load factors		<b>Mass</b> kg
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}^{ m 1)}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-15126/15245	38.5	38	55	58	0.8	1.3	6.0	0.35	1.71	0.94	0.257
4T-2580/2520	38.5	37.5	56.9	62.5	0.8	3.3	9.1	0.27	2.19	1.21	0.41
4T-02475/02420	44.5	38.5	59	63	3.5	1.5	5.2	0.42	1.44	0.79	0.382
4T-02476/02420	39	38.5	59	63	0.8	1.5	5.2	0.42	1.44	0.79	0.384
4T-14124/14276	39.5	39	60	63	0.8	1.3	4.1	0.38	1.57	0.86	0.36
4T-14125A/14276	45 38.5	39	60	63	3.5 0.8	1.3	4.1	0.38 0.27	1.57	0.86	0.357 0.455
4T-2580/2523 4T-2582/2523	38.5 44	37.5 37.5	61 61	64 64	3.5	1.3	9.1 9.1	0.27	2.19	1.21	0.455
41-2562/2525 4T-3188/3120	44	39.5	61	67	0.8	3.3	9.1	0.27	1.80	0.99	0.452
4T-3193/3120	45.5	39.5	61	67	3.5	3.3	9.9	0.33	1.80	0.99	0.605
4T-02875/02820	45.5	39.5	62	68	3.5	3.3	3.9	0.33	1.32	0.33	0.453
4T-2879/2820	39.5	38.5	63	68	0.8	3.3	5.5	0.37	1.63	0.90	0.466
4T-HM88542/HM88510	45.5	42.6	59	70	1.3	3.3	6.0	0.55	1.10	0.60	0.622
4T-HM88542/HM88512	45.5	42.6	60	70	1.3	3.3	6.0	0.55	1.10	0.60	0.638
4T-HM89440/HM89410	45.5	44.3	62	73	0.8	3.3	5.8	0.55	1.10	0.60	0.686
4T-3476/3420	43	41	67	74	1.3	3.3	8.7	0.37	1.64	0.90	0.772
4T-M88048/M88010	42.5	41.2	58	65	0.8	1.5	2.9	0.55	1.10	0.60	0.379
4T-14130/14276	46.5	40	60	63	3.5	1.3	4.1	0.38	1.57	0.86	0.345
4T-2585/2523	45	39	61	64	3.5	1.3	9.1	0.27	2.19	1.21	0.436
4T-3196/3120	47	40.5	61	67	3.5	3.3	9.9	0.33	1.80	0.99	0.584
4T-HM88547/HM88510	45.5	42.6	59	70	0.8	3.3	6.0	0.55	1.10	0.60	0.603
4T-2785/2720 4T-HM89443/HM89410	46 46.5	40 44.3	66	70 73	3.5	3.3	7.8	0.30	1.98	1.09	0.548
4T-HM89443/HM89410 4T-HM89444/HM89410	46.5 53	44.3	62 62	73	0.8 3.8	3.3	5.8 5.8	0.55 0.55	1.10	0.60	0.667 0.665
4T-43131/43312	51	42.1	67	73 74	3.5	1.5	1.4	0.55	0.90	0.60	0.568
4T-LM48548/LM48510	48	41.5	58	61	*	1.3	3.7	0.38	1.59	0.88	0.25
4T-LM48548A/LM48510	40.5	42.2	58	61	0.8	1.3	3.7	0.38	1.59	0.88	0.252
4T-14137A/14276	43.5	41.5	60	63	1.5	1.3	4.1	0.38	1.57	0.86	0.334
4T-HM88649/HM88610	48.5	42.5	60	69	2.3	2.3	4.6	0.55	1.10	0.60	0.489
4T-16137/16284	47	40.5	63	67	3.5	1.3	4.2	0.40	1.49	0.82	0.37
4T-02877/02820	48.5	42	62	68	3.5	3.3	3.9	0.45	1.32	0.73	0.423
4T-02878/02820	42.5	42	62	68	0.8	3.3	3.9	0.45	1.32	0.73	0.426
4T-2878/2820	42	41	63	68	0.8	3.3	5.5	0.37	1.63	0.90	0.435
4T-25877/25820	43	40.5	64	68	1.5	2.3	8.1	0.29	2.07	1.14	0.47
4T-25877/25821	43	40.5	65	68	1.5	0.8	8.1	0.29	2.07	1.14	0.473
4T-2793/2735X	42	41	66	69	0.8	0.8	7.8	0.30	1.98	1.09	0.444
4T-2793/2720  1) Chamfer dimensions of the bearing	42	41	66	70	0.8	3.3	7.8	0.30	1.98	1.09	0.534

1) Chamfer dimensions of the bearings marked "*" are shown in the above drawings.

Inch series J series



#### d 34.925 ~ 38.100mm

		oundary dime	nsions		Basic load	d rating	Allowab	le speed
		mm			dynamic	static	mi	
d	D	T	B	C	$C_{ m r}$ kN	$C_{0\mathrm{r}}$	Grease lubrication	Oil lubrication
	76 200	23 812	25.654	19.050	81.0	90.5	5 100	6 800
			28.575	23.020	86.5	105	5 100	6 800
			28.575	23.812	89.5	97.0	5 100	6 800
34.925			28.575	23.812	89.5	97.0	5 100	6 800
04.323		29.370	29.771	23.812	103	114	4 900	6 600
	80.167	29.370	30.391	23.812	105	112	4 800	6 400
	85.725	30.162	30.162	23.812	116	132	4 500	6 000
34.976	69.012	19.845	19.583	15.875	53.5	58.0	5 600	7 400
			16.764	11.938	39.0	47.5	6 100	8 100
34.988	61.973		17.000	13.600	41.0	48.0	5 900	7 900
	61.973	18.000	17.000	15.000	41.0	48.0	5 900	7 900
			23.500	19.000	69.0	78.0	5 500	7 300
35.000			25.400	19.050	85.0	97.5	4 800	6 400
	80.000	21.000	22.403	17.826	75.5	75.0	4 700	6 300
35.717			25.400	19.842	72.0	84.5	5 400	7 200
33.717	72.626	25.400	25.400	19.842	72.0	84.5	5 400	7 200
36.487			24.608	19.050	78.5	85.0	5 300	7 100
30.407	76.200	23.812	25.654	19.050	81.0	90.5	5 100	6 800
			28.575	23.020	86.5	105	5 100	6 800
			28.575	23.020	86.5	105	5 100	6 800
36.512			28.575	23.812	89.5	97.0	5 100	6 800
00.512			28.829	22.664	95.5	104	5 000	6 600
			29.771	23.812	103	114	4 900	6 600
	88.500	25.400	23.698	17.462	78.5	78.0	4 000	5 300
38.000	63.000	17.000	17.000	13.500	43.0	52.5	5 700	7 600
			11.908	9.525	28.7	33.5	5 500	7 300
			18.288	13.970	48.0	57.0	5 500	7 400
38.100			19.050	15.083	53.0	59.5	5 300	7 100
			19.050	15.083	53.0	59.5	5 300	7 100
	71.438	15.875	16.520	11.908	48.0	51.0	5 400	7 200
	72.000	19.000	20.638	14.237	53.0	58.5	5 300	7 000

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{10}$  and  $r_{10}$ .

1) As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "t" (inner ring) and "tt" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

8–162



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	> <i>e</i>
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$  When  $P_{0r}$ < $F_r$  use  $P_{0r}$ = $F_r$ . For values of e,  $Y_2$  and  $Y_0$  see the table below.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bearing number 1) 2)	Installation-related dimensions						Load center ⁴ mm	Constant	Axial load factors		<b>Mass</b> kg
da         db         Da         Db         Max         Max         a         e         Y₂         Y₀         (app           4T-2796/2729         47.5         41         68         70         3.5         0.8         7.8         0.30         1.98         1.09         0           4T-31593/31520         50         43.5         64         72         3.5         3.3         7.8         0.40         1.49         0.82         0           4T-3478/3420         50         43.5         67         74         3.5         3.3         1.8         0.40         1.49         0.82         0           4T-3478/3420         50         43.5         67         74         3.5         3.3         1.0         0.37         1.64         0.90         0           4T-387/3820         53         46         73         81         3.5         3.3         8.1         0.40         1.49         0.82         0           4T-14139/14276         43.5         41.5         60         63         1.3         1.3         4.1         0.38         1.57         0.86         0           4T-L68149†/L68111††         45.5         39         53         56 </th <th></th> <th></th> <th colspan="4">mm</th> <th>[[][[]</th> <th></th> <th></th> <th></th> <th>ĸg</th>			mm				[[][[]				ĸg	
4T-HM89446/HM89410         56         44.3         62         73         3.5         3.3         5.8         0.55         1.10         0.60         0           4T-31593/31520         50         43.5         64         72         1.5         3.3         7.8         0.40         1.49         0.82         0           4T-3478/3420         50         43.5         67         74         3.5         3.3         8.7         0.37         1.64         0.90         0           4T-3379/3320         48         41.5         70         75         3.5         3.3         11.2         0.27         2.20         1.21         0           4T-14139/14276         43.5         41.5         60         63         1.3         1.3         4.1         0.38         1.57         0.86         0           4T-L68149†/L68111††         45.5         39         53         56         *         1.3         2.5         0.42         1.44         0.79         0           4T-LM78349†/LM78310C††         46         40         56         59         *         1.5         2.4         0.44         1.35         0.74         0           #4T-26883/26822         42.5		$d_{\rm a}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$			a	e	$Y_2$	$Y_0$	(approx.)
4T-31593/31520         50         43.5         64         72         3.5         3.3         7.8         0.40         1.49         0.82         0           4T-31594/31520         46         43.5         67         74         3.5         3.3         7.8         0.40         1.49         0.82         0           4T-3478/3420         50         43.5         67         74         3.5         3.3         8.7         0.40         1.49         0.82         0           4T-3872/3820         53         46         73         81         3.5         3.3         8.1         0.40         1.49         0.82         0           4T-14139/14276         43.5         41.5         60         63         1.3         1.3         4.1         0.38         1.57         0.86         0           4T-L68149†/L68111††         45.5         39         53         56         *         1.3         2.5         0.42         1.44         0.79         0           4T-LM78349†/LM78310C††         46         40         56         59         *         1.5         2.4         0.44         1.35         0.74         0           4T-LM78349†/LM78310C††         47		47.5				3.5			0.30	1.98	1.09	0.536
4T-31594/31520												0.646
##												
4T-3379/3320         48         41.5         70         75         3.5         3.3         11.2         0.27         2.20         1.21         0           4T-3872/3820         53         46         73         81         3.5         3.3         8.1         0.40         1.49         0.82         0           4T-14139/14276         43.5         41.5         60         63         1.3         1.3         4.1         0.38         1.57         0.86         0           4T-LM78349h/LM78310A††         42         39.5         54         59         1.5         1.5         2.4         0.44         1.35         0.74         0           #4T-LM78349h/LM78310C††         46         40         56         59         *         1.5         2.4         0.44         1.35         0.74         0           #4T-JS3549A/JS3510         47         42         60         66.5         2         1.5         3.6         0.55         1.10         0.60         0           4T-26883/26822         42.5         42.5         60         69         3.5         2.3         4.6         0.55         1.10         0.60         0           4T-HM88648/HM88610         54 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						_				_		
4T-3872/3820       53       46       73       81       3.5       3.3       8.1       0.40       1.49       0.82       0         4T-14139/14276       43.5       41.5       60       63       1.3       1.3       4.1       0.38       1.57       0.86       0         4T-LM78349A/LM78310A††       45.5       39       53       56       *       1.3       2.5       0.42       1.44       0.79       0         4T-LM78349A/LM78310C††       46       40       56       59       *       1.5       2.4       0.44       1.35       0.74       0         4T-28883/26822       42.5       42       71       74       0.8       0.8       7.4       0.32       1.88       1.04       0         4T-488648/HM88610       54       42.5       42.5       59       69       3.5       2.3       4.6       0.55       1.10       0.60       0         4T-25880/25821       44       42.5       59       69       3.5       3.3       3.0       0.55       1.10       0.60       0         4T-HM88648/HM88611AS       54       42.5       66       73       0.8       8.1       0.29       2.07       <												
4T-14139/14276  43.5 41.5 60 63 1.3 1.3 4.1 0.38 1.57 0.86 0  4T-L68149†/L68111†† 45.5 39 53 56 * 1.3 2.5 0.42 1.44 0.79 0  4T-LM78349A†/LM78310A†† 42 39.5 54 59 1.5 1.5 2.4 0.44 1.35 0.74 0  4T-LM78349†/LM78310C†† 46 40 56 59 * 1.5 2.4 0.44 1.35 0.74 0  #4T-JS3549A/JS3510 47 42 60 66.5 2 1.5 3.6 0.55 1.10 0.60 0  4T-26883/26822 42.5 42 71 74 0.8 0.8 7.4 0.32 1.88 1.04 0  4T-339/332 42.5 41.5 73 75 0.8 1.3 6.6 0.27 2.20 1.21 0  4T-HM88648/HM88610 54 42.5 60 69 3.5 2.3 4.6 0.55 1.10 0.60 0  4T-HM88648/HM88611AS 54 42.5 59 69 3.5 3.3 3.0 0.55 1.10 0.60 0  4T-2780/2720 44.5 42.5 66 70 1.5 3.3 7.8 0.30 1.98 1.09 0  4T-HM89449/HM89410 48.5 44.3 62 73 0.8 3.3 5.8 0.55 1.10 0.60 0  4T-HM89449/HM89411 57 44.3 65 73 3.5 0.8 5.8 0.55 1.10 0.60 0  4T-HM89449/HM89411 57 44.3 65 73 3.5 0.8 5.8 0.55 1.10 0.60 0  4T-HM89249/HM89410 55 44.5 66 70 1.5 3.3 7.8 0.30 1.98 1.09 0  4T-HM89249/HM89410 55 44.3 66 75 3.5 3.3 7.8 0.40 1.49 0.82 0  4T-HM89249/HM89410 55 44.5 67 74 0.8 3.3 8.7 0.37 1.64 0.90 0  4T-HM89249/HM89210 55 44 66 75 3.5 3.3 7.8 0.40 1.49 0.82 0  4T-44143/44348 54 50 75 84 2.3 1.5 -2.9 0.78 0.77 0.42 0  4T-13687/3621 49.5 43 61 65 2.2 3.3 0.0 0.40 1.49 0.82 0  4T-13889/13830 45 42.5 59 60 1.5 0.8 0.8 0.35 1.73 0.95 0  4T-13687/13621 49.5 43 61 65 2.2 3.3 0.0 0.40 1.49 0.82 0  4T-113687/13621 49.5 43 61 65 2.2 3.3 0.0 0.40 1.49 0.82 0  4T-11950/19281 45 43 63 66 1.5 1.5 1.4 0.44 1.35 0.74 0.8		-	_							-		0.736
4T-L68149†/L68111††	4T-3872/3820	53	46	73	81	3.5	3.3	8.1	0.40	1.49	0.82	0.902
4T-LM783494†/LM78310A††         42         39.5         54         59         1.5         1.5         2.4         0.44         1.35         0.74         0           #4T-LM78349†/LM78310C††         46         40         56         59         *         1.5         2.4         0.44         1.35         0.74         0           #4T-JS3549A/JS3510         47         42         60         66.5         2         1.5         3.6         0.55         1.10         0.60         0           4T-26883/26822         42.5         42         71         74         0.8         0.8         7.4         0.32         1.88         1.04         0           4T-339/332         42.5         41.5         73         75         0.8         1.3         6.6         0.27         2.20         1.21         0           4T-HM88648/HM88610         54         42.5         60         69         3.5         2.3         4.6         0.55         1.10         0.60         0           4T-HM88648/HM88611AS         54         42.5         60         69         3.5         2.3         4.6         0.55         1.10         0.60         0           4T-25880/25821	4T-14139/14276	43.5	41.5	60	63	1.3	1.3	4.1	0.38	1.57	0.86	0.33
#4T-LM78349†/LM78310C†† 46 40 56 59 * 1.5 2.4 0.44 1.35 0.74 0 #4T-JS3549A/JS3510 47 42 60 66.5 2 1.5 3.6 0.55 1.10 0.60 0 #T-26883/26822 42.5 42 71 74 0.8 0.8 7.4 0.32 1.88 1.04 0 #T-339/332 42.5 41.5 73 75 0.8 1.3 6.6 0.27 2.20 1.21 0 #T-HM88648/HM88610 54 42.5 60 69 3.5 2.3 4.6 0.55 1.10 0.60 0 #T-25880/25821 44 42.5 59 69 3.5 3.3 3.0 0.55 1.10 0.60 0 #T-2780/2720 44.5 42.5 66 70 1.5 3.3 7.8 0.30 1.98 1.09 0 #T-HM89448/HM89410 48.5 44.3 62 73 0.8 3.3 5.8 0.55 1.10 0.60 0 #T-HM89449/HM89411 57 44.3 65 73 3.5 0.8 5.8 0.55 1.10 0.60 0 #T-HM89449/HM89210 55 44.5 64 72 3.5 3.3 7.8 0.40 1.49 0.82 0 #T-HM89249/HM89210 55 44.5 67 74 0.8 3.3 5.8 0.55 1.10 0.60 0 #T-3479/3420 45.5 44.5 67 74 0.8 3.3 5.8 0.55 1.10 0.60 0 #T-414143/44348 54 50 75 84 2.3 1.5 -2.9 0.78 0.77 0.42 0 ##T-LM29748/LM29710 49 42.5 58.9 62 * 1.3 4.3 0.33 1.80 0.99 0 #T-13685/13621 49.5 43 61 65 2 2.3 3.0 0.40 1.49 0.82 0 #T-19150/19281 45 43 61 65 2 2.3 3.0 0.40 1.49 0.82 0 #T-19150/19281 45 43 61 65 2 2.3 3.0 0.40 1.49 0.82 0 #T-19150/19281 45 43 61 65 2 2.3 3.0 0.40 1.49 0.82 0	4T-L68149†/L68111††	45.5						2.5	0.42	1.44	0.79	0.179
#4T-JS3549A/JS3510		42	39.5	54	59	1.5		2.4	0.44	1.35	0.74	0.206
4T-26883/26822       42.5       42       71       74       0.8       0.8       7.4       0.32       1.88       1.04       0         4T-339/332       42.5       41.5       73       75       0.8       1.3       6.6       0.27       2.20       1.21       0         4T-HM88648/HM88610       54       42.5       60       69       3.5       2.3       4.6       0.55       1.10       0.60       0         4T-HM88648/HM88611AS       54       42.5       59       69       3.5       3.3       3.0       0.55       1.10       0.60       0         4T-25880/25821       44       42       65       68       1.5       0.8       8.1       0.29       2.07       1.14       0         4T-4780/2720       44.5       42.5       66       70       1.5       3.3       7.8       0.30       1.98       1.09       0         4T-HM89448/HM89410       48.5       44.3       62       73       0.8       3.3       5.8       0.55       1.10       0.60       0         4T-HM89449/HM89411       57       44.3       65       73       3.5       0.8       5.8       0.55       1.10 <td< td=""><td>4T-LM78349†/LM78310C††</td><td>46</td><td>40</td><td>56</td><td>59</td><td>*</td><td>1.5</td><td>2.4</td><td>0.44</td><td>1.35</td><td>0.74</td><td>0.218</td></td<>	4T-LM78349†/LM78310C††	46	40	56	59	*	1.5	2.4	0.44	1.35	0.74	0.218
4T-339/332       42.5       41.5       73       75       0.8       1.3       6.6       0.27       2.20       1.21       0         4T-HM88648/HM88610       54       42.5       60       69       3.5       2.3       4.6       0.55       1.10       0.60       0         4T-HM88648/HM88611AS       54       42.5       59       69       3.5       2.3       4.6       0.55       1.10       0.60       0         4T-25880/25821       44       42       65       68       1.5       0.8       8.1       0.29       2.07       1.14       0         4T-HM89448/HM89410       48.5       44.3       62       73       0.8       3.3       5.8       0.55       1.10       0.60       0         4T-HM89449/HM89411       57       44.3       65       73       3.5       0.8       5.8       0.55       1.10       0.60       0         4T-HM89249/HM89210       51       44.5       64       72       3.5       3.3       7.8       0.40       1.49       0.82       0         4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64	#4T-JS3549A/JS3510		42	60	66.5	2	1.5	3.6	0.55	1.10	0.60	0.42
4T-HM88648/HM88610 54 42.5 59 69 3.5 2.3 4.6 0.55 1.10 0.60 0 4T-HM88648/HM88611AS 54 42.5 59 69 3.5 3.3 3.0 0.55 1.10 0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			42									0.61
4T-HM88648/HM88611AS       54       42.5       59       69       3.5       3.3       3.0       0.55       1.10       0.60       0         4T-25880/25821       44       42       65       68       1.5       0.8       8.1       0.29       2.07       1.14       0         4T-2780/2720       44.5       42.5       66       70       1.5       3.3       7.8       0.30       1.98       1.09       0         4T-HM89448/HM89410       48.5       44.3       62       73       0.8       3.3       5.8       0.55       1.10       0.60       0         4T-HM89449/HM89411       57       44.3       65       73       3.5       0.8       5.8       0.55       1.10       0.60       0         4T-31597/31520       51       44.5       64       72       3.5       3.3       5.8       0.55       1.10       0.60       0         4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64       0.90       0         4T-4143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.4	4T-339/332	42.5	41.5	73	75	0.8	1.3	6.6	0.27	2.20	1.21	0.534
4T-25880/25821		54									0.60	
4T-2780/2720       44.5       42.5       66       70       1.5       3.3       7.8       0.30       1.98       1.09       0         4T-HM89448/HM89410       48.5       44.3       62       73       0.8       3.3       5.8       0.55       1.10       0.60       0         4T-HM89449/HM89411       57       44.3       65       73       3.5       0.8       5.8       0.55       1.10       0.60       0         4T-31597/31520       51       44.5       64       72       3.5       3.3       7.8       0.40       1.49       0.82       0         4T-HM89249/HM89210       55       44       66       75       3.5       3.3       5.8       0.55       1.10       0.60       0         4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64       0.90       0         4T-44143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.42       0         #4T-JL69349/JL69310       46.5       42.5       56       60       *       1.3       2.3       0.42       1.44 <td< td=""><td>4T-HM88648/HM88611AS</td><td>54</td><td>42.5</td><td>59</td><td>69</td><td>3.5</td><td>3.3</td><td>3.0</td><td>0.55</td><td>1.10</td><td>0.60</td><td>0.482</td></td<>	4T-HM88648/HM88611AS	54	42.5	59	69	3.5	3.3	3.0	0.55	1.10	0.60	0.482
4T-HM89448/HM89410       48.5       44.3       62       73       0.8       3.3       5.8       0.55       1.10       0.60       0         4T-HM89449/HM89411       57       44.3       65       73       3.5       0.8       5.8       0.55       1.10       0.60       0         4T-31597/31520       51       44.5       64       72       3.5       3.3       7.8       0.40       1.49       0.82       0         4T-HM89249/HM89210       55       44       66       75       3.5       3.3       5.8       0.55       1.10       0.60       0         4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64       0.90       0         4T-44143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.42       0         #4T-JL69349/JL69310       46.5       42.5       56       60       *       1.3       2.3       0.42       1.44       0.79       0         4T-13889/13830       45       42.5       59       60       1.5       0.8       0.8       0.35       1.73 <td< td=""><td></td><td></td><td></td><td></td><td>68</td><td></td><td></td><td></td><td></td><td>2.07</td><td>1.14</td><td>0.456</td></td<>					68					2.07	1.14	0.456
4T-HM89449/HM89411       57       44.3       65       73       3.5       0.8       5.8       0.55       1.10       0.60       0         4T-31597/31520       51       44.5       64       72       3.5       3.3       7.8       0.40       1.49       0.82       0         4T-HM89249/HM89210       55       44       66       75       3.5       3.3       5.8       0.55       1.10       0.60       0         4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64       0.90       0         4T-44143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.42       0         #4T-JL69349/JL69310       46.5       42.5       56       60       *       1.3       2.3       0.42       1.44       0.79       0         4T-13889/13830       45       42.5       59       60       1.5       0.8       0.8       0.35       1.73       0.95       0         4T-LM29748/LM29710       49       42.5       58.9       62       *       1.3       4.3       0.33       1.80       0	4T-2780/2720	44.5	42.5	66	70	1.5	3.3	7.8	0.30	1.98	1.09	0.516
4T-31597/31520       51       44.5       64       72       3.5       3.3       7.8       0.40       1.49       0.82       0         4T-HM89249/HM89210       55       44       66       75       3.5       3.3       5.8       0.55       1.10       0.60       0         4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64       0.90       0         4T-44143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.42       0         #4T-JL69349/JL69310       46.5       42.5       56       60       *       1.3       2.3       0.42       1.44       0.79       0         4T-13889/13830       45       42.5       59       60       1.5       0.8       0.8       0.35       1.73       0.95       0         4T-13687/13621       49       42.5       58.9       62       *       1.3       4.3       0.33       1.80       0.99       0         4T-13687/13621       46.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82	4T-HM89448/HM89410	48.5	44.3	62	73	0.8	3.3	5.8	0.55	1.10	0.60	0.628
4T-HM89249/HM89210       55       44       66       75       3.5       3.3       5.8       0.55       1.10       0.60       0         4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64       0.90       0         4T-44143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.42       0         #4T-JL69349/JL69310       46.5       42.5       56       60       *       1.3       2.3       0.42       1.44       0.79       0         4T-13889/13830       45       42.5       59       60       1.5       0.8       0.8       0.35       1.73       0.95       0         4T-13889/13830       49       42.5       58.9       62       *       1.3       4.3       0.35       1.73       0.95       0         4T-13685/13621       49       42.5       58.9       62       *       1.3       4.3       0.33       1.80       0.99       0         4T-13687/13621       46.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82	4T-HM89449/HM89411	57	44.3	65	73	3.5	8.0	5.8	0.55	1.10	0.60	0.63
4T-3479/3420       45.5       44.5       67       74       0.8       3.3       8.7       0.37       1.64       0.90       0         4T-44143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.42       0         #4T-JL69349/JL69310       46.5       42.5       56       60       *       1.3       2.3       0.42       1.44       0.79       0         4T-13889/13830       45       42.5       59       60       1.5       0.8       0.8       0.35       1.73       0.95       0         4T-LM29748/LM29710       49       42.5       58.9       62       *       1.3       4.3       0.33       1.80       0.99       0         4T-13685/13621       49.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82       0         4T-19150/19281       45       43       63       66       1.5       1.5       1.4       0.44       1.35       0.74       0	4T-31597/31520	51	44.5	64	72	3.5	3.3	7.8	0.40	1.49	0.82	0.606
4T-44143/44348       54       50       75       84       2.3       1.5       -2.9       0.78       0.77       0.42       0         #4T-JL69349/JL69310       46.5       42.5       56       60       *       1.3       2.3       0.42       1.44       0.79       0         4T-13889/13830       45       42.5       59       60       1.5       0.8       0.8       0.35       1.73       0.95       0         4T-14M29748/LM29710       49       42.5       58.9       62       *       1.3       4.3       0.33       1.80       0.99       0         4T-13685/13621       49.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82       0         4T-19150/19281       45       43       63       66       1.5       1.5       1.4       0.44       1.35       0.74       0	4T-HM89249/HM89210	55	44	66	75	3.5	3.3	5.8	0.55	1.10	0.60	0.689
#4T-JL69349/JL69310 46.5 42.5 56 60 * 1.3 2.3 0.42 1.44 0.79 0.  4T-13889/13830 45 42.5 59 60 1.5 0.8 0.8 0.35 1.73 0.95 0.  4T-LM29748/LM29710 49 42.5 58.9 62 * 1.3 4.3 0.33 1.80 0.99 0.  4T-13685/13621 49.5 43 61 65 3.5 2.3 3.0 0.40 1.49 0.82 0.  4T-13687/13621 46.5 43 61 65 2 2.3 3.0 0.40 1.49 0.82 0.  4T-19150/19281 45 43 63 66 1.5 1.5 1.4 0.44 1.35 0.74 0.	4T-3479/3420	45.5	44.5	67	74	0.8	3.3	8.7	0.37	1.64	0.90	0.707
4T-13889/13830       45       42.5       59       60       1.5       0.8       0.8       0.35       1.73       0.95       0         4T-LM29748/LM29710       49       42.5       58.9       62       *       1.3       4.3       0.33       1.80       0.99       0         4T-13685/13621       49.5       43       61       65       3.5       2.3       3.0       0.40       1.49       0.82       0         4T-13687/13621       46.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82       0         4T-19150/19281       45       43       63       66       1.5       1.5       1.4       0.44       1.35       0.74       0	4T-44143/44348	54	50	75	84	2.3	1.5	-2.9	0.78	0.77	0.42	0.73
4T-LM29748/LM29710       49       42.5       58.9       62       *       1.3       4.3       0.33       1.80       0.99       0         4T-13685/13621       49.5       43       61       65       3.5       2.3       3.0       0.40       1.49       0.82       0         4T-13687/13621       46.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82       0         4T-19150/19281       45       43       63       66       1.5       1.5       1.4       0.44       1.35       0.74       0	#4T-JL69349/JL69310	46.5	42.5	56	60	*	1.3	2.3	0.42	1.44	0.79	0.2
4T-13685/13621       49.5       43       61       65       3.5       2.3       3.0       0.40       1.49       0.82       0         4T-13687/13621       46.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82       0         4T-19150/19281       45       43       63       66       1.5       1.5       1.4       0.44       1.35       0.74       0	4T-13889/13830	45	42.5	59	60	1.5	0.8	0.8	0.35	1.73	0.95	0.148
47-13687/13621       46.5       43       61       65       2       2.3       3.0       0.40       1.49       0.82       0         47-19150/19281       45       43       63       66       1.5       1.5       1.4       0.44       1.35       0.74       0	4T-LM29748/LM29710	49	42.5	58.9	62	*			0.33	1.80		
<b>4T-19150/19281</b> 45 43 63 66 1.5 1.5 1.4 0.44 1.35 0.74 0.	4T-13685/13621	49.5	43	61	65	3.5	2.3	3.0	0.40	1.49	0.82	0.294
	4T-13687/13621	46.5	43	61	65	2	2.3	3.0	0.40	1.49	0.82	0.296
AT 4C4F0/4C000 40 F 40 C0 C7 OF 45 40 C4C 44C CCC C	4T-19150/19281	45				1.5	1.5		0.44	1.35	0.74	0.241
<b>41-10130/10282</b> 49.5 43 63 67 3.5 1.5 4.2 0.40 1.49 0.82 0	4T-16150/16282	49.5	43	63	67	3.5	1.5	4.2	0.40	1.49	0.82	0.331

2) Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings is listed in Table 6.8 on page A-66 to A-67.

3) Chamfer dimensions of the bearings marked "*" are shown in the above drawings. 4) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.

B-163



Inch series



## d 38.100 ~ 41.275mm

	В	oundary dime	nsions		Basic loa	d rating	Allowab	le speed
		mm			dynamic	static	mi	
					k۱		Grease	Oil
d	D	T	В	C	$C_{ m r}$	$C_{0r}$	lubrication	lubrication
	76.200	20.638	20.940	15.507	61.5	63.0	5 000	6 700
	76.200	23.812	25.654	19.050	81.0	90.5	5 100	6 800
	76.200	23.812	25.654	19.050	81.0	90.5	5 100	6 800
	79.375	23.812	25.400	19.050	85.0	97.5	4 800	6 400
	79.375	29.370	29.771	23.812	103	114	4 900	6 600
	80.000	21.006	20.940	15.875	61.5	63.0	5 000	6 700
38.100	80.035	24.608	23.698	18.512	74.5	82.5	4 800	6 400
00.100	82.550	29.370	28.575	23.020	96.5	117	4 700	6 200
	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
	85.725	30.162	30.162	23.812	116	132	4 500	6 000
	87.312	30.162	30.886	23.812	104	117	4 400	5 900
	88.500	25.400	23.698	17.462	78.5	78.0	4 000	5 300
	88.500	26.988	29.083	22.225	106	107	4 600	6 100
	76.200	23.812	25.654	19.050	81.0	90.5	5 100	6 800
	77.534	29.370	30.391	23.812	105	112	4 800	6 400
39.688	79.375	23.812	25.400	19.050	85.0	97.5	4 800	6 400
39.000	80.035	29.370	30.391	23.812	105	112	4 800	6 400
	80.167	29.370	30.391	23.812	105	112	4 800	6 400
	88.500	25.400	23.698	17.462	78.5	78.0	4 000	5 300
	76.200	20.638	20.940	15.507	61.5	63.0	5 000	6 700
	80.000	21.000	22.403	17.826	75.5	75.0	4 700	6 300
40.000	85.000	20.638	21.692	17.462	77.5	79.5	4 400	5 800
	88.500	26.988	29.083	22.225	106	107	4 600	6 100
	107.950	36.512	36.957	28.575	157	177	3 600	4 800
40.483	82.550	29.370	28.575	23.020	96.5	117	4 700	6 200
40.988	67.975	17.500	18.000	13.500	51.0	62.5	5 300	7 000
	73.025	16.667	17.462	12.700	51.0	55.5	5 000	6 600
	73.431	19.558	19.812	14.732	62.0	69.5	5 000	6 600
	73.431	21.430	19.812	16.604	62.0	69.5	5 000	6 600
44.077	76.200	18.009	17.384	14.288	47.0	51.5	4 900	6 500
41.275	76.200	22.225	23.020	17.462	72.0	80.5	4 900	6 500
	76.200	25.400	25.400	20.638	85.0	97.5	4 800	6 400
	79.378	23.812	25.400	19.050	85.0	97.5	4 800	6 400
	80.000	18.009	17.384	14.288	47.0	51.5	4 900	6 500

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm ns}$  and  $r_{\rm las}$ .

1) As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "1" (inner ring) and "11" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

8–164



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≤</b> e	$rac{F_{ m a}}{F_{ m r}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ . For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	mm					S	Load Constant center ³⁾ mm		Axial load factors		<b>Mass</b> kg
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}^{2)}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-28150/28300	45.5	43.5	68	71	1.5	1.3	4.8	0.40	1.49	0.82	0.406
4T-2776/2720	52	43.5	66	70	4.3	0.8	7.8	0.30	1.98	1.09	0.495
4T-2788/2720	50	43.5	66	70	3.5	3.3	7.8	0.30	1.98	1.09	0.494
4T-26878/26822	45	44.5	71	74	0.8	0.8	7.4	0.32	1.88	1.04	0.575
4T-3490/3420	52	45.5	67	74	3.5	3.3	8.7	0.37	1.64	0.90	0.688
4T-28150/28315	45.5	43.5	69	73	1.5	1.5	4.8	0.40	1.49	0.82	0.467
4T-27880/27820	48 51	47 49.1	68 68	75 78	0.8	1.5	2.5 4.7	0.56	1.07	0.59	0.567 0.767
4T-HM801346/HM801310 4T-25572/25520	46	49.1	74	76 77	0.8 0.8	0.8	6.2	0.55 0.33	1.10 1.79	0.60	0.767
41-25572/25520 4T-3875/3820	49.5	48.5	73	81	0.8	3.3	8.1	0.33	1.79	0.99	0.861
4T-3580/3525	48.3	45.5	75	81	1.5	3.3	10.0	0.40	1.49	1.08	0.881
4T-44150/44348	55	50.8	75	84	2.3	1.5	-2.9	0.78	0.77	0.42	0.714
4T-418/414	51	44.5	77	80	3.5	1.5	9.1	0.26	2.28	1.25	0.843
4T-2789/2720	52	45	66	70	3.5	3.3	7.8	0.30	1.98	1.09	0.475
4T-3382/3321	52	45.5	68	75	3.5	3.3	11.2	0.27	2.20	1.21	0.669
4T-26880/26822	48	45.5	71	74	1.5	8.0	7.4	0.32	1.88	1.04	0.556
4T-3382/3339	52	45.5	71	74.8	3.5	1.5	11.2	0.27	2.20	1.21	0.666
4T-3386/3320	46.5	45.5	70	75	0.8	3.3	11.2	0.27	2.20	1.21	0.672
4T-44158/44348	58	50.8	75	84	3.5	1.5	-2.9	0.78	0.77	0.42	0.691
4T-28158/28300	47.5	45	68	71	1.5	1.3	4.8	0.40	1.49	0.82	0.387
4T-344/332	52	45.5	73	75	3.5	1.3	6.6	0.27	2.20	1.21	0.479
4T-350A/354A	47.5	46.5	77	80	0.8	1.3	5.1	0.31	1.96	1.08	0.566
4T-420/414	52	46	77	80	3.5	1.5	9.1	0.26	2.28	1.25	0.817
4T-543/532X	57	50	94	100	3.5	3.3	12.3	0.30	2.02	1.11	1.77
4T-HM801349/HM801310	58	49.1	68	78	3.5	3.3	4.7	0.55	1.10	0.60	0.734
4T-LM300849†/LM300811††	52	45.5	61	65	*	1.5	3.6	0.35	1.72	0.95	0.232
4T-18590/18520	53	46	66	69	3.5	1.5	2.9	0.35	1.71	0.94	0.283
4T-LM501349/LM501310	54	48	67	70	3.5	0.8	3.3	0.40	1.50	0.83	0.334
4T-LM501349/LM501314	54	48	65	70	3.5	0.8	3.3	0.40	1.50	0.83	0.354
4T-11162/11300	49	46.5	67	71	1.5	1.5	0.7	0.49	1.23	0.68	0.337
4T-24780/24720	54	47	68	72	3.5	0.8	4.5	0.39	1.53	0.84	0.435
4T-26882/26823	54	47	69	73	3.5	1.5	7.4	0.32	1.88	1.04	0.49
4T-26885/26822	48	47	71	74	0.8	0.8	7.4	0.32	1.88	1.04	0.535
4T-11162/11315 2) Chamfer dimensions of the bearin	49	46.5	69	73	1.5	1.5	0.7	0.49	1.23	0.68	0.389

2) Chamfer dimensions of the bearings marked "*" are shown in the above drawings.3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.



Inch series



## d 41.275 ~ 44.450mm

41.21	3 44.4301							
	В	oundary dime	nsions		Basic load	rating	Allowabl	e speed
		mm			dynamic	static	miı	ŋ-1
					kN		Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0\mathrm{r}}$	lubrication	lubrication
	80.000	21.000	22.403	17.826	75.5	75.0	4 700	6 300
	79.378	23.812	25.400	19.050	85.0	97.5	4 800	6 400
	82.550	26.543	25.654	20.193	89.0	104	4 600	6 100
	85.725	30.162	30.162	23.812	116	132	4 500	6 000
	87.312	30.162	30.886	23.812	104	117	4 400	5 900
41.275	88.900	30.162	29.370	23.020	104	125	4 300	5 800
71.275	90.488	39.688	40.386	33.338	151	175	4 300	5 800
	92.075	26.195	23.812	16.670	80.5	81.5	3 800	5 000
	93.662	31.750	31.750	26.195	115	131	4 100	5 500
	95.250	30.162	29.370	23.020	120	147	4 000	5 300
	95.250	30.958	28.300	20.638	91.5	92.0	3 700	5 000
	95.250	30.958	28.575	22.225	107	116	3 700	4 900
42.070	90.488	39.688	40.386	33.338	151	175	4 300	5 800
	82.550	26.195	26.988	20.638	83.5	97.0	4 600	6 100
42.862	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
	87.312	30.162	30.886	23.812	104	117	4 400	5 900
40.075	79.375	23.812	25.400	19.050	85.0	97.5	4 800	6 400
42.875	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
	76.992	17.462	17.145	11.908	48.5	54.0	4 700	6 300
	79.375	17.462	17.462	13.495	50.5	56.0	4 600	6 200
	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
	84.138	30.162	30.886	23.812	104	117	4 400	5 900
	85.000	20.638	21.692	17.462	77.5	79.5	4 400	5 800
	87.312	30.162	30.886	23.812	104	117	4 400	5 900
44.450	88.900	30.162	29.370	23.020	104	125	4 300	5 800
44.450	93.264	30.162	30.302	23.812	113	134	4 000	5 300
	93.662	31.750	31.750	26.195	115	131	4 100	5 500
	95.250	27.783	28.575	22.225	119	139	3 900	5 200
	95.250	27.783	29.900	22.225	120	129	4 200	5 600
	95.250	30.162	29.370	23.020	120	147	4 000	5 300
	95.250	30.958	28.300	20.638	91.5	92.0	3 700	5 000
	95.250	30.958	28.575	22.225	107	116	3 700	4 900
	101.600	34.925	36.068	26.988	150	165	3 800	5 000
	104.775	30.162	29.317	24.605	127	148	3 500	4 700

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number	li	nstallati		ated dim	ension	s	Load center ¹	Constant	Axi load fa		Mass
			m	ım			mm				kg
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
	wa	CC D	D a	20			C.	Ü	- 4	- 0	(app.om)
4T-336/332	47	46	73	75	0.8	1.3	6.6	0.27	2.20	1.21	0.468
4T-26882/26824	54	47	70	74	3.5	0.8	7.4	0.32	1.88	1.04	0.532
4T-M802048/M802011	57	50.6	70	79	3.5	3.3	3.2	0.55	1.10	0.60	0.641
4T-3880/3820	52	50	73	81	0.8	3.3	8.1	0.40	1.49	0.82	0.814
4T-3576/3525	49	48	75	81	8.0	3.3	10.0	0.31	1.96	1.08	0.83
4T-HM803145/HM803110	54	53	74	85	0.8	3.3	4.6	0.55	1.10	0.60	0.902
4T-4388/4335	60	52	77	85	3.5	3.3	15.0	0.28	2.11	1.16	1.26
4T-M903345/M903310	65	54	78	88	3.5	1.5	-3.6	0.83	0.72	0.40	0.758
4T-46162/46368	52	51	79	87	0.8	3.3	7.1	0.40	1.49	0.82	1.09
4T-HM804840/HM804810	61	54	81	91	3.5	3.3	3.7	0.55	1.10	0.60	1.08
4T-53162/53375	57	52.7	81	89	1.5	0.8	0.5	0.74	0.81	0.45	0.974
4T-HM903245/HM903210	63	54	81	91	3.5	8.0	-0.4	0.74	0.81	0.45	1.05
4T-4395/4335	60	52	77	85	3.5	3.3	15.0	0.28	2.11	1.16	1.24
4T-22780/22720	56	50	71	77	3.5	3.3	6.4	0.40	1.49	0.82	0.618
4T-25578/25520	53	49.5	74	77	2.3	0.8	6.2	0.33	1.79	0.99	0.584
4T-3579/3525	56	49.5	75	81	3.5	3.3	10.0	0.31	1.96	1.08	0.807
4T-26884/26822	55	48.5	71	74	3.5	0.8	7.4	0.32	1.88	1.04	0.511
4T-25577/25520	55	49	74	77	3.5	0.8	6.2	0.33	1.79	0.99	0.582
			• •	• • •	0.0	0.0	0.2	0.00	0	0.00	0.002
4T-12175/12303	52	49.5	68	73	1.5	1.5	-0.2	0.51	1.19	0.65	0.308
4T-18685/18620	54	49.5	71	74	2.8	1.5	2.2	0.37	1.60	0.88	0.347
4T-25580/25520	57	50	74	77	3.5	8.0	6.2	0.33	1.79	0.99	0.56
4T-25582/25520	60	50	74	77	5	0.8	6.2	0.33	1.79	0.99	0.564
4T-3578/3520	57	51	74	79.5	3.5	3.3	10.0	0.31	1.96	1.08	0.701
4T-355/354A	54	50	77	80	2.3	1.3	5.1	0.31	1.96	1.08	0.511
4T-3578/3525	57	51	75	81	3.5	3.3	10.0	0.31	1.96	1.08	0.78
4T-HM803149/HM803110	62	53.4	74	85	3.5	3.3	4.6	0.55	1.10	0.60	0.85
4T-3782/3720	58	52	82	87.9	3.5	3.3	8.3	0.34	1.77	0.97	0.959
4T-46175/46368	55	54	79	87	0.8	3.3	7.1	0.40	1.49	0.82	1.04
4T-33885/33821	53	53	85	90	0.8	2.3	8.0	0.33	1.82	1.00	0.986
4T-438/432	57	51	83	87	3.5	2.3	9.2	0.28	2.11	1.16	0.957
4T-HM804842/HM804810	57	57	81	91	0.8	3.3	3.7	0.55	1.10	0.60	1.04
4T-53177/53375	63	52.7	81	89	3.5	0.8	0.5	0.74	0.81	0.45	0.93
4T-HM903249/HM903210	65	54	81	91	3.5	0.8	-0.4	0.74	0.81	0.45	0.999
4T-527/522	59	53	89	95	3.5	3.3	12.9	0.29	2.10	1.16	1.36
4T-460/453X  .) Dimensions with "-" indicate a lo	60	54	92	98	3.5	3.3	7.1	0.34	1.79	0.98	1.29

B-166 B-167 Inch series



#### d 44.450 ~ 47.625mm

α ++.+J	0 47.025	111111						
	В	oundary dime	nsions		Basic load	rating	Allowab	le speed
		mm			dynamic	static	mi	
			_	_	kN		Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0r}$	lubrication	lubrication
	104.775	30.162	30.958	23.812	144	169	3 500	4 700
	104.775	36.512	36.512	28.575	153	189	3 600	4 800
44.450	111.125	30.162	26.909	20.638	115	136	3 200	4 200
	111.125	30.162	26.909	20.638	115	136	3 200	4 200
	127.000	50.800	52.388	41.275	277	320	3 200	4 300
	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
44.983	93.264	30.162	30.302	23.812	113	134	4 000	5 300
	30.204	00.102	00.002	20.012	110	104	+ 000	3 000
45 000	85.000	20.638	21.692	17.462	77.5	79.5	4 400	5 800
45.000	88.900	20.638	22.225	16.513	85.0	90.5	4 100	5 500
45.237	87.312	30.162	30.886	23.812	104	117	4 400	5 900
	73.431	19.558	19.812	15.748	60.0	76.0	4 800	6 400
45.242	77.788	19.842	19.842	15.080	63.5	73.5	4 600	6 200
	82.550	23.812	25.400	19.050	84.5	98.0	4 500	6 000
45.618	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
45.010	83.058	23.876	25.400	19.114	84.5	98.0	4 500	6 000
	85.000	23.812	25.400	19.050	84.5	98.0	4 500	6 000
45.987	74.976	18.000	18.000	14.000	56.5	71.0	4 700	6 300
10.007	7 1.070	10.000	10.000	1 1.000	00.0	7 1.0	1700	0 000
	79.375	17.462	17.462	13.495	50.5	56.0	4 600	6 200
	82.931	23.812	25.400	19.050	84.5	98.0	4 500	6 000
	85.000	20.638	21.692	17.462	77.5	79.5	4 400	5 800
46.038	85.000	25.400	25.608	20.638	87.5	104	4 400	5 800
	90.119	23.000	21.692	21.808	77.5	79.5	4 400	5 800
	93.264	30.162	30.302	23.812	113	134	4 000	5 300
	95.250	27.783	29.900	22.225	120	129	4 200	5 600
	88.900	20.638	22.225	16.513	85.0	90.5	4 100	5 500
	88.900	25.400	25.400	19.050	91.0	101	4 200	5 600
	93.264	30.162	30.302	23.812	113	134	4 000	5 300
47.625	95.250	30.162	29.370	23.020	120	147	4 000	5 300
	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	101.600	34.925	36.068	26.988	150	165	3 800	5 000
	104.775	30.162	29.317	24.605	127	148	3 500	4 700
					. — .			

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm ns}$  and  $r_{\rm las}$ .

1) As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "1" (inner ring) and "11" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

8–168



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	> <i>e</i>
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load  $P_{0r}$ =0.5 $F_r$ + $Y_0F_a$  When  $P_{0r}$ < $F_r$  use  $P_{0r}$ = $F_r$ . For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)							Load Constant center ³⁾		Axial load factors		<b>Mass</b> kg
	$d_{\rm a}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}^{ m 2)}$ Max.	$r_{\mathrm{las}}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-45280/45220	55	54	93	99	0.8	3.3	7.9	0.33	1.80	0.99	1.33
4T-HM807040/HM807010	66	59	89	100	3.5	3.3	7.4	0.49	1.23	0.68	1.62
4T-55175C/55437	70	64	92	105	3.5	3.3	-7.4	0.88	0.68	0.37	1.45
4T-55176C/55437	71	65	92	105	0.8	3.3	-7.4	0.88	0.68	0.37	1.09
4T-6277/6220	67	60	108	117	3.5	3.3	19.5	0.30	2.01	1.11	3.59
4T-25584/25520	53	51	74	77	1.5	0.8	6.2	0.33	1.79	0.99	0.556
4T-3776/3720	59	53	82	87.9	3.5	3.3	8.3	0.34	1.77	0.97	0.95
4T-358/354A	53	50	77	80	1.5	1.3	5.1	0.31	1.96	1.08	0.505
4T-367/362A	55	51	81	84	2	1.3	4.0	0.32	1.88	1.03	0.6
4T-3586/3525	58	52	75	81	3.5	3.3	10.0	0.31	1.96	1.08	0.767
4T-LM102949/LM102910	56	50	68	70	3.5	0.8	4.7	0.31	1.97	1.08	0.309
4T-LM603049/LM603011	58	52	71	74	3.5	8.0	2.2	0.43	1.41	0.77	0.371
4T-25590/25519	58	51	73	77	3.5	2	6.2	0.33	1.79	0.99	0.534
4T-25590/25520	58	51	74	77	3.5	0.8	6.2	0.33	1.79	0.99	0.544
4T-25590/25522	58	51	73	77	3.5	2	6.2	0.33	1.79	0.99	0.545
4T-25590/25526	58	51	74	78	3.5	2.3	6.2	0.33	1.79	0.99	0.581
4T-LM503349A†/LM503310††	57	51	67	71	*	1.5	1.9	0.40	1.49	0.82	0.298
4T-18690/18620	56	51	71	74	2.8	1.5	2.2	0.37	1.60	0.88	0.331
4T-25592/25520	58	52	74	77	3.5	0.8	6.2	0.33	1.79	0.99	0.538
4T-359A/354A	57	51	77	80	3.5	1.3	5.1	0.31	1.96	1.08	0.489
4T-2984/2924	58	52	76	80	3.5	1.3	6.4	0.35	1.73	0.95	0.616
4T-359S/352	55	51	78	82	2.3	2.3	5.1	0.31	1.96	1.08	0.654
4T-3777/3720	60	53	82	87.9	3.5	3.3	8.3	0.34	1.77	0.97	0.934
4T-436/432	59	52	83	87	3.5	2.3	9.2	0.28	2.11	1.16	0.93
4T-369A/362A	60	53	81	84	3.5	1.3	4.0	0.32	1.88	1.03	0.564
4T-M804048/M804010	59	56	77	85	0.8	3.3	1.7	0.55	1.10	0.60	0.664
4T-3778/3720	67	55	82	87.9	6.4	3.3	8.3	0.34	1.77	0.97	0.896
4T-HM804846/HM804810	66	57	81	91	3.5	3.3	3.7	0.55	1.10	0.60	0.979
4T-386A/382A	56	55	89	92	0.8	0.8	3.1	0.35	1.69	0.93	0.719
4T-528/522	62	55	89	95	3.5	3.3	12.9	0.29	2.10	1.16	1.3
4T-463/453X 2) Chamfer dimensions of the bearing	65	56	92	98	4.8	3.3	7.1	0.34	1.79	0.98	1.24

2) Chamfer dimensions of the bearings marked "*" are shown in the above drawings.3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.



#### d 47.625 ~ 50.800mm

	В	oundary dime	nsions		Basic loa	d rating	Allowabl	e speed
		mm			dynamic	static	mir	
_	_	_		~	k۱ د		Grease	Oil
d	D	T	В	C	$C_{ m r}$	$C_{0\mathrm{r}}$	lubrication	lubrication
	104.775	30.162	30.958	23.812	144	169	3 500	4 700
47.625	111.125	30.162	26.909	20.638	115	136	3 200	4 200
47.023	123.825	36.512	32.791	25.400	171	188	2 900	3 900
40.440	95.250	30.162	29.370	23.020	120	147	4 000	5 300
48.412	95.250	30.162	29.370	23.020	120	147	4 000	5 300
	93.264	30.162	30.302	23.812	113	134	4 000	5 300
	103.188	43.658	44.475	36.512	193	232	3 800	5 000
49.212	104.775	36.512	36.512	28.575	153	189	3 600	4 800
	114.300	44.450	44.450	34.925	206	225	3 600	4 800
	114.300	44.450	44.450	36.068	226	261	3 500	4 700
	82.550	21.590	22.225	16.510	77.5	94.0	4 300	5 700
49.987	92.075	24.608	25.400	19.845	93.0	116	4 000	5 300
	114.300	44.450	44.450	36.068	226	261	3 500	4 700
	82.000	21.500	21.500	17.000	77.5	94.0	4 300	5 700
	84.000	22.000	22.000	17.500	77.5	94.5	4 300	5 700
	88.900	20.638	22.225	16.513	85.0	90.5	4 100	5 500
50.000	88.900	20.638	22.225	16.513	85.0	90.5	4 100	5 500
	90.000	28.000	28.000	23.000	118	141	4 100	5 400
	105.000	37.000	36.000	29.000	153	189	3 600	4 800
	110.000	22.000	21.996	18.824	99.5	120	3 200	4 300
	82.550	21.590	22.225	16.510	77.5	94.0	4 300	5 700
	85.000	17.462	17.462	13.495	55.0	65.0	4 200	5 600
	88.900	17.462	17.462	13.495	55.0	65.0	4 200	5 600
	88.900	20.638	22.225	16.513	85.0	90.5	4 100	5 500
	88.900 90.000	20.638	22.225 22.225	16.513 15.875	85.0 85.0	90.5 90.5	4 100 4 100	5 500 5 500
	92.075	24.608	25.400	19.845	93.0	116	4 000	5 300
50.800	93.264	30.162	30.302	23.812	113	134	4 000	5 300
	93.264	30.162	30.302	23.812	113	134	4 000	5 300
	95.250	27.783	28.575	22.225	119	139	3 900	5 200
	95.250	30.162	30.302	23.812	113	134	4 000	5 300
	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	97.630	24.608	24.608	19.446	98.0	128	3 700	4 900
	98.425	30.162	30.302	23.812	113	134	4 000	5 300
		1.6 6.1 :						

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{18}$  and  $r_{128}$ .

1) As for the maximum value for inner ring bore diameters of bearings whose bearing numbers are marked with "f" (inner ring), the precision class is an integer for class 4 and class 2 bearings only.

B-170



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1) 2)	I	nstallat		ated dim	ension	5	Load center ³	Constant	Axi load fa		Mass
			m	nm	0.7	0.0	mm				kg
	$d_{\rm a}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-45282/45220	63	57	93	99	3.5	3.3	7.9	0.33	1.80	0.99	1.33
4T-55187C/55437	69	62	92	105	3.5	3.3	-7.4	0.88	0.68	0.37	1.4
4T-72188C/72487	69	67	102	116	0.8	3.3	-1.5	0.74	0.81	0.45	2.16
4T-HM804848/HM804810	63	57	81	91	2.3	3.3	3.7	0.55	1.10	0.60	0.967
4T-HM804849/HM804810	66	57	81	91	3.5	3.3	3.7	0.55	1.10	0.60	0.965
4T-3781/3720	62	56	82	87.9	3.5	3.3	8.3	0.34	1.77	0.97	0.876
4T-5395/5335	66	60	89	97	3.5	3.3	16.1	0.30	2.02	1.11	1.75
4T-HM807044/HM807010	69	63	89	100	3.5	3.3	7.4	0.49	1.23	0.68	1.52
4T-65390/65320	70	60	97	107	3.5	3.3	12.5	0.43	1.39	0.77	2.23
4T-HH506348/HH506310	71	61	97	107	3.5	3.3	13.3	0.40	1.49	0.82	2.33
4T-LM104947A†/LM104911	55	55	75	78	0.5	1.3	5.8	0.31	1.97	1.08	0.434
4T-28579†/28521	60	56	83	87	2.3	8.0	4.6	0.38	1.59	0.87	0.718
4T-HH506349†/HH506310	72	61	97	107	3.5	3.3	13.3	0.40	1.49	0.82	2.31
#4T-JLM104948/JLM104910	61	55	76	78	3	0.5	5.4	0.31	1.97	1.08	0.42
#4T-JLM704649/JLM704610	64	56	76	80	3.5	1.5	2.3	0.44	1.37	0.75	0.466
4T-365/362A	58	55	81	84	2	1.3	4.0	0.32	1.88	1.03	
4T-366/362A	59	55	81	84	2.3	1.3	4.0	0.32	1.88	1.03	
#4T-JM205149/JM205110	63	57	80	85	3	2.5	7.4	0.33	1.82	1.00	0.755
#4T-JHM807045/JHM807012 4T-396/394A	69 61	63 60	90 101	100 105	3 0.8	2.5	7.5 0.7	0.49 0.40	1.23	0.68	1.52 1.07
4T-LM104949/LM104911	63	56	75	78	3.5	1.3	5.8	0.31	1.97	1.08	0.418
4T-18790/18720 4T-18790/18724	62 62	56 56	77 78	80 82	3.5 3.5	1.5 1.5	0.8 0.8	0.41 0.41	1.48 1.48	0.81	0.375 0.431
4T-368/362A	58	56	81	84	1.5	1.3	4.0	0.41	1.48	1.03	0.431
4T-370A/362A	65	56	81	84	5	1.3	4.0	0.32	1.88	1.03	
4T-368A/362	62	56	81	84	3.5	2	4.0	0.32	1.88	1.03	0.53
4T-28580/28521	63	57	83	87	3.5	0.8	4.6	0.38	1.59	0.87	0.703
4T-3775/3720	58	58	82	87.9	0.8	3.3	8.3	0.34	1.77	0.97	0.85
4T-3780/3720	64	58	82	87.9	3.5	3.3	8.3	0.34	1.77	0.97	0.846
4T-33889/33821	64	58	85	90	3.5	2.3	8.0	0.33	1.82	1.00	0.878
4T-3780/3726	64	58	83.1		3.5	3.3	8.3	0.34	1.77	0.97	0.899
4T-385A/382A	61	60	89	92	2.3	8.0	3.1	0.35	1.69	0.93	0.675
4T-28678/28622	65	58	88	92	3.5	0.8	3.3	0.40	1.49	0.82	0.854
4T-3780/3732  2) Bearing numbers marked "#" design.	64	58	84.1	89.9	3.5	3.3	8.3	0.34	1.77	0.97	0.99

3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.

Inch series J series



#### d 50.800 ~ 55.000mm

	В	oundary dime	nsions		Basic loa	d rating	Allowab	le speed
		mm			dynamic	static	mi	
d	D	T	B	C	$C_{ m r}$ ki	$C_{0r}$	Grease lubrication	Oil lubrication
	101.600	31.750	31.750	25.400	122	136	3 700	5 000
	101.600	34.925	36.068	26.988	150	165	3 800	5 000
	104.775	30.162	29.317	24.605	127	148	3 500	4 700
	104.775	30.162	30.958	23.812	144	169	3 500	4 700
	104.775	36.512	36.512	28.575	153	189	3 600	4 800
	104.775	36.512	36.512	28.575	158	178	3 700	4 900
	107.950	36.512	36.957	28.575	157	177	3 600	4 800
50.800	111.125	30.162	28.575	20.638	115	136	3 200	4 200
00.000	112.712	30.162	26.909	20.638	115	136	3 200	4 200
	112.712	30.162	30.048	23.812	132	174	3 200	4 300
	112.712	30.162	30.162	23.812	153	195	3 200	4 200
	117.475	33.338	31.750	23.812	144	153	3 300	4 400
	120.650	41.275	41.275	31.750	190	213	3 300	4 400
	123.825	36.512	32.791	25.400	171	188	2 900	3 900
	123.825	38.100	36.678	30.162	175	216	3 000	4 100
51.592	88.900	20.638	22.225	16.513	85.0	90.5	4 100	5 500
	92.075	24.608	25.400	19.845	93.0	116	4 000	5 300
52.388	93.264	30.162	30.302	23.812	113	134	4 000	5 300
	95.250	27.783	28.575	22.225	119	139	3 900	5 200
	88.900	19.050	19.050	13.492	67.5	82.5	4 000	5 300
	95.250	27.783	28.575	22.225	119	139	3 900	5 200
	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	104.775	30.162	30.958	23.812	144	169	3 500	4 700
	104.775	36.512	36.512	28.575	153	189	3 600	4 800
	107.950	36.512	36.957	28.575	157	177	3 600	4 800
53.975	120.650	41.275	41.275	31.750	190	213	3 300	4 400
	122.238	33.338	31.750	23.812	149	163	3 100	4 200
	122.238	43.658	43.764	36.512	215	283	3 100	4 100
	123.825	36.512	32.791	25.400	171	188	2 900	3 900
	123.825	38.100	36.678	30.162	175	216	3 000	4 100
	130.175	36.512	33.338	23.812	173	186	2 700	3 600
	140.030	36.512	33.236	23.520	190	212	2 600	3 400
54.488	104.775	36.512	36.512	28.575	153	189	3 600	4 800
55.000	90.000	23.000	23.000	18.500	86.0	109	3 900	5 300

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	I	nstallat	ion-rel	ated din	ension	s	Load center ²	Constant	Axi load fa		Mass
			r	nm			mm				kg
	$d_{\rm a}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-49585/49520	66	59	88	96	3.5	3.3	7.1	0.40	1.50	0.82	
4T-529/522	61	60	89	95	0.8	3.3	12.9	0.29	2.10	1.16	
4T-455/453X	60	59	92	98	0.8	3.3	7.1	0.34	1.79	0.98	
4T-45284/45220	71	59	93	99	6.4	3.3	7.9	0.33	1.80	0.99	
4T-HM807046/HM807010	70	63.1	89	100	3.5	3.3	7.4	0.49	1.23	0.68	
4T-59200/59412	68	61	92	99	3.5	3.3	9.6	0.40	1.49	0.82	
4T-537/532X	65	59	94	100	3.5	3.3	12.3	0.30	2.02	1.11	1.55
4T-HM907643/HM907614	74	65.3	91	105	3.5	3.3	-7.2	0.88	0.68	0.37	1.36
4T-55200C/55443	71	64.4	92	106	3.5	3.3	-7.4	0.88	0.68	0.37	
4T-3975/3920	68	61	99	106	3.5	3.3	4.5	0.40	1.49	0.82	
4T-39575/39520	68	61	101	107	3.5	3.3	6.6	0.34	1.77	0.97	1.54
4T-66200/66462	71	65	100	111	3.5	3.3	0.4	0.63	0.96	0.53	
4T-619/612	67	61	105	110	3.5	3.3	14.4	0.31	1.91	1.05	
4T-72200C/72487	77	67	102	116	3.5	3.3	-1.5	0.74	0.81	0.45	
4T-555/552A	66	62	109	116	2.3	3.3	9.4	0.35	1.73	0.95	2.34
4T-368S/362A	59	56	81	84	2	1.3	4.0	0.32	1.88	1.03	0.512
4T-28584/28521	65	58	83	87	3.5	0.8	4.6	0.38	1.59	0.87	0.703
4T-3767/3720	63	59	82	87.9	2.3	3.3	8.3	0.34	1.77	0.97	0.817
4T-33890/33821	61	59	85	90	1.5	2.3	8.0	0.33	1.82	1.00	0.851
4T-LM806649/LM806610	65	61	80	85	2.3	2	-2.2	0.55	1.10	0.60	0.437
4T-33895/33822	63	60	86	90	1.5	8.0	8.0	0.33	1.82	1.00	0.823
4T-389A/382A	61	60	89	92	0.8	0.8	3.1	0.35	1.69	0.93	0.632
4T-45287/45220	62	62	93	99	8.0	3.3	7.9	0.33	1.80	0.99	1.17
4T-HM807049/HM807010	73	63.1	89	100	3.5	3.3	7.4	0.49	1.23	0.68	1.41
4T-539/532X	68	61	94	100	3.5	3.3	12.3	0.30	2.02	1.11	1.47
4T-621/612	70	63	105	110	3.5	3.3	14.4	0.31	1.91	1.05	2.22
4T-66584/66520	75	68	105	116	3.5	3.3	-1.8	0.67	0.90	0.50	1.81
4T-5578/5535	73	67	106	116	3.5	3.3	13.3	0.36	1.67	0.92	2.64
4T-72212C/72487	79	67	102	116	3.5	3.3	-1.5	0.74	0.81	0.45	2.03
4T-557S/552A	73	67	109	116	3.5	3.3	9.4	0.35	1.73	0.95	2.25
4T-HM911242/HM911210	79	74	109	123.6	3.5	3.3	-5.2	0.82	0.73	0.40	2.28
4T-78214C/78551	79	77.5	117	132	8.0	2.3	-8.5	0.87	0.69	0.38	2.77
4T-HM807048/HM807010	73	63	89	100	3.5	3.3	7.4	0.49	1.23	0.68	1.4
#4T-JLM506849/JLM506810	63	61	82	86	1.5	0.5	2.8	0.40	1.49	0.82	0.556

1) Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings is listed in Table 6.8 on page A-66 to A-67.
2) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.



# d 55.000 $\sim$ 60.000mm

	00.000							
	В	oundary dime	nsions		Basic load	rating	Allowab	le speed
		mm			dynamic	static	mi	n-1
					kN		Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0r}$	lubrication	lubrication
	95.000	29.000	29.000	23.500	119	144	3 800	5 100
55.000	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
33.000	110.000	39.000	39.000	32.000	192	219	3 500	4 600
	110.000	00.000	00.000	02.000	102	0	0 000	
	97.630	24.608	24.608	19.446	98.0	128	3 700	4 900
55.562	123.825	36.512	32.791	25.400	171	188	2 900	3 900
00.002	127.000	36.512	36.512	26.988	181	228	2 900	3 800
55.575	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
	97.630	24.608	24.608	19.446	98.0	128	3 700	4 900
	104.775	30.162	29.317	24.605	127	148	3 500	4 700
	104.775	30.162	29.317	24.605	127	148	3 500	4 700
	104.775	30.162	30.958	23.812	144	169	3 500	4 700
	107.950	27.783	29.317	22.225	127	148	3 500	4 700
57.150	110.000	22.000	21.996	18.824	99.5	120	3 200	4 300
011100	110.000	27.795	29.317	27.000	127	148	3 500	4 700
	112.712	30.162	30.048	23.812	132	174	3 200	4 300
	112.712	30.162	30.162	23.812	153	195	3 200	4 200
	112.712	30.162	30.162	23.812	153	195	3 200	4 200
	117.475	30.162	30.162	23.812	129 144	175	3 000	4 000
	117.475	33.338 41.275	31.750	23.812		153 213	3 300	4 400 4 400
	120.650 123.825	36.512	41.275 32.791	31.750 25.400	190 171	188	3 300 2 900	3 900
	123.825	38.100	36.678	30.162	171	216	3 000	4 100
	140.030	36.512	33.236	23.520	190	212	2 600	3 400
	140.030	30.512	33.230	23.520	190	212	2 600	3 400
57.531	96.838	21.000	21.946	15.875	86.5	96.5	3 700	5 000
59.972	122.238	33.338	31.750	23.812	149	163	3 100	4 200
59.987	146.050	41.275	39.688	25.400	220	234	2 400	3 200
	05.000	04.000	04.000	10.000	00.5	100	0.700	4.000
60.000	95.000	24.000	24.000	19.000	92.5	122	3 700	4 900
	107.950	25.400	25.400	19.050	101	140	3 200	4 300

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{as}$  and  $r_{las}$ .

1) As for the maximum value for inner ring bore diameters of bearings whose bearing numbers are marked with "1" (inner ring), the precision class is an integer for class 4 and class 2 bearings only.

B-174



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	0	0.4	$Y_2$			

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1) 2)	li	nstallat		<b>lated dir</b> nm	mension		Load center ³ mm	Constant	Axi load fa		<b>Mass</b> kg	
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)	
#4T-JM207049/JM207010	64	62	85	91	1.5	2.5	7.6	0.33	1.79	0.99	0.823	
4T-385/382A	65	61	89	92	2.3	0.8	3.1	0.35	1.69	0.93	0.615	
#4T-JH307749/JH307710	71	64	97	104	3	2.5	11.7	0.35	1.73	0.95	1.7	
4T-28680/28622	68	62	88	92	3.5	0.8	3.3	0.40	1.49	0.82	0.776	
4T-72218C/72487	80	67	102	116	3.5	3.3	-1.5	0.74	0.81	0.45	2	
4T-HM813840/HM813810	78	72	111	121	3.5	3.3	3.7	0.50	1.20	0.66	2.34	
4T-389/382A	65	61	89	92	2.3	0.8	3.1	0.35	1.69	0.93	0.606	
4T-387/382A	67	63	89	92	2.3	0.8	3.1	0.35	1.69	0.93	0.582	
4T-387A/382A	70	63	89	92	3.5	0.8	3.1	0.35	1.69	0.93	0.58	
4T-387AS/382A	73	63	89	92	5	0.8	3.1	0.35	1.69	0.93	0.575	
4T-387S/382A	64	63	89	92	0.8	0.8	3.1	0.35	1.69	0.93	0.584	
4T-28682/28622	70	63	88	92	3.5	8.0	3.3	0.40	1.49	0.82	0.749	
4T-462/453X 4T-469/453X	67 72	63 68	92 92	98 98	2.3	3.3	7.1 7.1	0.34	1.79	0.98	1.06	
4T-45289/45220	65	65	93	98	3.5 0.8	3.3	7.1	0.34 0.33	1.79 1.80	0.98	1.06	
4T-469/453A	72	68	97	100	3.5	0.8	7.9	0.34	1.79	0.99	1.11	
4T-390/394A	70	66	101	105	2.3	1.3	0.7	0.40	1.79	0.82	0.961	
4T-469/454	72	68	96	100	3.5	2	7.1	0.34	1.79	0.98	1.24	
4T-3979/3920	72	66	99	106	3.5	3.3	4.5	0.40	1.49	0.82	1.41	
4T-39580/39520	74	68	101	107	3.5	3.3	6.6	0.34	1.77	0.97	1.41	
4T-39581/39520	81	66	101	107	8	3.3	6.6	0.34	1.77	0.97	1.4	
4T-33225/33462	74	68	104	112	3.5	3.3	2.6	0.44	1.38	0.76	1.58	
4T-66225/66462	76	68.9	100	111	3.5	3.3	0.4	0.63	0.96	0.53	1.54	
4T-623/612	72	66	105	110	3.5	3.3	14.4	0.31	1.91	1.05	2.13	
4T-72225C/72487	81	67	102	116	3.5	3.3	-1.5	0.74	0.81	0.45	1.96	
4T-555S/552A 4T-78225/78551	76 83	70 77	109 117	116 132	3.5 3.5	3.3	9.4 -8.5	0.35 0.87	1.73 0.69	0.95 0.38	2.17	
4T-388A/382A	70	63	89	92	3.5	0.8	3.1	0.35	1.69	0.93	0.574	
4T-66589/66520	74	73	105	116	0.8	3.3	-1.8	0.67	0.90	0.50	1.66	
4T-H913840†/H913810	97	82	124	138	3.5	3.3	-4.3	0.78	0.77	0.42	3.22	
#4T-JLM508748/JLM508710	75	66	85	91	5	2.5	3.0	0.40	1.49	0.82	0.609	
<b>4T-29580/29520</b> 2) Bearing numbers marked "#" design	75	68	96	103	3.5	3.3	0.6	0.46	1.31	0.72	0.992	

3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.



Inch series J series



#### d 60.000 ∼ 65.000mm

	D T  110.000 22.000 130.000 34.100  100.000 25.400 112.712 30.162 122.238 38.100 122.238 43.656 123.825 38.100 127.000 44.450 130.175 36.512  110.000 22.000 2 136.525 46.033 146.050 41.273 6 101.600 24.606 18 101.600 25.400 94.458 19.056 107.950 25.400 107.950 25.400							
	В	oundary dime	nsions		Basic load	drating	Allowabl	e speed
		mm			dynamic	static	mir	)-1
					k۸		Grease	Oil
d	D	T	B	C	$C_{\mathrm{r}}$	$C_{0\mathrm{r}}$	lubrication	lubrication
	110,000	00.000	04.000	10.004	00.5	100	0.000	4.000
60.000			21.996	18.824	99.5	120	3 200	4 300
00.000	130.000	34.100	30.924	22.650	173	186	2 700	3 600
		25.400	25.400	19.845	100	134	3 500	4 700
	112.712	30.162	30.048	23.812	132	174	3 200	4 300
	122.238	38.100	38.354	29.718	208	244	3 100	4 100
60.325	122.238	43.658	43.764	36.512	215	283	3 100	4 100
00.323	123.825	38.100	36.678	30.162	175	216	3 000	4 100
	127.000	36.512	36.512	26.988	181	228	2 900	3 800
	127.000	44.450	44.450	34.925	226	263	3 100	4 200
	130.175	36.512	33.338	23.812	173	186	2 700	3 600
	110.000	22.000	21.996	18.824	99.5	120	3 200	4 300
61.912		46.038	46.038	36.512	248	355	2 600	3 500
0		41.275	39.688	25.400	220	234	2 400	3 200
61.976	101.600	24.608	24.608	19.845	100	134	3 500	4 700
62.738	101.600	25.400	25.400	19.845	100	134	3 500	4 700
	94.458	19.050	19.050	15.083	67.0	103	3 600	4 800
	107.950	25.400	25.400	19.050	101	140	3 200	4 300
		25.400	25.400	19.050	101	140	3 200	4 300
	110.000	22.000	21.996	18.824	99.5	120	3 200	4 300
	110.000	25.400	25.400	19.050	101	140	3 200	4 300
	112.712	30.162	30.048	23.812	132	174	3 200	4 300
	112.712	30.162	30.162	23.812	153	195	3 200	4 200
00 500	120.000	29.794	29.007	24.237	142	177	3 000	4 000
63.500	120.000	29.794	29.007	24.237	142	177	3 000	4 000
	122.238	38.100	38.354	29.718	208	244	3 100	4 100
	122.238	43.658	43.764	36.512	215	283	3 100	4 100
	123.825	38.100	36.678	30.162	175	216	3 000	4 100
	127.000	36.512	36.170	28.575	181	229	2 900	3 800
	127.000	36.512	36.512	26.988	181	228	2 900	3 800
	136.525	41.275	41.275	31.750	215	262	2 800	3 800
	140.030	36.512	33.236	23.520	190	212	2 600	3 400
CE 000	105.000	24.000	23.000	18.500	94.5	117	3 300	4 500
65.000	110.000	28.000	28.000	22.500	132	174	3 200	4 300

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	0	0.4	$Y_2$			

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	li	nstallat		l <b>ated dim</b> nm	ension	s	Load center ² mm	Constant	Axi load fa		<b>Mass</b> kg
			'		$r_{\rm as}$	$r_{\rm las}$	111111				۸g
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-397/394A	69	68	101	105	0.8	1.3	0.7	0.40	1.49	0.82	0.918
#4T-JHM911244/JHM911211	84	74	109	123	3.5	3.3	-7.6	0.82	0.73	0.40	2.01
4T-28985/28921	73	67	89	96	3.5	3.3	2.5	0.43	1.41	0.78	0.769
4T-3980/3920	75	68	99	106	3.5	3.3	4.5	0.40	1.49	0.82	1.34
4T-HM212044/HM212011	85	70	108	116	8	3.3	11.1	0.34	1.78	0.98	2.02
4T-5583/5535	78	72	106	116	3.5	3.3	13.3	0.36	1.67	0.92	2.45
4T-558/552A	76	72	109	116	2.3	3.3	9.4	0.35	1.73	0.95	2.09
4T-HM813841/HM813810	83	77	111	121	3.5	3.3	3.7	0.50	1.20	0.66	2.21
4T-65237/65500	87	71	107	119	3.5	3.3	9.3	0.49	1.23	0.68	2.59
4T-HM911245/HM911210	93	74	109	123.6	5	3.3	-5.2	0.82	0.73	0.40	2.12
4T-392/394A	70	69	101	105	0.8	1.3	0.7	0.40	1.49	0.82	0.88
4T-H715334/H715311	87	81	118	132	3.5	3.3	8.7	0.47	1.27	0.70	3.47
4T-H913842/H913810	90	82.4	124	138	3.5	3.3	-4.3	0.78	0.77	0.42	3.17
4T-28990/28920	72	68	90	97	2	3.3	1.7	0.43	1.41	0.78	0.766
4T-28995/28920	75	69	90	97	3.5	3.3	2.5	0.43	1.41	0.78	0.762
4T-L610549/L610510	71	69	86	91	1.5	1.5	-0.6	0.42	1.41	0.78	0.453
4T-29585/29520	77	71	96	103	3.5	3.3	0.6	0.46	1.31	0.72	0.924
4T-29586/29520	73	71	96	103	1.5	3.3	0.6	0.46	1.31	0.72	0.93
4T-390A/394A	73	70	101	105	1.5	1.3	0.7	0.40	1.49	0.82	0.858
4T-29585/29521	77	71	99	104	3.5	1.3	0.6	0.46	1.31	0.72	0.982
4T-3982/3920	77	71	99	106	3.5	3.3	4.5	0.40	1.49	0.82	1.27
4T-39585/39520	77	71	101	107	3.5	3.3	6.6	0.34	1.77	0.97	1.27
4T-477/472	73	72	107	114	0.8	2	3.9	0.38	1.56	0.86	1.6
4T-483/472	78	72	107	114	3.5	2	3.9	0.38	1.56	0.86	1.43
4T-HM212046/HM212011	80	73	108	116	3.5	3.3	11.1	0.34	1.78	0.98	1.95
4T-5584/5535	81	75	106	116	3.5	3.3	13.3	0.36	1.67	0.92	2.34
4T-559/552A	81	75	109	116	3.5	3.3	9.4	0.35	1.73	0.95	2.01
4T-565/563	80	73	112	120	3.5	3.3	8.3	0.36	1.65	0.91	2.11
4T-HM813842/HM813810	84	78	111	121	3.5	3.3	3.7	0.50	1.20	0.66	2.13
4T-639/632	81	74	118	125	3.5	3.3	11.4	0.36	1.66	0.91	2.85
4T-78250/78551	85	79	117	132	2.3	2.3	-8.5	0.87	0.69	0.38	2.54
#4T-JLM710949/JLM710910	77	71	96	100.5	3	1	0.3	0.45	1.32	0.73	0.744
#4T-JM511946/JM511910	78	72	99	105	3	2.5	3.4	0.40	1.49	0.82	1.09

1) Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings is listed in Table 6.8 on page A-66 to A-67.
2) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.



## d 65.000 $\sim$ 70.000mm

Boundary dimensions									
d         D         T         B         C         C _r kN         Grease Oil lubrication lubrication           65.000         120.000         39.000         38.500         32.000         205         248         3 100         4 100           65.088         135.755         53.975         56.007         44.450         310         380         2 900         3 800           103.213         17.602         17.602         11.989         66.5         78.0         3 300         4 400           107.950         25.400         25.400         19.050         101         140         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.162         23.812         153         195         3 200         4 200           66.675         122.238         38.100         38.354         29.718         208         244         3 100         4 100           122.038         18.100         38.512         26.988         181		В	oundary dime	nsions		Basic loa	d rating	Allowabl	e speed
65.000         120.000         39.000         38.500         32.000         205         248         3 100         4 100           65.088         135.755         53.975         56.007         44.450         310         380         2 900         3 800           103.213         17.602         17.602         11.989         66.5         78.0         3 300         4 400           107.950         25.400         25.400         19.050         101         140         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.162         23.812         132         174         3 200         4 200           66.675         122.238         38.100         36.678         30.162         175         216         3 000         4 100           127.000         36.512         36.512         26.512         26.898         181         228         290         3 800           135.755         53.975         56.007         44.450			mm			dynamic	static	mir	n-1
65.000         120.000         39.000         38.500         32.000         205         248         3 100         4 100           65.088         135.755         53.975         56.007         44.450         310         380         2 900         3 800           103.213         17.602         17.602         11.989         66.5         78.0         3 300         4 400           107.950         25.400         25.400         19.050         101         140         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.162         30.162         23.812         132         174         3 200         4 300           112.712         30.162         30.162         23.812         132         174         3 200         4 200           66.675         122.238         38.100         38.54         29.718         208         244         3 100         4 100           122.030         36.512         36.512         36.988									
65.088         135.755         53.975         56.007         44.450         310         380         2 900         3 800           103.213         17.602         17.602         11.989         66.5         78.0         3 300         4 400           107.950         25.400         25.400         19.050         101         140         3 200         4 300           110.000         22.000         21.996         18.824         99.5         120         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.048         23.812         132         174         3 200         4 200           66.675         122.238         38.100         38.6678         30.162         215.312         174         3 200         4 200           122.238         38.100         36.678         30.162         175         216         3 000         4 100           122.238         38.100         36.512         36.512         26.988         181         228         2 900         3 800           130.175         41.275         41.275         31.750         215	d	D	T	В	C	$C_{ m r}$	$C_{0\mathrm{r}}$	lubrication	lubrication
103.213	65.000	120.000	39.000	38.500	32.000	205	248	3 100	4 100
103.213	6E 000	125 755	52 075	56 007	44.450	210	380	2 000	3 800
107.950	05.000	100.700	33.373	30.007	44.450	310	500	2 300	3 000
107.950		103.213	17.602	17.602	11.989	66.5	78.0	3 300	4 400
112.712 30.162 30.048 23.812 132 174 3 200 4 300 112.712 30.162 30.048 23.812 132 174 3 200 4 200 4 200 112.712 30.162 30.162 23.812 153 195 3 200 4 200 122.238 38.100 38.354 29.718 208 244 3 100 4 100 123.825 38.100 36.678 30.162 175 216 3 000 4 100 127.000 36.512 36.512 26.988 181 228 2 900 3 800 130.175 41.275 41.275 31.750 215 262 2 800 3 800 136.525 41.275 41.275 31.750 215 262 2 800 3 800 136.525 41.275 41.275 31.750 215 262 2 800 3 800 136.525 41.275 41.275 31.750 251 293 2 700 3 700 110.000 22.000 21.996 18.824 99.5 120 3 200 4 300 4 000 136.525 41.275 41.275 31.750 251 293 2 700 3 700 120.000 29.794 29.007 24.237 142 177 3 000 4 000 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 46.038 46.038 36.512 248 355 2 600 3 500 116.525 46.038 46.038 36.512 248 355 2 600 3 500 117.475 30.162 30.162 175 216 3 000 4 100 136.525 46.038 46.038 36.512 248 355 2 600 3 500 117.475 30.162 30.162 23.812 129 175 3 000 4 000 117.475 30.162 30.162 23.812 129 175 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 117.475 30.162 30.162 23.812 129 175 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 200.000 32.000 32.545 32.545 26.195 163 214 200.000 32.000 32.545 32.545 32.545 26.195 163 2			25.400	25.400		101	140	3 200	4 300
66.675         112.712         30.162         30.048         23.812         132         174         3 200         4 300           112.712         30.162         30.162         23.812         153         195         3 200         4 200           122.238         38.100         38.354         29.718         208         244         3 100         4 100           123.825         38.100         36.678         30.162         175         216         3 000         4 100           127.000         36.512         36.512         26.988         181         228         2 900         3 800           130.175         41.275         41.275         31.750         215         262         2 800         3 800           136.525         41.275         41.275         31.750         215         262         2 800         3 800           136.525         41.275         41.275         31.750         215         262         2 800         3 800           120.000         22.000         21.996         18.824         99.5         120         3 200         4 300           120.000         29.794         29.007         24.237         142         177         3 000		110.000		21.996		99.5	120		4 300
66.675         112.712         30.162         30.162         23.812         153         195         3 200         4 200           122.238         38.100         38.354         29.718         208         244         3 100         4 100           123.825         38.100         36.678         30.162         175         216         3 000         4 100           127.000         36.512         36.512         26.988         181         228         2 900         3 800           130.175         41.275         41.275         31.750         215         262         2 800         3 800           136.525         41.275         41.275         31.750         215         262         2 800         3 800           136.525         41.275         41.275         31.750         251         293         2 700         3 700           48.262         123.825         38.100         36.678         30.162         175         216         3 00         4 300           120.000         29.794         29.007         24.237         142         177         3 000         4 000           120.000         29.794         29.007         24.237         142         177         3		112.712	30.162	30.048	23.812	132	174	3 200	4 300
66.675         122.238         38.100         38.354         29.718         208         244         3 100         4 100           123.825         38.100         36.678         30.162         175         216         3 000         4 100           127.000         36.512         36.512         26.988         181         228         2 900         3 800           130.175         41.275         41.275         31.750         215         262         2 800         3 800           135.755         53.975         56.007         44.450         310         380         2 900         3 800           136.525         41.275         41.275         31.750         215         262         2 800         3 800           136.525         41.275         41.275         31.750         251         293         2 700         3 700           110.000         22.000         21.996         18.824         99.5         120         3 200         4 300           120.000         29.794         29.007         24.237         142         177         3 000         4 000           136.525         41.275         41.275         31.750         251         293         2 700		112.712	30.162	30.048	23.812			3 200	4 300
123.825 38.100 36.678 30.162 175 216 3 000 4 100 127.000 36.512 36.512 26.988 181 228 2 900 3 800 130.175 41.275 41.275 31.750 215 262 2 800 3 800 135.755 53.975 56.007 44.450 310 380 2 900 3 800 136.525 41.275 41.275 31.750 215 262 2 800 3 800 136.525 41.275 41.275 31.750 215 262 2 800 3 800 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 41.275 41.275 31.750 251 293 2 700 3 700 120.000 29.794 29.007 24.237 142 177 3 000 4 000 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 46.038 46.038 36.512 248 355 2 600 3 500 112.7475 30.162 30.162 23.812 129 175 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400 25.400		112.712	30.162	30.162	23.812	153		3 200	4 200
127.000   36.512   36.512   26.988   181   228   2.900   3.800   130.175   41.275   41.275   31.750   215   262   2.800   3.800   135.755   53.975   56.007   44.450   310   380   2.900   3.800   136.525   41.275   41.275   31.750   215   262   2.800   3.800   136.525   41.275   41.275   31.750   251   293   2.700   3.700   2.000   21.996   18.824   99.5   120   3.200   4.300   120.000   29.794   29.007   24.237   142   177   3.000   4.000   120.000   29.794   29.007   24.237   142   177   3.000   4.000   136.525   41.275   41.275   31.750   251   293   2.700   3.700   136.525   41.275   41.275   31.750   251   293   2.700   3.700   2.300   4.000   136.525   46.038   46.038   36.512   248   355   2.600   3.500   2.300   29.794   29.007   24.237   142   177   3.000   4.000   120.000   29.794   29.007   24.237   142   177   3.000   4.000   120.000   29.794   29.007   24.237   142   177   3.000   4.000   120.000   32.545   32.545   26.195   163   214   3.000   4.000   120.000   32.545   32.545   26.195   163   214   3.000   4.000   120.650   25.400   25.400   19.050   106   151   3.100   4.000   120.650   25.400   25.400   19.050   106   151   3.100   4.000   120.650   25.400   25.400   19.050   106   151   3.100   4.000   120.000   36.512   36.170   28.575   181   229   2.900   3.800   136.525   41.275   41.275   31.750   228   295   2.500   3.800   150.089   44.450   46.672   36.512   289   360   2.400   3.200   168.275   53.975   56.363   41.275   37.50   228   295   2.500   3.000   69.952   121.442   24.608   23.012   17.462   101   127   2.900   3.800   40.000   40.000   40.000   40.000   40.000   40.000   40.000   40.000   40.000   40.000   40.0000   40.0000   40.0000   40.0000   40.00000   40.0000   40.00000   40.00000   40.0000000000	66.675	122.238	38.100	38.354	29.718				
130.175		123.825	38.100	36.678	30.162		216	3 000	
135.755   53.975   56.007   44.450   310   380   2 900   3 800   136.525   41.275   41.275   31.750   215   262   2 800   3 800   136.525   41.275   41.275   31.750   251   293   2 700   3 700   3 700   10.000   22.000   21.996   18.824   99.5   120   3 200   4 300   120.000   29.794   29.007   24.237   142   177   3 000   4 000   136.525   38.100   36.678   30.162   175   216   3 000   4 100   136.525   41.275   41.275   31.750   251   293   2 700   3 700   136.525   46.038   46.038   36.512   248   355   2 600   3 500   3 500   2 6.000   29.794   29.007   24.237   142   177   3 000   4 000   117.475   30.162   30.162   23.812   129   175   3 000   4 000   120.000   29.794   29.007   24.237   142   177   3 000   4 000   120.000   32.545   32.545   26.195   163   214   3 000   4 000   120.650   25.400   25.400   19.050   106   151   3 100   4 100   127.000   36.512   36.170   28.575   181   229   2 900   3 800   136.525   41.275   41.275   31.750   215   262   2 800   3 800   136.525   41.275   41.275   31.750   215   262   2 800   3 800   150.089   44.450   46.672   36.512   289   360   2 400   3 200   168.275   53.975   56.363   41.275   37.50   228   295   2 500   3 000   69.952   121.442   24.608   23.012   17.462   101   127   2 900   3 800   100.000   100.000   25.000   25.000   20.500   108   150   3 200   4 200   100.000   100.000   25.000   25.000   20.500   108   150   3 200   4 200   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.0000   100.000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.0000   100.00000   100.00000   100.00000   100.0000000000						181	228		
136.525 41.275 41.275 31.750 215 262 2800 3800 136.525 41.275 41.275 31.750 251 293 2700 3700 3700    110.000 22.000 21.996 18.824 99.5 120 3200 4300 120.000 29.794 29.007 24.237 142 177 3 000 4 000 136.525 41.275 41.275 31.750 251 293 2700 3700 136.525 41.275 41.275 31.750 251 293 2700 3700 136.525 46.038 46.038 36.512 248 355 2600 3500    112.712 25.400 25.400 19.050 106 151 3100 4 100 117.475 30.162 30.162 23.812 129 175 3000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.650 25.400 25.400 19.050 106 151 3100 4 100 127.000 36.512 36.170 28.575 181 229 2 900 3 800 136.525 41.275 41.275 31.750 215 262 2 800 3 800 150.089 44.450 46.672 36.512 289 360 2 400 3 200 168.275 53.975 56.363 41.275 375 460 2 200 3 000 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800									
136.525 41.275 41.275 31.750 251 293 2 700 3 700  110.000 22.000 21.996 18.824 99.5 120 3 200 4 300 120.000 29.794 29.007 24.237 142 177 3 000 4 000 136.525 38.100 36.678 30.162 175 216 3 000 4 100 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 46.038 46.038 36.512 248 355 2 600 3 500  112.712 25.400 25.400 19.050 106 151 3 100 4 100 117.475 30.162 30.162 23.812 129 175 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.650 25.400 25.400 19.050 106 151 3 100 4 100 120.650 25.400 25.400 19.050 106 151 3 100 4 000 120.650 25.400 25.400 19.050 106 151 3 100 4 100 127.000 36.512 36.170 28.575 181 229 2 900 3 800 136.525 41.275 41.275 31.750 215 262 2 800 3 800 150.089 44.450 46.672 36.512 289 360 2 400 3 200 150.089 44.450 46.672 36.512 289 360 2 400 3 200 168.275 53.975 56.363 41.275 375 460 2 200 3 000  69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800									
110.000 22.000 21.996 18.824 99.5 120 3 200 4 300 120.000 29.794 29.007 24.237 142 177 3 000 4 000 136.525 38.100 36.678 30.162 175 216 3 000 4 100 136.525 41.275 41.275 31.750 251 293 2 700 3 700 136.525 46.038 46.038 36.512 248 355 2 600 3 500 117.475 30.162 30.162 23.812 129 175 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 29.794 29.007 24.237 142 177 3 000 4 000 120.000 32.545 32.545 26.195 163 214 3 000 4 000 120.050 25.400 25.400 19.050 106 151 3 100 4 100 127.000 36.512 36.170 28.575 181 229 2 900 3 800 136.525 41.275 41.275 31.750 215 262 2 800 3 800 146.050 41.275 41.275 31.750 215 262 2 800 3 800 146.050 41.275 41.275 31.750 228 295 2 500 3 300 168.275 53.975 56.363 41.275 375 460 2 200 3 000 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800 69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800									
68.262         120.000         29.794         29.007         24.237         142         177         3 000         4 000           123.825         38.100         36.678         30.162         175         216         3 000         4 100           136.525         41.275         41.275         31.750         251         293         2 700         3 700           136.525         46.038         46.038         36.512         248         355         2 600         3 500           112.712         25.400         25.400         19.050         106         151         3 100         4 100           117.475         30.162         30.162         23.812         129         175         3 000         4 000           120.000         29.794         29.007         24.237         142         177         3 000         4 000           120.000         29.794         29.007         24.237         142         177         3 000         4 000           120.000         32.545         32.545         26.195         163         214         3 000         4 000           120.000         36.512         36.170         28.575         181         229         2 900         3		136.525	41.275	41.275	31.750	251	293	2 700	3 700
68.262         123.825         38.100         36.678         30.162         175         216         3 000         4 100           136.525         41.275         41.275         31.750         251         293         2 700         3 700           136.525         46.038         46.038         36.512         248         355         2 600         3 500           112.712         25.400         25.400         19.050         106         151         3 100         4 100           117.475         30.162         30.162         23.812         129         175         3 000         4 000           120.000         29.794         29.007         24.237         142         177         3 000         4 000           120.000         32.545         32.545         26.195         163         214         3 000         4 000           120.650         25.400         25.400         19.050         106         151         3 100         4 100           127.000         36.512         36.170         28.575         181         229         2 900         3 800           136.525         41.275         41.275         31.750         215         262         2 800         3		110.000	22.000	21.996	18.824	99.5	120	3 200	4 300
136.525       41.275       41.275       31.750       251       293       2700       3700         136.525       46.038       46.038       36.512       248       355       2600       3500         112.712       25.400       25.400       19.050       106       151       3100       4100         117.475       30.162       30.162       23.812       129       175       3000       4000         120.000       29.794       29.007       24.237       142       177       3000       4000         120.000       32.545       32.545       26.195       163       214       3000       4000         120.650       25.400       25.400       19.050       106       151       3100       4100         127.000       36.512       36.170       28.575       181       229       2900       3800         136.525       41.275       41.275       31.750       215       262       2800       3800         146.050       41.275       41.275       31.750       228       295       2500       300         150.089       44.450       46.672       36.512       289       360       2400       3 200 <th></th> <th></th> <th>29.794</th> <th>29.007</th> <th>24.237</th> <th>142</th> <th></th> <th>3 000</th> <th></th>			29.794	29.007	24.237	142		3 000	
136.525 46.038 46.038 36.512 248 355 2600 3500  112.712 25.400 25.400 19.050 106 151 3 100 4 100  117.475 30.162 30.162 23.812 129 175 3 000 4 000  120.000 29.794 29.007 24.237 142 177 3 000 4 000  120.000 32.545 32.545 26.195 163 214 3 000 4 000  120.650 25.400 25.400 19.050 106 151 3 100 4 100  127.000 36.512 36.170 28.575 181 229 2 900 3 800  136.525 41.275 41.275 31.750 215 262 2 800 3 800  146.050 41.275 41.275 31.750 228 295 2 500 3 800  146.050 41.275 41.275 31.750 228 295 2 500 3 300  150.089 44.450 46.672 36.512 289 360 2 400 3 200  168.275 53.975 56.363 41.275 375 460 2 200 3 000  69.952 121.442 24.608 23.012 17.462 101 127 2 900 3 800	68.262	123.825	38.100	36.678	30.162	175			
112.712       25.400       25.400       19.050       106       151       3 100       4 100         117.475       30.162       30.162       23.812       129       175       3 000       4 000         120.000       29.794       29.007       24.237       142       177       3 000       4 000         120.000       32.545       32.545       26.195       163       214       3 000       4 000         120.650       25.400       25.400       19.050       106       151       3 100       4 100         127.000       36.512       36.170       28.575       181       229       2 900       3 800         136.525       41.275       41.275       31.750       215       262       2 800       3 800         146.050       41.275       41.275       31.750       228       295       2 500       3 00         150.089       44.450       46.672       36.512       289       360       2 400       3 200         168.275       53.975       56.363       41.275       375       460       2 200       3 000         69.952       121.442       24.608       23.012       17.462       101       127 <th></th> <th>136.525</th> <th>41.275</th> <th>41.275</th> <th>31.750</th> <th>251</th> <th></th> <th></th> <th></th>		136.525	41.275	41.275	31.750	251			
69.850       117.475       30.162       30.162       23.812       129       175       3 000       4 000         120.000       29.794       29.007       24.237       142       177       3 000       4 000         120.000       32.545       32.545       26.195       163       214       3 000       4 000         120.650       25.400       25.400       19.050       106       151       3 100       4 100         127.000       36.512       36.170       28.575       181       229       2 900       3 800         136.525       41.275       41.275       31.750       215       262       2 800       3 800         146.050       41.275       41.275       31.750       228       295       2 500       3 300         150.089       44.450       46.672       36.512       289       360       2 400       3 200         168.275       53.975       56.363       41.275       375       460       2 200       3 800         69.952       121.442       24.608       23.012       17.462       101       127       2 900       3 800         70.000       110.000       26.000       25.000       20		136.525	46.038	46.038	36.512	248	355	2 600	3 500
69.850       117.475       30.162       30.162       23.812       129       175       3 000       4 000         120.000       29.794       29.007       24.237       142       177       3 000       4 000         120.000       32.545       32.545       26.195       163       214       3 000       4 000         120.650       25.400       25.400       19.050       106       151       3 100       4 100         127.000       36.512       36.170       28.575       181       229       2 900       3 800         136.525       41.275       41.275       31.750       215       262       2 800       3 800         146.050       41.275       41.275       31.750       228       295       2 500       3 300         150.089       44.450       46.672       36.512       289       360       2 400       3 200         168.275       53.975       56.363       41.275       375       460       2 200       3 800         69.952       121.442       24.608       23.012       17.462       101       127       2 900       3 800         70.000       110.000       26.000       25.000       20		112.712	25.400	25.400	19.050	106	151	3 100	4 100
69.850       120.000       32.545       32.545       26.195       163       214       3 000       4 000         120.650       25.400       25.400       19.050       106       151       3 100       4 100         127.000       36.512       36.170       28.575       181       229       2 900       3 800         136.525       41.275       41.275       31.750       215       262       2 800       3 800         146.050       41.275       41.275       31.750       228       295       2 500       3 300         150.089       44.450       46.672       36.512       289       360       2 400       3 200         168.275       53.975       56.363       41.275       375       460       2 200       3 000         69.952       121.442       24.608       23.012       17.462       101       127       2 900       3 800         70.000       110.000       26.000       25.000       20.500       108       150       3 200       4 200		117.475	30.162	30.162		129		3 000	4 000
69.850       120.650       25.400       25.400       19.050       106       151       3 100       4 100         127.000       36.512       36.170       28.575       181       229       2 900       3 800         136.525       41.275       41.275       31.750       215       262       2 800       3 800         146.050       41.275       41.275       31.750       228       295       2 500       3 300         150.089       44.450       46.672       36.512       289       360       2 400       3 200         168.275       53.975       56.363       41.275       375       460       2 200       3 000         69.952       121.442       24.608       23.012       17.462       101       127       2 900       3 800         70.000       110.000       26.000       25.000       20.500       108       150       3 200       4 200		120.000		29.007		142			
69.850       127.000       36.512       36.170       28.575       181       229       2 900       3 800         136.525       41.275       41.275       31.750       215       262       2 800       3 800         146.050       41.275       31.750       228       295       2 500       3 300         150.089       44.450       46.672       36.512       289       360       2 400       3 200         168.275       53.975       56.363       41.275       375       460       2 200       3 000         69.952       121.442       24.608       23.012       17.462       101       127       2 900       3 800         70.000       110.000       26.000       25.000       20.500       108       150       3 200       4 200		120.000	32.545	32.545	26.195	163	214	3 000	4 000
136.525 41.275 41.275 31.750 215 262 2800 3800 146.050 41.275 41.275 31.750 228 295 2500 3300 150.089 44.450 46.672 36.512 289 360 2400 3200 168.275 53.975 56.363 41.275 375 460 2200 3000 69.952 121.442 24.608 23.012 17.462 101 127 2900 3800 70.000 110.000 26.000 25.000 20.500 108 150 3200 4200	00.050	120.650	25.400	25.400	19.050				4 100
146.050     41.275     41.275     31.750     228     295     2 500     3 300       150.089     44.450     46.672     36.512     289     360     2 400     3 200       168.275     53.975     56.363     41.275     375     460     2 200     3 000       69.952     121.442     24.608     23.012     17.462     101     127     2 900     3 800       70.000     110.000     26.000     25.000     20.500     108     150     3 200     4 200	69.850	127.000	36.512	36.170	28.575	181	229	2 900	3 800
150.089     44.450     46.672     36.512     289     360     2 400     3 200       168.275     53.975     56.363     41.275     375     460     2 200     3 000       69.952     121.442     24.608     23.012     17.462     101     127     2 900     3 800       70.000     110.000     26.000     25.000     20.500     108     150     3 200     4 200		136.525	41.275	41.275	31.750				
168.275     53.975     56.363     41.275     375     460     2 200     3 000       69.952     121.442     24.608     23.012     17.462     101     127     2 900     3 800       70 000     110.000     26.000     25.000     20.500     108     150     3 200     4 200		146.050	41.275		31.750				
69.952     121.442     24.608     23.012     17.462     101     127     2 900     3 800       70 000     110.000     26.000     25.000     20.500     108     150     3 200     4 200									
<b>70 000</b> 110.000 26.000 25.000 20.500 108 150 3 200 4 200		168.275	53.975	56.363	41.275	375	460	2 200	3 000
	69.952	121.442	24.608	23.012	17.462	101	127	2 900	3 800
	70.000	110.000	26.000	25.000	20.500	108	150	3 200	4 200
	70.000								

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	l	nstallat		lated dii nm	mension	s	Load center ² mm	Constant	Axi load fa		<b>Mass</b> kg
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
#4T-JH211749/JH211710	80	74	107	114	3	2.5	10.9	0.34	1.78	0.98	1.9
4T-6379/6320	84	77	117	126	3.5	3.3	18.8	0.32	1.85	1.02	3.71
4T-L812148/L812111	75	72	96	99	1.5	0.8	-3.7	0.49	1.23	0.68	0.48
4T-29590/29520	80	73	96	103	3.5	3.3	0.6	0.46	1.31	0.72	0.86
4T-395A/394A	73	73	101	105	8.0	1.3	0.7	0.40	1.49	0.82	0.803
4T-3984/3925	80	74	101	106	3.5	0.8	4.5	0.40	1.49	0.82	1.19
4T-3994/3920	86	75	99	106	5.5	3.3	4.5	0.40	1.49	0.82	1.18
4T-39590/39520	82	75	101	107	3.5	3.3	6.6	0.34	1.77	0.97	1.28
4T-HM212049/HM212010	82	75.5	110	116	3.5	1.5	11.1	0.34	1.78	0.98	1.84
4T-560/552A	84	77	109	116	3.5	3.3	9.4	0.35	1.73	0.95	1.9
4T-HM813844/HM813810	88	82	111	121	3.5	3.3	3.7	0.50	1.20	0.66	2.03
4T-641/633	83	77	116	124	3.5	3.3	11.4	0.36	1.66	0.91	2.41
4T-6386/6320	87	77	117	126	4.3	3.3	18.8	0.32	1.85	1.02	3.64
4T-641/632	83	77	118	125	3.5	3.3	11.4	0.36	1.66	0.91	2.75
4T-H414242/H414210	85	81	121	129	3.5	3.3	11.0	0.36	1.67	0.92	2.75
4T-399A/394A	78	74	101	105	2.3	1.3	0.7	0.40	1.49	0.82	0.77
4T-480/472	82	75	107	114	3.5	2	3.9	0.38	1.56	0.86	1.13
4T-560S/552A	83	76	109	116	3.5	3.3	9.4	0.35	1.73	0.95	1.87
4T-H414245/H414210	86	82	121	129	3.5	3.3	11.0	0.36	1.67	0.92	2.7
4T-H715343/H715311	92	86	118	132	3.5	3.3	8.7	0.47	1.27	0.70	3.23
4T-29675/29620	80	77	101	109	1.5	3.3	-0.9	0.49	1.23	0.68	0.95
4T-33275/33462	85	79	104	112	3.5	3.3	2.6	0.44	1.38	0.76	1.28
4T-482/472	83	77	107	114	3.5	2	3.9	0.38	1.56	0.86	1.33
4T-47487/47420	84	78	107	114	3.5	3.3	6.1	0.36	1.67	0.92	1.63
4T-29675/29630	80	77	104	113	1.5	3.3	-0.9	0.49	1.23	0.68	1.17
4T-566/563	85	78	112	120	3.5	3.3	8.3	0.36	1.65	0.91	1.91
4T-643/632	86	80	118	125	3.5	3.3	11.4	0.36	1.66	0.91	2.63
4T-655/653	88	82	131	139	3.5	3.3	8.0	0.41	1.47	0.81	3.28
4T-745A/742	88	82	134	142	3.5	3.3	12.0	0.33	1.84	1.01	3.93
4T-835/832	91	84	149	155	3.5	3.3	18.5	0.30	2.00	1.10	6.14
4T-34274/34478	81	78	110	116	2	2	-1.2	0.45	1.33	0.73	1.11
#4T-JLM813049/JLM813010	78	77	98	105	1	2.5	-0.3	0.49	1.23	0.68	0.88
44T-JM612949/JM612910	83	77	103	110	3	2.5	2.5	0.43	1.39	0.77	1.12

1) Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings is listed in Table 6.8 on page A-66 to A-67.
2) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.

Inch series J series



# d 70.000 ~ 76.200mm

	В	oundary dime	nsions		Basic loa	d rating	Allowable	speed
		mm			dynamic k	static	min Grease	-1 Oil
d	D	T	В	C	$C_{\mathrm{r}}$	$C_{0r}$	lubrication I	
70.000	120.000	29.794	29.007	24.237	142	177	3 000	4 000
70.000	150.000	41.275	39.688	25.400	220	234	2 400	3 200
	117.475	30.162	30.162	23.812	129	175	3 000	4 000
	120.000	32.545	32.545	26.195	163	214	3 000	4 000
74 400	127.000	36.512	36.170	28.575	181	229	2 900	3 800
71.438	136.525	41.275	41.275	31.750	215	262	2 800	3 800
	136.525	41.275	41.275	31.750	251	293	2 700	3 700
	136.525	46.038	46.038	36.512	248	355	2 600	3 500
	112.712	25.400	25.400	19.050	106	151	3 100	4 100
	117.475	30.162	30.162	23.812	129	175	3 000	4 000
70.005	127.000	36.512	36.170	28.575	181	229	2 900	3 800
73.025	139.992	36.512	36.098	28.575	197	265	2 600	3 400
	149.225	53.975	54.229	44.450	320	410	2 500	3 400
	150.089	44.450	46.672	36.512	289	360	2 400	3 200
70.047	112.712	25.400	25.400	19.050	106	151	3 100	4 100
73.817	127.000	36.512	36.170	28.575	181	229	2 900	3 800
74.612	139.992	36.512	36.098	28.575	197	265	2 600	3 400
	115.000	25.000	25.000	19.000	105	143	3 000	4 000
75.000	120.000	31.000	29.500	25.000	145	197	2 900	3 900
	145.000	51.000	51.000	42.000	320	410	2 500	3 400
	109.538	19.050	19.050	15.083	70.0	115	3 100	4 100
	121.442	24.608	23.012	17.462	101	127	2 900	3 800
	121.442	24.608	23.012	17.462	101	127	2 900	3 800
	127.000	30.162	31.000	22.225	150	194	2 800	3 700
	133.350	33.338	33.338	26.195	170	235	2 600	3 500
	133.350	39.688	39.688	32.545	196	305	2 600	3 500
76.200	135.733	44.450	46.100	34.925	235	330	2 700	3 500
		29.769	22.225	143	189	2 600	3 500	
	139.992	36.512	36.098	28.575	197	265	2 600	3 400
	139.992	36.512	36.098	28.575	197	265	2 600	3 400
	146.050	41.275	41.275	31.750	228	295	2 500	3 300
	149.225	53.975	54.229	44.450	320	410	2 500	3 400
	170.220	30.373	JT.223	TT.TJU	020	710	2 300	0 700

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1)	l	nstallat		l <b>ated dim</b> nm	ension	5	Load center ² mm	Constant	Axi load fa		<b>Mass</b> kg
					$r_{\rm as}$	$r_{\rm las}$					0
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-484/472	80	77	107	114	2	2	3.9	0.38	1.56	0.86	1.33
#4T-JH913848/JH913811	92	82.3		146	2	3.3	-4.3	0.78	0.77	0.42	3.09
4T-33281/33462	87	80	104	112	3.5	3.3	2.6	0.44	1.38	0.76	1.24
4T-47490/47420	86	79	107	114	3.5	3.3	6.1	0.36	1.67	0.92	1.42
4T-567A/563	86	80	112	120	3.5	3.3	8.3	0.36	1.65	0.91	1.87
4T-644/632	87	81	118	125	3.5	3.3	11.4	0.36	1.66	0.91	2.58
4T-H414249/H414210	89	83.3		129	3.5	3.3	11.0	0.36	1.67	0.92	2.58
4T-H715345/H715311	94	88	118	132	3.5	3.3	8.7	0.47	1.27	0.70	3.11
4T-29685/29620	86	80	101	109	3.5	3.3	-0.9	0.49	1.23	0.68	0.874
4T-33287/33462	88	81	104	112	3.5	3.3	2.6	0.44	1.38	0.76	1.19
4T-567/563	88	81	112	120	3.5	3.3	8.3	0.36	1.65	0.91	1.82
4T-576/572	90	83	125	133	3.5	3.3	5.5	0.40	1.49	0.82	2.52
4T-6460/6420	93	87	129	140	3.5	3.3	14.8	0.36	1.66	0.91	4.43
4T-744/742	91	85	134	142	3.5	3.3	12.0	0.33	1.84	1.01	3.8
4T-29688/29620	83	80	101	109	1.5	3.3	-0.9	0.49	1.23	0.68	0.862
4T-568/563	83	82	112	120	0.8	3.3	8.3	0.36	1.65	0.91	1.8
4T-577/572	91	85	125	133	3.5	3.3	5.5	0.40	1.49	0.82	2.47
#4T-JLM714149/JLM714110	88	82	104	110.5	3	2.5	-0.3	0.46	1.31	0.72	0.88
#4T-JM714249/JM714210	88	82.9	108	115	3	2.5	1.9	0.44	1.35	0.74	1.29
#4T-JH415647/JH415610	94	89	129	139	3	2.5	14.1	0.36	1.66	0.91	3.82
4T-L814749/L814710	84	82	100	105	1.5	1.5	-5.0	0.50	1.20	0.66	0.579
4T-34300/34478	86	83	110	116	2	2	-1.2	0.45	1.33	0.73	0.978
4T-34301/34478	89	83	110	116	3.5	2	-1.2	0.45	1.33	0.73	0.976
4T-42687/42620	90	84	114	121	3.5	3.3	2.8	0.42	1.43	0.79	1.46
4T-47678/47620	97	85	119	128	6.4	3.3	3.9	0.40	1.48	0.82	1.92
4T-HM516442/HM516410	93	87	118	128	3.5	3.3	7.5	0.40	1.49	0.82	2.43
4T-5760/5735	94	88	119	130	3.5	3.3	11.0	0.41	1.48	0.81	2.75
4T-495A/493	92	86	122	130	3.5	3.3	0.7	0.44	1.35	0.74	1.83
4T-575/572	92	86	125	133	3.5	3.3	5.5	0.40	1.49	0.82	2.42
4T-575S/572	99	86	125	133	6.8	3.3	5.5	0.40	1.49	0.82	2.4
4T-659/653	93	87	131	139	3.5	3.3	8.0	0.41	1.47	0.81	3.04
4T-6461A/6420	108	89	129	140	9.7	3.3	14.8	0.36	1.66	0.91	4.24
<b>4T-748S/742</b> 1) Bearing numbers marked "#" design	93	87	134	142	3.5	3.3	12.0	0.33	1.84	1.01	3.65

Dimensions with "-" indicate a load center at the outside on the end of an inner ring.

Inch series J series



## d 76.200 ∼ 83.345mm

	0 00.0 10							
	В	oundary dime	nsions		Basic lo	ad rating	Allowable	speed
		mm			dynamic	static	min	
				~		N	Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0r}$	lubrication	lubrication
	149.225	53.975	54.229	44.450	320	410	2 500	3 400
76.200	161.925	53.975	55.100	42.862	340	460	2 300	3 000
70.200	180.975	53.975	53.183	35.720	360	415	1 900	2 600
	190.500	57.150	57.531	46.038	490	610	1 900	2 600
	117.475	25.400	25.400	19.050	110	162	2 900	3 900
	121.442	24.608	23.012	17.462	101	127	2 900	3 800
77.788	127.000	30.162	31.000	22.225	150	194	2 800	3 700
	136.525	30.162	29.769	22.225	143	189	2 600	3 500
	136.525	46.038	46.038	36.512	248	355	2 600	3 500
	110.050	44.075	44.075	04.750	200	005	0.500	0.000
79.375	146.050	41.275	41.275	31.750	228	295	2 500	3 300
19.313	161.925 190.500	47.625 57.150	48.260 57.531	38.100 46.038	299 490	385 610	2 300 1 900	3 100 2 600
	190.500	57.150	57.531	40.036	490	610	1 900	2 600
80.000	130.000	35.000	34.000	28.500	184	249	2 700	3 600
	133.350	33.338	33.338	26.195	170	235	2 600	3 500
80.962	136.525	30.162	29.769	22.225	143	189	2 600	3 500
	139.992	36.512	36.098	28.575	197	265	2 600	3 400
	150.089	44.450	46.672	36.512	289	360	2 400	3 200
	125.412	25.400	25.400	19.845	113	163	2 700	3 600
	133.350	33.338	33.338	26.195	170	235	2 600	3 500
	133.350	39.688	39.688	32.545	196	305	2 600	3 500
	136.525	30.162	29.769	22.225	143	189	2 600	3 500
	139.992	36.512	36.098	28.575	197	265	2 600	3 400
	139.992	36.512	36.098	28.575	197	265	2 600	3 400
82.550	146.050	41.275	41.275	31.750	228	295	2 500	3 300
	150.089	44.450	46.672	36.512	289	360	2 400	3 200
	152.400	39.688	36.322	30.162	199	279	2 300	3 100
	152.400	41.275	41.275	31.750	228	295	2 500	3 300
	161.925	47.625	48.260	38.100	299	385	2 300	3 100
	161.925	53.975	55.100	42.862	340	460	2 300	3 000
	168.275	53.975	56.363	41.275	375	460	2 200	3 000
	125.412	25.400	25.400	19.845	113	163	2 700	3 600
83.345	125.412	25.400	25.400	19.845	113	163	2 700	3 600
	125.412	25.400	25.400	19.845	113	163	2 700	3 600

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{aa}$  and  $r_{1ab}$ .

1) As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "t" (inner ring) and "tt" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

B-182



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1) 2)		Installation-related dimensions  mm						Constant (3)	Axial load factors		<b>Mass</b> kg
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{\mathrm{las}}$ Max.	a	e	$Y_2$	$Y_0$	(approx
4T-6461/6420	96	89	129	140	3.5	3.3	14.8	0.36	1.66	0.91	4.26
4T-6576/6535	99	92	141	154	3.5	3.3	12.8	0.40	1.50	0.82	
4T-H917840/H917810††	110	100.1	152	170	3.5	3.3	-0.5	0.73	0.82	0.45	6.57
4T-HH221430/HH221410	101	95	171	179	3.5	3.3	14.4	0.33	1.79	0.99	8.71
4T-LM814849/LM814810	91	85	105	113	3.5	3.3	-2.3	0.51	1.18	0.65	
4T-34306/34478	91	84	110	116	3.5	2	-1.2	0.45	1.33	0.73	
4T-42690/42620	91	85	114	121	3.5	3.3	2.8	0.42	1.43	0.79	
4T-495AS/493	93	87	122	130	3.5	3.3	0.7	0.44	1.35	0.74	
4T-H715348/H715311	99	88	118	132	3.5	3.3	8.7	0.47	1.27	0.70	2.84
4T-661/653	96	90	131	139	3.5	3.3	8.0	0.41	1.47	0.81	2.92
4T-756A/752	109	94	144	150	8	3.3	12.0	0.34	1.76	0.97	4.5
4T-HH221431/HH221410	103	97	171	179	3.5	3.3	14.4	0.33	1.79	0.99	8.5
4T-JM515649/JM515610	94	88	117	125	3	2.5	4.9	0.39	1.54	0.85	1.74
4T-47681/47620	95	89	119	128	3.5	3.3	3.9	0.40	1.48	0.82	
4T-496/493	95	89	122	130	3.5	3.3	0.7	0.44	1.35	0.74	
4T-581/572	96	90	125	133	3.5	3.3	5.5	0.40	1.49	0.82	
4T-740/742	101	91	134	142	5	3.3	12.0	0.33	1.84	1.01	3.4
4T-27687/27620	96	89	115	120	3.5	1.5	-0.6	0.42	1.44	0.79	1.0
4T-47686/47620	98	92	119	128	3.5	3.3	3.9	0.40	1.48	0.82	
4T-HM516448/HM516410	106	92	118	128	6.8	3.3	7.5	0.40	1.49	0.82	
4T-495/493	97	90	122	130	3.5	3.3	0.7	0.44	1.35	0.74	
4T-580/572	98	91	125	133	3.5	3.3	5.5	0.40	1.49	0.82	
4T-582/572	104 99	91 92	125 131	133 139	6.8	3.3	5.5	0.40	1.49	0.82	
4T-663/653 4T-749A/742	99	93	134	142	3.5	3.3	8.0 12.0	0.41	1.47	0.81	2.79 3.3
4T-595/592A	100	93	135	144	3.5 3.5	3.3	2.6	0.33 0.44	1.84 1.36	1.01	
4T-663/652	99	92	134	141	3.5	3.3	8.0	0.44	1.47	0.73	3.1
4T-757/752	100	94	144	150	3.5	3.3	12.0	0.41	1.76	0.01	
4T-6559C/6535	104	98	141	154	3.5	3.3	12.8	0.40	1.50	0.82	
4T-842/832	101	94	149	155	3.5	3.3	18.5	0.30	2.00	1.10	
4T-27689/27620	90	90	115	120	0.8	1.5	-0.6	0.42	1.44	0.79	1.0
4T-27690/27620	96	89	115	120	3.5	1.5	-0.6	0.42	1.44	0.79	1.0
4T-27691/27620	102	90	115	120	6.4	1.5	-0.6	0.42	1.44	0.79	1.0

3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.





#### d 84.138 ~ 95.000mm

		130.000 30.000 140.000 39.000 5.026 150.089 44.450 133.350 30.162 142.138 42.862 146.050 41.275 152.400 39.688 161.925 47.625 7.960 148.430 28.575 121.442 15.083 123.825 20.638 148.430 28.575 3.900 152.400 39.688 161.925 47.625 161.925 53.975 168.275 53.975		nsions		Basic loa	d rating	Allowab	le speed
			mm			dynamic	static	mi	
						k١		Grease	Oil
	d	D	T	B	C	$C_{ m r}$	$C_{0r}$	lubrication	lubrication
	84.138	136.525	30.162	29.769	22.225	143	189	2 600	3 500
ı		130,000	30,000	29.000	24.000	149	214	2 600	3 500
	85.000			38.000	31.500	218	297	2 500	3 400
ŀ									
	85.026	150.089	44.450	46.672	36.512	289	360	2 400	3 200
		133.350	30.162	29.769	22.225	143	189	2 600	3 500
		142.138	42.862	42.862	34.133	240	350	2 500	3 300
	85.725			41.275	31.750	228	295	2 500	3 300
				36.322	30.162	199	279	2 300	3 100
		161.925	47.625	48.260	38.100	299	385	2 300	3 100
	87.960	148.430	28.575	28.971	21.433	153	215	2 300	3 100
		121.442	15.083	15.083	11.112	63.0	88.0	2 700	3 600
		123.825	20.638	20.638	16.670	89.0	141	2 700	3 500
		148.430	28.575	28.971	21.433	153	215	2 300	3 100
	88.900			36.322	30.162	199	279	2 300	3 100
				48.260	38.100	299	385	2 300	3 100
				55.100	42.862	340	460	2 300	3 000
		168.275	53.975	56.363	41.275	375	460	2 200	3 000
	89.974	146.975	40.000	40.000	32.500	252	340	2 400	3 200
		145.000	35.000	34.000	27.000	210	279	2 400	3 200
	90.000	155.000	44.000	44.000	35.500	299	385	2 300	3 100
		190.000	50.800	46.038	31.750	310	365	1 800	2 400
ı	90.488	161.925	47.625	48.260	38.100	299	385	2 300	3 100
	30.400	101.020	47.025	40.200	00.100	200	000	2 000	0 100
		146.050	33.338	34.925	26.195	181	266	2 400	3 100
	92.075	152.400	39.688	36.322	30.162	199	279	2 300	3 100
		168.275	41.275	41.275	30.162	247	340	2 100	2 800
	93.662	148.430	28.575	28.971	21.433	153	215	2 300	3 100
	95.000	150.000	35.000	34.000	27.000	199	279	2 300	3 100

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm ns}$  and  $r_{\rm 1as}$ .

1) As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "t" (inner ring) and "tt" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

8–184



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1) 2)		Installat		lated din	nension	s	Load center	Constant	Axi load fa		<b>Mass</b> kg
	,	,			$r_{\rm as}$	$r_{\rm las}$			17	17	-
	$d_{\rm a}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-498/493	98	91	122	130	3.5	3.3	0.7	0.44	1.35	0.74	1.6
#4T-JM716648/JM716610	104	92	117	125	6	2.5	0.2	0.44	1.35	0.74	1.37
#4T-JHM516849/JHM516810	100	94	125	134	3	2.5	5.9	0.41	1.47	0.81	2.3
4T-749/742	101	95	134	142	3.5	3.3	12.0	0.33	1.84	1.01	3.24
4T-497/492A	99	93	120	128	3.5	3.3	0.7	0.44	1.35	0.74	1.43
4T-HM617049/HM617010	106	95.2	125	137	4.8	3.3	6.9	0.43	1.39	0.76	2.71
4T-665/653	102	95	131	139	3.5	3.3	8.0	0.41	1.47	0.81	2.65
4T-596/592A	102	96	135	144	3.5	3.3	2.6	0.44	1.36	0.75	2.9
4T-758/752	106	100	144	150	3.5	3.3	12.0	0.34	1.76	0.97	4.26
4T-42346/42584	103	98	134	142	3	3	-3.0	0.49	1.22	0.67	1.98
4T-LL217849/LL217810	97	94	115	117	1.5	1.5	-2.9	0.33	1.81	1.00	0.452
4T-L217849/L217810	97	94	116	119	1.5	1.5	-0.7	0.33	1.82	1.00	0.737
4T-42350/42584	104	98	134	142	3	3	-3.0	0.49	1.22	0.67	1.95
4T-593/592A	104	98	135	144	3.5	3.3	2.6	0.44	1.36	0.75	2.77
4T-759/752	108	101	144	150	3.5	3.3	12.0	0.34	1.76	0.97	
4T-6580/6535	117	102	141	154	3.5	3.3	12.8	0.40	1.50	0.82	4.72
4T-850/832	106	100	149	155	3.5	3.3	18.5	0.30	2.00	1.10	5.09
4T-HM218248†/HM218210††	112	99	133	141	7	3.5	8.6	0.33	1.8	0.99	2.55
#4T-JM718149/JM718110	106	99	131	138.8	3	2.5	2.0	0.44	1.35	0.74	2.14
#4T-JHM318448/JHM318410	106	100	140	148	3	2.5	10.1	0.34	1.76	0.97	3.33
#4T-J90354/J90748	120	111.8	162	179.3	3.5	3.3	-12.9	0.87	0.69	0.38	6.32
4T-760/752	110	101	144	150	3.5	3.3	12.0	0.34	1.76	0.97	4.01
4T-47890/47820	107	101	131	140	3.5	3.3	0.6	0.45	1.34	0.74	2.08
4T-598A/592A	113	101	135	144	6.4	3.3	2.6	0.44	1.36	0.75	2.63
4T-681/672	110	104	149	160	3.5	3.3	3.0	0.47	1.28	0.7	3.87
4T-42368/42584	107	102	134	142	3	3	-3.0	0.49	1.22	0.67	1.8
#4T-JM719149/JM719113	109	104	135	143	3	2.5	1.7	0.44	1.36	0.75	2.19

2) Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings is listed in Table 6.8 on page A-66 to A-67.
3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.



#### d 95.250 ~ 109.538mm

	В	oundary dime	nsions		Basic loa	d rating	Allowabl	e speed
		mm			dynamic	static	miı	
d	D	T	B	C	$C_{ m r}$ kl	$C_{0\mathrm{r}}$	Grease lubrication	Oil lubrication
	130.175	20.638	21.433	16.670	90.0	147	2 500	3 300
	146.050	33.338	34.925	26.195	181	266	2 400	3 100
	147.638	35.717	36.322	26.192	199	279	2 300	3 100
	148.430	28.575	28.971	21.433	153	215	2 300	3 100
95.250	152.400	39.688	36.322	30.162	199	279	2 300	3 100
	157.162	36.512	36.116	26.195	208	305	2 200	2 900
	168.275	41.275	41.275	30.162	247	340	2 100	2 800
	190.500	57.150	57.531	46.038	490	610	1 900	2 600
00.000	148.430	28.575	28.971	21.433	153	215	2 300	3 100
96.838	188.912	50.800	46.038	31.750	310	365	1 800	2 400
98.425	157.162	36.512	36.116	26.195	208	305	2 200	2 900
90.423	168.275	41.275	41.275	30.162	247	340	2 100	2 800
99.974	212.725	66.675	66.675	53.975	635	810	1 700	2 300
100.000	155.000	36.000	35.000	28.000	213	310	2 200	2 900
100.012	157.162	36.512	36.116	26.195	208	305	2 200	2 900
	157.162	36.512	36.116	26.195	208	305	2 200	2 900
	168.275	41.275	41.275	30.162	247	340	2 100	2 800
	180.975	47.625	48.006	38.100	315	430	2 000	2 700
101 000	190.500	57.150	57.531	44.450	420	555	2 000	2 600
101.600	190.500	57.150	57.531	46.038	490	610	1 900	2 600
	190.500	57.150	57.531	46.038	490	610	1 900	2 600
	212.725	66.675	66.675	53.975	525	695	1 800	2 300
	212.725	66.675	66.675	53.975	635	810	1 700	2 300
104.775	180.975	47.625	48.006	38.100	315	430	2 000	2 700
	158.750	23.020	21.438	15.875	114	166	2 100	2 800
107.950	159.987	34.925	34.925	26.988	186	320	2 100	2 800
107.900	165.100	36.512	36.512	26.988	212	315	2 100	2 700
	212.725	66.675	66.675	53.975	525	695	1 800	2 300
109.538	158.750	23.020	21.438	15.875	114	166	2 100	2 800

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm ns}$  and  $r_{\rm las}$ .

1) As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "1" (inner ring) and "11" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

8–186



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1) 2)	I	Installat		lated dim			Load center ³ mm	Constant	Axial load factors		<b>Mass</b> kg
	$d_{\rm a}$	$d_{ m b}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-L319249/L319210	103	101	122	125	1.5	1.5	-1.0	0.35	1.72	0.95	0.786
4T-47896/47820	110	103	131	140	3.5	3.3	0.6	0.45	1.34	0.74	1.95
4T-594A/592XE	113	104	135	142	5	8.0	2.6	0.44	1.36	0.75	2.09
4T-42375/42584	108	103	134	142	3	3	-3.0	0.49	1.22	0.67	1.74
4T-594/592A	110	104	135	144	3.5	3.3	2.6	0.44	1.36	0.75	2.51
4T-52375/52618	112	105	142	152	3.5	3.3	0.6	0.47	1.26	0.69	2.76
4T-683/672	113	106	149	160	3.5	3.3	3.0	0.47	1.28	0.70	3.72
4T-HH221440/HH221410	125	110	171	179	8	3.3	14.4	0.33	1.79	0.99	7.5
4T-42381/42584	112	105	134	142	3.5	3	-3.0	0.49	1.22	0.67	1.69
4T-90381/90744	125	113	161	179	3.5	3.3	-12.9	0.87	0.69	0.38	5.46
4T-52387/52618	114	108	142	152	3.5	3.3	0.6	0.47	1.26	0.69	2.62
4T-685/672	116	109	149	160	3.5	3.3	3.0	0.47	1.28	0.70	3.57
4T-HH224334†/HH224310	124	120	192	201.7	3.5	3.3	18.9	0.33	1.84	1.01	11.5
#4T-JM720249/JM720210	115	109	140	149	3	2.5	-0.3	0.47	1.27	0.70	2.4
4T-52393/52618	116	109	142	152	3.5	3.3	0.6	0.47	1.26	0.69	2.55
4T-52400/52618	117	111	142	152	3.5	3.3	0.6	0.47	1.26	0.69	2.48
4T-687/672	118	112	149	160	3.5	3.3	3.0	0.47	1.28	0.70	3.4
4T-780/772††	119	113	161	168	3.5	3.3	8.1	0.39	1.56	0.86	5.12
4T-861/854	129	114	170	174	8	3.3	15.3	0.33	1.79	0.99	7
4T-HH221449/HH221410	131	115.9	171	179	8	3.3	14.4	0.33	1.79	0.99	7.07
4T-HH221449A/HH221410	122	115.9	171	179	3.5	3.3	14.4	0.33	1.79	0.99	7.06
4T-941/932	130	117	187	193.1	7	3.3	19.7	0.33	1.84	1.01	11.2
4T-HH224335/HH224310	132	121	192	201.7	7	3.3	18.9	0.33	1.84	1.01	11.3
4T-782/772††	122	116	161	168	3.5	3.3	8.1	0.39	1.56	0.86	4.92
4T-37425/37625	122	115	143	152	3.5	3.3	-14.0	0.61	0.99	0.54	1.37
4T-LM522546/LM522510	122	116	146	154	3.5	3.3	1.4	0.40	1.49	0.82	2.37
4T-56425/56650	123	117	149	159	3.5	3.3	-2.0	0.50	1.21	0.66	2.69
4T-936/932	137	122	187	193.1	8	3.3	19.7	0.33	1.84	1.01	10.7
4T-37431/37625	123	116	143	152	3.5	3.3	-14	0.61	0.99	0.54	1.32

2) Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings is listed in Table 6.8 on page A-66 to A-67.
3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.





## *d* 109.987 ∼ 133.350mm

	В	oundary dime	nsions		Basic lo	ad rating	Allowabl	e speed
		mm			dynamic	static	mir	n-1
		111111				kN	Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0\mathrm{r}}$	lubrication	
109.987	159.987	34.925	34.925	26.988	186	320	2 100	2 800
109.992	177.800	41.275	41.275	30.162	257	375	1 900	2 600
110.000	165.000	35.000	35.000	26.500	212	315	2 100	2 700
110.000	180.000	47.000	46.000	38.000	340	480	1 900	2 600
111.125	214.312	55.562	52.388	39.688	450	560	1 500	2 000
	177.800	41.275	41.275	30.162	257	375	1 900	2 600
	180.975	34.925	31.750	25.400	187	245	1 900	2 500
114.300	212.725	66.675	66.675	53.975	525	695	1 800	2 300
	212.725	66.675	66.675	53.975	635	810	1 700	2 300
	228.600	53.975	49.428	38.100	475	620	1 400	1 900
115.087	190.500	47.625	49.212	34.925	335	475	1 800	2 500
117.475	180.975	34.925	31.750	25.400	187	245	1 900	2 500
120.000	170.000	25.400	25.400	19.050	141	210	2 000	2 600
120.650	234.950	63.500	63.500	49.212	580	825	1 500	2 000
123.825	182.562	39.688	38.100	33.338	249	435	1 800	2 400
	182.562	39.688	38.100	33.338	249	435	1 800	2 400
	196.850	46.038	46.038	38.100	340	550	1 700	2 200
	215.900	47.625	47.625	34.925	355	540	1 600	2 100
127.000	228.600	53.975	49.428	38.100	355	445	1 400	1 900
	228.600	53.975	49.428	38.100	475	620	1 400	1 900
	230.000	63.500	63.500	49.212	580	825	1 500	2 000
	254.000	77.788	82.550	61.912	820	1 070	1 400	1 900
128.588	206.375	47.625	47.625	34.925	350	520	1 700	2 200
130.175	196.850	46.038	46.038	38.100	340	550	1 700	2 200
130.175	206.375	47.625	47.625	34.925	350	520	1 700	2 200
133.350	177.008	25.400	26.195	20.638	140	259	1 800	2 400

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm ns}$  and  $r_{\rm las}$ .

1) As for the maximum value for inner and outer ring diameters of bearings whose bearing numbers are marked with "1" (inner ring) and "11" (outer ring), the precision class is an integer for class 4 and class 2 bearings only.

8–188



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≤</b> e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	>e
X	Y	X	Y
1	0	0.4	$Y_2$

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

For values of e,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 1) 2)	l	Installa		lated dim	nension	S	Load center ³ mm	Constant )	Axi load fa		<b>Mass</b> kg
	$d_{\rm a}$	$d_{\mathrm{b}}$	$D_{\rm a}$	$D_{\rm b}$	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-LM522548/LM522510	133	118	146	154	8	3.3	1.4	0.40	1.49	0.82	2.24
4T-64433/64700	128	121	160	172	3.5	3.3	-1.1	0.52	1.16	0.64	3.77
#4T-JM822049/JM822010 #4T-JHM522649/JHM522610	125 127	119 122	149 162	159 172	3 3	2.5 2.5	-3.0 6.0	0.50 0.41	1.21 1.48	0.66 0.81	2.52 4.61
4T-H924045/H924010	139	131.2	186	205	3.5	3.3	-6.8	0.67	0.89	0.49	8.47
4T-64450/64700 4T-68450/68712†† 4T-938/932 4T-HH224346/HH224310 4T-HM926740/HM926710	131 130 141 143 146	125 123 128 131 142	160 163 187 192 200	172 172 193.1 201.7 219.3	3.5 3.5 7 7 3.5	3.3 3.3 3.3 3.3	-1.1 -5.4 19.7 18.9 -13.5	0.52 0.50 0.33 0.33 0.74	1.16 1.21 1.84 1.84 0.81	0.64 0.66 1.01 1.01 0.45	3.52 2.93 10.1 10.1 9.76
4T-71453/71750	133	126	171	181	3.5	3.3	6.7	0.42	1.44	0.79	5.11
4T-68462/68712††	132	125	163	172	3.5	3.3	-5.4	0.50	1.21	0.66	2.78
#4T-JL724348/JL724314	132	127	156	163	3.3	3.3	-7.9	0.46	1.31	0.72	1.67
4T-95475/95925	149	137	209	217	6.4	3.3	14.0	0.37	1.62	0.89	12.6
4T-48286/48220	139	133	168	176	3.5	3.3	5.7	0.31	1.97	1.08	3.52
4T-48290/48220 4T-67388/67322 4T-74500/74850 4T-97500/97900 4T-HM926747/HM926710 4T-95500/95905 4T-HH228349/HH228310 4T-799/792	141 144 148 151 156 154 164	135 138 141 144 143 142 148	168 180 196 197 200 207 223	176 189 208 213 219.3 217 233.6	3.5 3.5 3.5 3.5 3.5 6.4 9.7	3.3 3.3 3.3 3.3 3.3 6.4	5.7 6.3 -2.2 -13.4 -13.5 14.0 23.4	0.31 0.34 0.49 0.74 0.74 0.37 0.32	1.97 1.74 1.23 0.81 0.81 1.62 1.87	1.08 0.96 0.68 0.45 0.45 0.89 1.03	3.33 5.1 7.04 8.43 8.83 12.9 18
4T-67389/67322 4T-799A/792	147 148	141 142	180 186	189 196	3.5 3.5	3.3 3.3	6.3 1.9	0.34 0.46	1.74 1.31	0.96 0.72	4.87 5.65
4T-L327249/L327210 2) Bearing numbers marked "#" desig	142	140	167	171 e tolerano	1.5	1.5	-3.7	0.35	1.72	0.95	1.7 Sto A-67

2) Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings i3) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.

Inch series J series



## *d* 133.350 ∼ 196.850mm

w 155.5	150.0	30111111						
	В	oundary dime	nsions		Basic load	rating	Allowabl	e speed
		mm			dynamic	static	mii	
7	D	TT.	D	a	kN	a	Grease	Oil
d	D	T	B	C	$C_{ m r}$	$C_{0r}$	lubrication	lubrication
	190.500	39.688	39.688	33.338	262	475	1 700	2 300
400.050	196.850	46.038	46.038	38.100	340	550	1 700	2 200 2 200
133.350	196.850 215.900	46.038 47.625	46.038 47.625	38.100 34.925	340 355	550 540	1 700 1 600	2 100
	234.950	63.500	63.500	49.212	580	825	1 500	2 000
	234.930	03.300	03.300	49.212	360	020	1 300	2 000
	190.500	39.688	39.688	33.338	262	475	1 700	2 300
136.525	228.600	57.150	57.150	44.450	495	735	1 500	2 000
	215.900	47.625	47.625	34.925	355	540	1 600	2 100
139.700	228.600	57.150	57.150	44.450	495	735	1 500	2 000
	254.000	66.675	66.675	47.625	610	910	1 400	1 800
	222 225	44.075	00.000	04.400	225	100	4.000	0.400
142.875	200.025	41.275	39.688	34.130	265	490	1 600	2 100
142.070	200.025	41.275	39.688	34.130	265	490	1 600	2 100
	193.675	28.575	28.575	23.020	183	340	1 600	2 200
146.050	254.000	66.675	66.675	47.625	610	910	1 400	1 800
	201.000	00.070	00.070	17.020	010	010	1 100	1 000
450 400	192.088	25.000	24.000	19.000	144	261	1 600	2 100
152.400	222.250	46.830	46.830	34.925	350	585	1 500	2 000
158,750	205.583	23.812	23.812	18.258	140	247	1 500	2 000
1001100	225.425	41.275	39.688	33.338	282	555	1 400	1 900
405 400	005 405	44.075	00.000	00.000	000		1 400	1 000
165.100	225.425	41.275	39.688	33.338	282	555	1 400	1 900
170.000	230.000	39.000	38.000	31.000	310	520	1 400	1 800
170.000	200.000	00.000	00.000	01.000	010	320	1 400	1 000
477.000	227.012	30.162	30.162	23.020	201	415	1 300	1 800
177.800	247.650	47.625	47.625	38.100	380	690	1 300	1 700
180.000	250.000	47.000	45.000	37.000	410	710	1 300	1 700
100.000								
190.000	260.000	46.000	44.000	36.500	405	720	1 200	1 600
106 050	041 200	00.010	00.017	17.460	177	220	1 000	1 600
196.850	241.300	23.812	23.017	17.462	177	330	1 200	1 600

Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≤</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	0	0.4	$Y_2$			

Static equivalent radial load

 $P_{0r} = 0.5F_r + Y_0F_a$ 

When  $P_{0r} < F_r$  use  $P_{0r} = F_r$ .

Bearing number 1)	I	Installat		l <b>ated dim</b> nm	ension	5	Load center ² mm	Constant	Axial load factors		<b>Mass</b> kg
					$r_{\rm as}$	$r_{\rm las}$	111111				
	$d_{\mathrm{a}}$	$d_{ m b}$	$D_{\rm a}$	$D_{\mathrm{b}}$	Max.	Max.	a	e	$Y_2$	$Y_0$	(approx.)
4T-48385/48320	148	142	177	184	3.5	3.3	4.0	0.32	1.87	1.03	3.64
4T-67390/67322	150	144	180	189	3.5	3.3	6.3	0.34	1.74	0.96	4.63
4T-67391/67322	157	143	180	189	8	3.3	6.3	0.34	1.74	0.96	
4T-74525/74850	152	146	196	208	3.5	3.3	-2.2	0.49	1.23	0.68	6.56
4T-95525/95925	166	148	209	217	9.7	3.3	14.0	0.37	1.62	0.89	11.3
4T-48393/48320	151	144	177	184	3.5	3.3	4.0	0.32	1.87	1.03	3.43
4T-896/892	156	150	205	216	3.5	3.3	6.0	0.42	1.43	0.78	9.12
4T-74550/74850	158	151	196	208	3.5	3.3	-2.2	0.49	1.23	0.68	6.05
4T-898/892	160	153	205	216	3.5	3.3	6.0	0.42	1.43	0.78	8.81
4T-99550/99100	170	156	227	238	7	3.3	12.1	0.41	1.47	0.81	14.3
4T-48684/48620	166	151	185	193	8	3.3	3.1	0.34	1.78	0.98	3.85
4T-48685/48620	158	151	185	193	3.5	3.3	3.1	0.34	1.78	0.98	3.89
4T-36690/36620	155	153	182	188	1.5	1.5	-5.0	0.37	1.63	0.90	2.26
4T-99575/99100	175	162	227	238	7	3.3	12.1	0.41	1.47	0.81	13.6
4T-L630349/L630310	162	158	183	187	2	2	-10.0	0.42	1.44	0.79	1.57
4T-M231648/M231610	178	163	207	213	8	1.5	5.9	0.33	1.80	0.99	5.7
4T-L432349/L432310	168	166	195	199	1.5	1.5	-9.8	0.37	1.61	0.88	1.89
4T-46780/46720	176	169	209	218	3.5	3.3	-2.6	0.38	1.57	0.86	5.19
4T-46790/46720	181	174	209	218	3.5	3.3	-2.6	0.38	1.57	0.86	4.68
#4T-JHM534149/JHM534110	184	178	217	224	3	2.5	-4.7	0.38	1.57	0.86	4.37
4T-36990/36920	188	186	214	221	1.5	1.5	-12.8	0.44	1.36	0.75	2.91
4T-67790/67720	194	188	229	240	3.5	3.3	-4.8	0.44	1.36	0.75	6.72
#4T-JM736149/JM736110	196	190.5	232	242.6	3	2.5	-9.0	0.48	1.25	0.69	6.74
#4T-JM738249/JM738210	206	200	242	252	3	2.5	-10.9	0.48	1.26	0.69	6.84
4T-LL639249/LL639210	205	203	232	236	1.5	1.5	-17.3	0.42	1.44	0.79	2.07

Note: Chamfer dimensions on the back face of the inner and outer rings of the bearing are larger than the maximum values of installation-related dimensions  $r_{\rm as}$  and  $r_{\rm 1as}$ .

¹⁾ Bearing numbers marked "#" designate J-series bearings. The tolerance of these bearings is listed in Table 6.8 on page A-66 to A-67.
2) Dimensions with "-" indicate a load center at the outside on the end of an inner ring.



## d 40 ~ 70mm

		Bound	dary dimen	sions		Basic load	rating	Fatigue load	Allowab	le speed
			mm			dynamic	static	limit	mi	
	_	_	~	45	45	kN	~	kΝ	Grease	Oil
d	D	$B_1$	C	$r_{\mathrm{s}\mathrm{min}^{\mathrm{1}\mathrm{)}}}$	$r_{ m 1s\ min}^{ m 1)}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	lubrication	lubrication
	80	45	37.5	1.5	0.6	116	134	_	4 100	5 500
	80	55	43.5	1.5	0.6	151	187	_	4 100	5 500
40	90	56	39.5	2	0.6	147	171	_	3 200	4 200
	90	56	45.5	2	0.6	174	204	_	3 700	4 900
	85	47	37.5	1.5	0.6	129	157	_	3 700	4 900
45	85	55	43.5	1.5	0.6	156	200	_	3 700	4 900
-10	100	60	41.5	2	0.6	183	218	_	2 800	3 800
	100	60	49.5	2	0.6	212	251	_	3 300	4 400
	-00	40	00.5	4.5	0.0	4.47	100		0.400	4.500
	90	49	39.5	1.5	0.6	147	186	_	3 400	4 500
50	90	55	43.5	1.5	0.6	166	218	26.6	3 400	4 500
50		64	43.5	2.5 2.5	0.6	216	260	_	2 600	3 500
	110 110	64 90	51.5 71.5	2.5	0.6 0.6	252 350	305 465	56.5	3 000 3 000	4 000 4 000
	110	90	71.5	2.5	0.0	350	400	56.5	3 000	4 000
	100	51	41.5	2	0.6	177	221	_	3 100	4 100
	100	60	48.5	2	0.6	206	269	33.0	3 100	4 100
55		70	49	2.5	0.6	251	305	_	2 400	3 100
	120	70	57	2.5	0.6	295	360	43.5	2 700	3 700
	120	97	76	2.5	0.6	410	550	67.0	2 700	3 700
	110	53	43.5	2	0.6	199	249	_	2 800	3 800
	110	66	54.5	2	0.6	247	330	40.0	2 800	3 800
60		74	51	3	1	286	350	_	2 200	2 900
	130	74	59	3	1	340	420	51.0	2 500	3 400
	130	104	81	3	1	465	625	76.5	2 500	3 400
	120	56	46.5	2	0.6	234	295		2 600	3 500
	120	73	61.5	2	0.6	300	410	50.0	2 600	3 500
65		79	53	3	1	330	410	30.0	2 000	2 700
03	140	79	63	3	1	385	475	 57.5	2 300	3 100
	140	108	84	3	1	520	700	85.0	2 300	3 100
	1 40	100	O r	- U		020	, 00	55.0	_ 000	0 100
	125	59	48.5	2	0.6	250	325	_	2 400	3 200
	125	74	61.5	2	0.6	315	440	53.5	2 400	3 200
70		83	57	3	1	365	460	_	1 900	2 500
	150	83	67	3	1	435	545	64.0	2 200	2 900
	150	116	92	3	1	590	805	95.5	2 200	2 900

#### 1) Smallest allowable dimension for chamfer dimension r or $r_1$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F_a}{F_1}$	;>e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

Bearing number			mm	dimensi	ons	Load center mm		Axial	load fac	tors	<b>Mass</b> kg
	$d_{ m a}$ Min.	$D_{ m b}$ Min.	$S_{ m b}$ Min.	$r_{ m as}$ Max.	$r_{ m 1as}$ Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
4T-430208X	48.5	75	3.5	1.5	0.6	38.5	0.37	1.80	2.68	1.76	0.956
4T-432208X	48.5	75	5.5	1.5	0.6	43.5	0.37	1.80	2.68	1.76	1.18
4T-430308DX	50	86.5	8	2	0.6	64.5	0.83	0.82	1.22	0.80	1.59
4T-430308	50	83.5	5	2	0.6	44.5	0.35	1.96	2.91	1.91	1.7
4T-430209	53.5	80	4.5	1.5	0.6	42	0.40	1.67	2.48	1.63	1.08
4T-432209	53.5	81	5.5	1.5	0.6	46	0.40	1.67	2.48	1.63	1.27
4T-430309DX	55	96.5	9	2	0.6	70	0.83	0.82	1.22	0.80	2.11
4T-430309	55	93.5	5	2	0.6	47.5	0.35	1.96	2.91	1.91	2.17
4T 400040	50.5	0.5	4.5	4.5	0.0	45	0.40	4.04	0.00	4	4.00
4T-430210	58.5	85	4.5	1.5	0.6	45	0.42	1.61	2.39	1.57	1.23
432210U 4T-430310DX	58.5 62	86 104.5	5.5 10	1.5 2	0.6 0.6	47.5 75	0.42 0.83	1.61 0.82	2.39 1.22	1.57 0.80	1.4 2.7
4T-430310DX	62	104.5	6	2	0.6	75 51	0.85	1.96	2.91	1.91	2.7
432310U	62	102.5	9	2	0.6	62.5	0.35	1.96	2.91	1.91	3.98
4020100	02	102.5			0.0	02.5	0.00	1.30	2.31	1.51	0.30
4T-430211X	65	95	4.5	2	0.6	47.5	0.40	1.67	2.48	1.63	1.57
432211U	65	96	5.5	2	0.6	47.5	0.40	1.67	2.48	1.63	1.89
4T-430311DX	67	113.5	10.5	2	0.6	83	0.83	0.82	1.22	0.80	3.42
430311XU	67	112.5	6.5	2	0.6	56	0.35	1.96	2.91	1.91	3.57
432311U	67	111.5	10.5	2	0.6	66.5	0.35	1.96	2.91	1.91	5.05
4T-430212X	70	104	4.5	2	0.6	49.5	0.40	1.67	2.48	1.63	1.99
432212U	70	105	5.5	2	0.6	56	0.40	1.67	2.48	1.63	2.49
4T-430312DX	74	124	11.5	2.5	1	88.5	0.83	0.82	1.22	0.80	4.3
430312U	74	122	7.5	2.5	1	60	0.35	1.96	2.91	1.91	4.31
432312U	74	121.5	11.5	2.5	1	71	0.35	1.96	2.91	1.91	6.39
4T-430213X	75	114.5	4.5	2	0.6	54	0.40	1.67	2.48	1.63	2.56
432213U	75	115.5	5.5	2	0.6	62	0.40	1.67	2.48	1.63	3.41
4T-430313DX	79	133.5	13	2.5	1	94.5	0.83	0.82	1.22	0.80	5.26
430313XU	79	131.5	8	2.5	1	64	0.35	1.96	2.91	1.91	5.41
432313U	79	131.5	12	2.5	1	74.5	0.35	1.96	2.91	1.91	7.55
4T-430214	80	119	5	2	0.6	57.5	0.42	1.61	2.39	1.57	2.83
432214U	80	120.5	6	2	0.6	65	0.42	1.61	2.39	1.57	3.65
4T-430314DX	84	142.5	13	2.5	1	101.5	0.83	0.82	1.22	0.80	6.32
430314XU	84	141	8	2.5	1	67	0.35	1.96	2.91	1.91	6.53
432314U	84	141	12	2.5	1	80.5	0.35	1.96	2.91	1.91	9.28



## d 75 $\sim$ 105mm

		Boun	dary dimen	sions		Basic load	rating	Fatigue load	Allowab	le speed
			mm			dynamic	static	limit	miı	
,	D	n	a	1)	1)	kN	a	kN	Grease	Oil
d	D	$B_1$	C	$r_{\mathrm{s}\mathrm{min}^{1)}}$	$r_{1 \text{s min}}^{1)}$	$C_{ m r}$	$C_{0\mathbf{r}}$	$C_{ m u}$	lubrication	lubrication
	130	62	51.5	2	0.6	264	350	_	2 300	3 000
	130	74	61.5	2	0.6	320	445	54.0	2 300	3 000
75	160	87	59	3	1	410	510	59.5	1 700	2 300
	160	87	69	3	1	485	605	70.0	2 000	2 700
	160	125	99	3	1	675	935	109	2 000	2 700
	140	64	51.5	2.5	0.6	305	400	47.5	2 100	2 800
	140	78	63.5	2.5	0.6	380	530	63.0	2 100	2 800
80	170	92	61	3	1	450	565	64.5	1 600	2 200
	170	92	73	3	1	555	700	79.5	1 900	2 500
	170	131	104	3	1	755	1 050	120	1 900	2 500
	150	70	57	2.5	0.6	345	465	54.0	2 000	2 700
	150	86	69	2.5	0.6	425	600	70.0	2 000	2 700
85	180	98	65	4	1	470	585	66.0	1 500	2 100
	180	98	77	4	1	580	725	81.0	1 800	2 400
	180	137	108	4	1	765	1 050	118	1 800	2 400
	160	74	61	2.5	0.6	395	535	61.0	1 900	2 500
	160	94	77	2.5	0.6	500	720	82.5	1 900	2 500
90	190	102	69	4	1	515	645	71.0	1 500	1 900
	190	102	81	4	1	640	815	89.0	1 700	2 300
	190	144	115	4	1	855	1 190	131	1 700	2 300
	170	78	63	3	1	430	580	65.0	1 800	2 400
	170	100	83	3	1	570	835	93.5	1 800	2 400
95	200	108	85	4	1	700	890	96.5	1 600	2 100
	200	151	118	4	1	955	1 340	146	1 600	2 100
	180	83	67	3	1	490	675	74.5	1 700	2 200
100	180	107	87	3	1	630	925	102	1 700	2 200
100	215	112	87	4	1	780	995	106	1 500	2 000
	215	162	127	4	1	1 090	1 540	164	1 500	2 000
105	190	88	70	3	1	545	760	82.5	1 600	2 100
105	190	115	95	3	1	720	1 080	118	1 600	2 100



1 1 2	11 1	11 α	
$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F_a}{F_1}$	>e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

Bearing number	Ab	utment	and fillet	dimensi	ons	Load	Constant	Axial	load fac	tors	Mass
						center					l. or
	$d_{\mathrm{a}}$	$D_{\rm b}$	$S_{ m b}$	$r_{\rm as}$	$r_{1as}$	mm					kg
	Min.	Min.	Min.	Max.	Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
4T-430215	85	125	5	2	0.6	61.5	0.44	1.55	2.31	1.52	3.1
432215U	85	125.5	6	2	0.6	67	0.44	1.55	2.31	1.52	3.68
430315DU	89	152.5	14	2.5	1	107	0.83	0.82	1.22	0.80	7.31
430315XU	89	150.5	9	2.5	1	70.5	0.35	1.96	2.91	1.91	7.71
432315U	89	150.5	13	2.5	1	87.5	0.35	1.96	2.91	1.91	11.5
430216XU	92	133	6	2	0.6	63	0.42	1.61	2.39	1.57	3.76
432216XU	92	135	7	2	0.6	69.5	0.42	1.61	2.39	1.57	4.7
430316DU	94	160.5	15.5	2.5	1	113.5	0.83	0.82	1.22	0.80	8.99
430316XU	94	160	9.5	2.5	1	75.5	0.35	1.96	2.91	1.91	9.4
432316U	94	161.5	13.5	2.5	1	91	0.35	1.96	2.91	1.91	13.6
430217XU	97	141.5	6.5	2	0.6	69	0.42	1.61	2.39	1.57	4.76
432217XU	97	143.5	8.5	2	0.6	76.5	0.42	1.61	2.39	1.57	5.99
430317DU	103	170	16.5	3	1	121.5	0.83	0.82	1.22	0.80	10.4
430317XU	103	168	10.5	3	1	80	0.35	1.96	2.91	1.91	10.8
432317U	103	169	14.5	3	1	96	0.35	1.96	2.91	1.91	15.4
430218U	102	151	6.5	2	0.6	73	0.42	1.61	2.39	1.57	5.85
432218U	102	153.5	8.5	2	0.6	81	0.42	1.61	2.39	1.57	7.35
430318DU	108	180.5	16.5	3	1	127	0.83	0.82	1.22	0.80	12.2
430318U	108	177.5	10.5	3	1	84	0.35	1.96	2.91	1.91	12.5
432318U	108	179	14.5	3	1	100	0.35	1.96	2.91	1.91	18.3
430219XU	109	160.5	7.5	2.5	1	76.5	0.42	1.61	2.39	1.57	6.85
432219XU	109	163	8.5	2.5	1	86.5	0.42	1.61	2.39	1.57	9.2
430319XU	113	185.5	11.5	3	1	89	0.35	1.96	2.91	1.91	14.6
432319U	113	187.5	16.5	3	1	106	0.35	1.96	2.91	1.91	21
430220XU	114	169.5	8	2.5	1	81.5	0.42	1.61	2.39	1.57	8.27
432220XU	114	172	10	2.5	1	92	0.42	1.61	2.39	1.57	11
430320XU	118	198.5	12.5	3	1	92	0.35	1.96	2.91	1.91	17.9
432320U	118	201.5	17.5	3	1	112.5	0.35	1.96	2.91	1.91	26.8
430221XU	119	178.5	9	2.5	1	86	0.42	1.61	2.39	1.57	9.8
432221XU	119	181.5	10	2.5	1	97.5	0.42	1.61	2.39	1.57	13.3

1) Smallest allowable dimension for chamfer dimension r or  $r_1$ .

B-194 B-195



## *d* 110 ∼ 150mm

		Boun	dary dimer	sions		Basic load	l rating	Fatigue load	Allowab	le speed
			mm			dynamic	static	limit	mi	
,	ъ	70	~	1)	1)	, kN		kN	Grease	Oil
d	D	$B_1$	C	$r_{ m s~min}^{1)}$	$r_{ m 1s\ min}^{ m 1)}$	$C_{ m r}$	$C_{0\mathbf{r}}$	$C_{\mathrm{u}}$	lubrication	lubrication
_										
	180	56	50	2.5	0.6	253	340	37.5	1 600	2 200
	180	70	56	2.5	0.6	330	485	53.0	1 600	2 200
110	200	92	74	3	1	615	865	92.5	1 500	2 000
	200	121	101	3	1	800	1 210	130	1 500	2 000
	240	118	93	4	1	910	1 170	120	1 400	1 800
	240	181	142	4	1	1 340	1 940	199	1 400	1 800
	180	46	41	2.5	0.6	214	298	32.0	1 500	2 100
	180	58	46	2.5	0.6	255	375	40.0	1 500	2 100
	200	62	55	2.5	0.6	291	435	46.0	1 500	2 000
400	200	78	62	2.5	0.6	415	610	64.5	1 500	2 000
120	215	97	78	3	1	660	940	98.5	1 400	1 900
	215	132	109	3	1	875	1 360	143	1 400	1 900
	260	128	101	4	1	1 060	1 390	139	1 200	1 700
	260	188	145	4	1	1 550	2 270	228	1 200	1 700
	200	52	46	2.5	0.6	249	365	38.5	1 400	1 900
	200	65	52	2.5	0.6	325	490	51.5	1 400	1 900
	210	64	57	2.5	0.6	350	485	50.5	1 400	1 800
400	210	80	64	2.5	0.6	455	675	70.5	1 400	1 800
130	230	98	78.5	4	1	710	1 010	103	1 300	1 700
	230	145	117.5	4	1	1 010	1 630	167	1 300	1 700
	280	137	107.5	5	1.5	1 430	1 660	162	1 200	1 600
	280	205	163.5	4	1.5	1 960	2 470	243	1 200	1 600
	210	53	47	2.5	0.6	291	415	43.0	1 300	1 800
	210	66	53	2.5	0.6	335	535	55.0	1 300	1 800
	225	68	61	3	1	410	580	59.0	1 200	1 700
	225	84	68	3	i	435	650	66.0	1 200	1 700
140		102	82.5	4	1	800	1 140	114	1 200	1 600
	250	153	125.5	4	1	1 160	1 840	184	1 200	1 600
	300	145	115.5	5	1.5	1 620	1 900	183	1 100	1 500
	300	145	115.5	4	1.5	1 220	1 560	150	1 100	1 400
	300	223	177.5	4	1.5	2 170	2 740	264	1 100	1 500
	225	56	50	3	1	305	430	43.5	1 200	1 600
4.54		70	56	3	1	395	630	64.0	1 200	1 600
150	250	80	71	3	1	540	805	79.5	1 200	1 500
	250	100	80	3	1	670	1 040	103	1 200	1 500
	200	100	00	J		070	1 0-10	100	1 200	1 300

#### 1) Smallest allowable dimension for chamfer dimension r or $r_1$ .



$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}}$	->e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

	$d_{\mathrm{a}}$		Abutment and fillet dimen			center			t Axial load factors		Mass
		D	mm		24	mm					kg
	Min.	$D_{ m b}$ Min.	$S_{ m b}$ Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
413122	122	170.5	3	2	0.6	66.5	0.40	1.68	2.50	1.64	4.93
423122	122	167.5	7	2	0.6	66.5	0.33	2.03	3.02	1.98	6.38
430222XU	124	188.5	9	2.5	1	90	0.42	1.61	2.39	1.57	11.4
432222XU	124	192	10	2.5	1	102.5	0.42	1.61	2.39	1.57	15.8
430322U	128	222	12.5	3	1	99	0.35	1.96	2.91	1.91	23.9
432322U	128	224	19.5	3	1	127	0.35	1.96	2.91	1.91	37.4
413024	132	172	2.5	2	0.6	59	0.37	1.80	2.69	1.76	3.85
423024	132	171.5	6	2	0.6	66	0.37	1.80	2.69	1.76	4.35
413124	132	185.5	3.5	2	0.6	76.5	0.43	1.57	2.34	1.53	7.24
423124	132	189.5	8	2	0.6	76.5	0.37	1.80	2.69	1.76	8.69
430224XU	134	203	9.5	2.5	1	98	0.44	1.55	2.31	1.52	13.8
432224XU	134	206	11.5	2.5	1	112.5	0.44	1.55	2.31	1.52	19.2
430324XU	138	239	13.5	3	1	107	0.35	1.96	2.91	1.91	30.3
432324U	138	240.5	21.5	3	1	129.5	0.35	1.96	2.91	1.91	47
413026	142	188	3	2	0.6	66	0.37	1.80	2.69	1.76	5.55
423026	142	190.5	6.5	2	0.6	71.5	0.37	1.80	2.69	1.76	6.62
413126	142	197	3.5	2	0.6	69	0.33	2.03	3.02	1.98	7.83
423126	142	199.5	8	2	0.6	79.5	0.37	1.80	2.69	1.76	9.4
430226XU	148	218	9.5	3	1	101.5	0.44	1.55	2.31	1.52	15.3
432226XU	148	220.5	13.5	3	1	123.5	0.44	1.55	2.31	1.52	24
* 430326XUUTG	152	257.5	14.5	4	1.5	116.5	0.35	1.96	2.91	1.91	37.9
* 432326UTG	148	264	20.5	3	1.5	143	0.35	1.95	2.90	1.91	56.6
413028	152	200	3	2	0.6	68.5	0.37	1.80	2.69	1.76	5.73
423028	152	198	6.5	2	0.6	75	0.37	1.84	2.74	1.80	7.07
413128	154	212	3.5	2.5	1	73.5	0.33	2.03	3.02	1.98	9.29
423128	154	211	8	2.5	1	88	0.37	1.80	2.69	1.76	11.1
430228XU	158	235	9.5	3	1	107.5	0.44	1.55	2.31	1.52	19.2
432228XU	158	239.5	13.5	3	1	131.5	0.44	1.55	2.31	1.52	30
* 430328XUUTG	162	275.5	14.5	4	1.5	122.5	0.35	1.96	2.91	1.91	45.3
430328X	158	275.5	14.5	4	1.5	123.5	0.35	1.95	2.90	1.91	43.2
* 432328UTG	158	280.5	22.5	3	1.5	156	0.35	1.95	2.90	1.91	68.9
413030	164	213.5	3	2.5	1	73.5	0.37	1.80	2.69	1.76	6.66
423030	164	213	7	2.5	1	79.5	0.37	1.80	2.69	1.76	8.48
413130	164	232.5	4.5	2.5	1	83.5	0.33	2.03	3.02	1.98	14.6
423130	164	236	10	2.5	1	96.5	0.37	1.80	2.69	1.76	17.6

Bearing numbers marked "*" designate ULTAGE series bearings.



## *d* 150 ∼ 200mm

		Boun	dary dime	nsions		Basic loa	d rating	Fatigue load	Allowab	le speed
			mm			dynamic	static	limit	mi	
,	70	n	a	1)	1)	kN		kN	Grease	Oil
d	D	$B_1$	C	$r_{\rm s  min}^{1)}$	$r_{1 \text{s min}}^{1)}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\mathrm{u}}$	lubrication	lubrication
	270	109	87	4	1	855	1 210	118	1 100	1 500
150	270	164	130	4	1	1 330	2 140	209	1 100	1 500
	320	154	120	5	1.5	1 810	2 140	201	990	1 400
	240	60	53	3	1	370	535	53.0	1 100	1 500
	240	75	60	3	i	475	765	76.0	1 100	1 500
	270	86	76	3	i	760	965	93.0	1 100	1 600
160		108	86	3	i	865	1 180	114	1 100	1 600
.00	290	115	91	4	i	1 150	1 440	137	1 000	1 400
	290	178	144	4	1	1 960	2 840	272	1 000	1 400
	340	160	126	5	1.5	2 010	2 390	221	920	1 300
	0.10	100	120		1.0	2 010	2 000	'	020	1 000
	260	67	60	3	1	405	620	60.0	1 100	1 400
	260	84	67	3	1	545	865	83.5	1 100	1 400
170	280	88	78	3	1	705	900	86.0	1 000	1 500
170	280	110	88	3	1	930	1 270	122	1 000	1 500
	310	125	97	5	1.5	1 340	1 690	159	950	1 400
	310	192	152	5	1.5	2 190	3 200	300	950	1 400
	280	74	66	3	1	545	735	69.5	1 000	1 400
	280	93	74	3	1	745	1 050	99.5	1 000	1 400
400	300	96	85	4	1.5	910	1 190	111	940	1 400
180	300	120	96	4	1.5	1 130	1 530	144	940	1 400
	320	127	99	5	1.5	1 380	1 780	165	890	1 300
	320	192	152	5	1.5	2 260	3 350	315	890	1 300
	290	75	67	3	1	555	740	69.5	940	1 400
	290	94	75	3	i	790	1 110	104	940	1 400
	320	104	92	4	1.5	1 000	1 280	118	890	1 300
190	320	130	104	4	1.5	1 260	1 710	157	890	1 300
	340	133	105	5	1.5	1 570	2 010	183	840	1 200
	340	204	160	5	1.5	2 530	3 700	335	840	1 200
	010	00	70	0		000	0.40	07.0	000	1.000
	310	82 103	73 82	3	1	680	940 1 320	87.0 121	900 900	1 300
	310 340	112	100	3 4	1.5	920 1 240	1 660	150	840	1 300 1 200
200	340	140	112	4	1.5	1 400		173	840	1 200
	360	140			1.5		1 910 2 210	173	840	1 100
	360	218	110 174	5 5	1.5	1 730 2 900	4 250	380	800	1 100
	300	210	1/4	Э	1.5	2 900	4 250	300	600	1 100

#### 1) Smallest allowable dimension for chamfer dimension r or $r_1$ .



$\frac{F_{\rm a}}{\overline{F}_{\rm r}}$	<b>≤</b> e	$\frac{F_{z}}{F_{1}}$	:>e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

Bearing number ²⁾		outment	mm	t dimensi	ons	Load Constant center mm		Axial	load fac	tors	<b>Mass</b> kg
	$d_{ m a}$ Min.	$D_{ m b}$ Min.	$S_{ m b}$ Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
430230U	168	251.5	11	3	1	114	0.44	1.55	2.31	1.52	24.1
432230XU	168	256	17	3	1	139	0.44	1.55	2.31	1.52	38
* 430330UUTG	172	294.5	17	4	1.5	131.5	0.35	1.96	2.91	1.91	54.6
413032	174	228.5	3.5	2.5	1	79	0.37	1.80	2.69	1.76	8.39
423032	174	228.5	7.5	2.5	1	85.5	0.37	1.80	2.69	1.76	10.7
* 413132UTG	174	256	5	2.5	1	98.5	0.40	1.68	2.50	1.64	18.2
* 423132UTG	174	252	11	2.5	1	106	0.37	1.80	2.69	1.76	22.5
* 430232UUTG	178	271	12	3	1	122	0.44	1.55	2.31	1.52	29.3
* 432232UUTG	178	277	17	3	1	149.5	0.44	1.55	2.31	1.52	49.9
* 430332XUUTG	182	312.5	17	4	1.5	137.5	0.35	1.96	2.91	1.91	63.8
413034	184	243.5	3.5	2.5	1	86.5	0.37	1.80	2.69	1.76	11.6
423034	184	245.5	8.5	2.5	1	93.5	0.37	1.80	2.69	1.76	14.3
* 413134UTG	184	262	5	2.5	1	104	0.40	1.68	2.50	1.64	19.2
* 423134UTG	184	262	11	2.5	1	108.5	0.37	1.80	2.69	1.76	24.2
* 430234UUTG	192	290.5	14	4	1.5	132.5	0.44	1.55	2.31	1.52	37.1
* 432234XUUTG	192	296	20	4	1.5	160	0.44	1.55	2.31	1.52	61.3
* 413036UTG	194	262	4	2.5	1	94	0.37	1.80	2.69	1.76	15.2
* 423036UTG	194	264	9.5	2.5	1	102	0.37	1.80	2.69	1.76	19
* 413136UTG	198	282	5.5	3	1.5	110.5	0.40	1.68	2.50	1.64	25
* 423136UTG	198	281	12	3	1.5	119	0.37	1.80	2.69	1.76	30.1
* 430236UUTG	202	300	14	4	1.5	139	0.45	1.50	2.23	1.47	39.1
* 432236UUTG	202	305.5	20	4	1.5	165	0.45	1.50	2.23	1.47	63.8
* 413038UTG	204	272.5	4	2.5	1	96	0.37	1.80	2.69	1.76	15.9
* 423038UTG	204	274	9.5	2.5	1	104.5	0.37	1.80	2.69	1.76	16.1
* 413138UTG	208	303	6	3	1.5	118.5	0.40	1.68	2.50	1.64	30.3
* 423138UTG	208	302	13	3	1.5	126.5	0.37	1.80	2.69	1.76	37.7
* 430238UUTG	212	321	14	4	1.5	141.5	0.44	1.55	2.31	1.52	47
* 432238UUTG	212	325.5	22	4	1.5	173.5	0.44	1.55	2.31	1.52	75.6
* 413040UTG	214	289.5	4.5	2.5	1	103	0.37	1.80	2.69	1.76	20.9
* 423040UTG	214	293	10.5	2.5	1	112	0.37	1.80	2.69	1.76	26.6
* 413140UTG	218	320	6	3	1.5	125.5	0.40	1.68	2.50	1.64	38.6
* 423140UTG	218	319	14	3	1.5	134.5	0.37	1.80	2.69	1.76	47.3
* 430240UUTG	222	338	16	4	1.5	154	0.44	1.55	2.31	1.52	55.8
* 432240UUTG	222	342.5	22	4	1.5	180	0.41	1.66	2.47	1.62	91.5

²⁾ Bearing numbers marked "*" designate ULTAGE series bearings.



*d* 220 ∼ 340mm

		Boun	dary dime	nsions		Basic loa	d rating	Fatigue load	Allowab	lowable speed	
			mm			dynamic	static	limit	mi		
			~	4)	4)	, kl		kN	Grease	Oil	
d	D	$B_1$	C	$r_{\rm s  min}^{1)}$	$r_{ m 1s\ min}^{ m 1)}$	$C_{ m r}$	$C_{0\mathbf{r}}$	$C_{ m u}$	lubrication	lubrication	
	340	90	80	4	1.5	765	1 060	94.5	810	1 200	
	340	113	90	4	1.5	1 130	1 650	148	810	1 200	
220	370	120	107	5	1.5	1 420	1 920	169	760	1 100	
	370	150	120	5	1.5	1 570	2 260	199	760	1 100	
	400	158	122	4	1.5	1 790	2 440	212	710	1 000	
	360	92	82	4	1.5	840	1 160	101	730	1 000	
	360	115	92	4	1.5	1 170	1 770	155	730	1 000	
	400	128	114	5	1.5	1 580	2 130	183	690	1 000	
240	400	160	128	5	1.5	1 790	2 600	223	690	1 000	
	440	165	127	4	1.5	2 150	2 960	250	640	900	
	440	266	212	4	1.5	3 750	5 500	465	640	900	
	440	200	212	7	1.0	0 7 0 0	3 300	400	0+0	300	
	400	104	92	5	1.5	1 070	1 540	131	670	1 000	
260	400	130	104	5	1.5	1 470	2 190	187	670	1 000	
200	440	144	128	5	1.5	1 920	2 630	220	630	910	
	440	180	144	5	1.5	2 510	3 750	310	630	910	
	420	106	94	5	1.5	1 140	1 630	137	620	880	
000	420	133	106	5	1.5	1 540	2 340	196	620	880	
280	460	146	130	6	2	2 100	2 900	239	580	830	
	460	183	146	6	2	2 480	3 650	300	580	830	
	460	118	105	5	1.5	1 370	1 990	163	570	810	
	460	148	118	5	1.5	2 070	3 150	257	570 570	810	
300	500	160	142	6	2	2 580	3 600	290	530	770	
	500	200	160	6	2	2 690	4 050	325	530	770	
	500	200	100	-		2 000	+ 000	020	500	770	
	480	121	108	5	1.5	1 520	2 250	181	530	750	
320	480	151	121	5	1.5	2 030	3 100	247	530	750	
320	540	176	157	6	2	2 870	4 100	320	500	710	
	540	220	176	6	2	3 200	4 900	385	500	710	
	520	133	118	6	2	1 890	2 870	226	500	700	
	520	165	133	6	2	2 420	3 750	295	500	700	
340	580	190	169	6	2	3 450	4 900	380	460	660	
	580	238	190	6	2	4 300	6 500	500	460	660	
	500	_00		•	_		0 000	000	.50	550	

B-200





Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

Bearing number ²⁾	Al	outment		dimensi	ons	Load center	Constant	Axial	load fac	tors	Mass
	_1	D	mm			mm					kg
	$d_{ m a}$ Min.	$D_{ m b}$ Min.	$S_{ m b}$ Min.	$r_{ m as}$ Max.	$r_{ m 1as}$ Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
* 413044UTG	238	320	5	3	1.5	111.5	0.37	1.80	2.69	1.76	27.1
* 423044UTG	238	321	11.5	3	1.5	124.5	0.37	1.80	2.69	1.76	33
* 413144UTG	242	349	6.5	4	1.5	135	0.40	1.68	2.50	1.64	47.8
* 423144UTG	242	344	15	4	1.5	154	0.40	1.68	2.50	1.64	58.1
* 430244UTG	238	368	18	3	1.5	178.5	0.49	1.38	2.06	1.35	77
* 413048UTG	258	341	5	3	1.5	117.5	0.37	1.80	2.69	1.76	29.1
* 423048UTG	258	340.5	11.5	3	1.5	130.5	0.37	1.80	2.69	1.76	36.3
* 413148UTG	262	378	7	4	1.5	144.5	0.40	1.68	2.50	1.64	58.5
* 423148UTG	262	376	16	4	1.5	164	0.40	1.68	2.50	1.64	71.4
* 430248UTG	258	406	19	3	1.5	189	0.49	1.38	2.06	1.35	100
* 432248UTG	258	421.5	27	3	1.5	226	0.43	1.57	2.34	1.53	160
* 413052UTG	282	375	6	4	1.5	130.5	0.37	1.80	2.69	1.76	43.4
* 423052UTG	282	377	13	4	1.5	143	0.37	1.80	2.69	1.76	53
* 413152UTG	282	415	8	4	1.5	161	0.40	1.68	2.50	1.64	82
* 423152UTG	282	416	18	4	1.5	176.5	0.40	1.68	2.50	1.64	100
* 413056UTG	302	396.5	6	4	1.5	136.5	0.37	1.80	2.69	1.76	46
* 423056UTG	302	399.5	13.5	4	1.5	148.5	0.37	1.80	2.69	1.76	56.8
* 413156UTG	308	438	8	5	2	168	0.40	1.68	2.50	1.64	85.5
* 423156UTG	308	435.5	18.5	5	2	182.5	0.40	1.68	2.50	1.64	110
* 413060UTG	322	431	6.5	4	1.5	151	0.37	1.80	2.69	1.76	65.6
* 423060UTG	322	436.5	15	4	1.5	163	0.37	1.80	2.69	1.76	77.8
* 413160UTG	328	475	9	5	2	182	0.40	1.68	2.50	1.64	110
* 423160UTG	328	467	20	5	2	201.5	0.40	1.68	2.50	1.64	140
* 413064UTG	342	452	6.5	4	1.5	156.5	0.37	1.80	2.69	1.76	69.2
* 423064UTG	342	457.5	15	4	1.5	170	0.37	1.80	2.69	1.76	82
* 413164UTG	348	509	9.5	5	2	197.5	0.40	1.68	2.50	1.64	150
* 423164UTG	348	504.5	22	5	2	216.5	0.40	1.68	2.50	1.64	190
* 413068UTG	368	491	7.5	5	2	169.5	0.37	1.80	2.69	1.76	93.1
* 423068UTG	368	492	16	5	2	184	0.37	1.80	2.69	1.76	110
* 413168UTG	368	548	10.5	5	2	213	0.40	1.68	2.50	1.64	190
* 423168UTG	368	546	24	5	2	237	0.40	1.68	2.50	1.64	240



¹⁾ Smallest allowable dimension for chamfer dimension r or  $r_1$ .

²⁾ Bearing numbers marked "*" designate ULTAGE series bearings.

# Double Row Tapered Roller Bearings

NTN

# Double Row Tapered Roller Bearings

NTN

Back-to-back arrangement



*d* 360 ∼ 500mm

		Boun	dary dime	nsions		Basic loa	d rating	Fatigue load	Allowabl	e speed
			mm			dynamic	static	limit	mir	
	ъ		~	1)	1)	kl a	N a	kN	Grease	Oil
d	D	$B_1$	C	$r_{\mathrm{s}\mathrm{min}^{1)}}$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$	$C_{\mathrm{r}}$	$C_{0\mathrm{r}}$	$C_{\mathrm{u}}$	lubrication	lubrication
	540	134	120	6	2	1 880	2 810	218	460	660
	540	169	134	6	2	2 630	4 200	325	460	660
360	600	192	171	6	2	3 500	5 050	385	430	620
	600	240	192	6	2	4 100	6 500	495	430	620
	560	135	122	6	2	2 170	3 350	255	440	620
	560	171	135	6	2	2 670	4 350	335	440	620
380	620	194	173	6	2	3 650	5 250	395	410	580
	620	243	194	6	2	4 250	6 700	505	410	580
	020				_	. 200	0.00			000
	600	148	132	6	2	2 390	3 700	276	410	580
400	600	185	148	6	2	3 250	5 450	410	410	580
400	650	200	178	6	3	3 850	5 800	430	380	540
	650	250	200	6	3	4 800	7 850	580	380	540
	620	150	134	6	2	2 710	4 250	315	390	550
420	620	188	150	6	2	3 400	5 900	435	390	550
420	700	224	200	6	3	4 750	7 200	525	360	510
	700	280	224	6	3	6 150	9 700	705	360	510
	650	157	140	6	3	3 150	5 150	375	370	520
440	650	196	157	6	3	3 350	5 450	400	370	520
440	720	226	201	6	3	5 150	7 800	560	340	480
	720	283	226	6	3	6 400	10 300	740	340	480
	680	163	145	6	3	3 350	5 350	390	350	500
460	680	204	163	6	3	3 950	6 750	485	350	500
400	760	300	240	7.5	4	6 300	10 300	725	320	450
	700	405	4.47	0	0	0.000	5.000	000	000	470
400	700	165	147	6	3	3 200	5 000	360	330	470
480		206	165	6	3	3 900	6 700	480	330	470
	790	310	248	7.5	4	6 750	11 100	775	310	430
	720	167	149	6	3	3 350	5 400	380	320	450
500	720	209	167	6	3	3 950	6 900	485	320	450
	830	264	235	7.5	4	6 700	10 500	725	290	410



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F_{i}}{F_{i}}$	>e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

Bearing number 2)	Ab	outment a	and fillet	dimensi	ons	Load center		Axial	load fac	tors	Mass
			mm			mm					kg
	$d_{\mathrm{a}}$	$D_{\rm b}$	$S_{ m b}$	$r_{\rm as}$	$r_{1as}$						J
	Min.	Min.	Min.	Max.	Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
* 413072UTG	388	510	7	5	2	176	0.37	1.80	2.69	1.76	98.2
* 423072UTG	388	512	17.5	5	2	192	0.37	1.80	2.69	1.76	120
* 413172UTG	388	565	10.5	5	2	218.5	0.40	1.68	2.50	1.64	200
* 423172UTG	388	563.5	24	5	2	239.5	0.40	1.68	2.50	1.64	250
* 413076UTG	408	532	6.5	5	2	183	0.37	1.80	2.69	1.76	100
* 423076UTG	408	532	18	5	2	196.5	0.37	1.80	2.69	1.76	130
* 413176UTG	408	587	10.5	5	2	224.5	0.40	1.68	2.50	1.64	210
* 423176UTG	408	582	24.5	5	2	249	0.40	1.68	2.50	1.64	260
* 413080UTG	428	567	8	5	2	194	0.37	1.80	2.69	1.76	130
* 423080UTG	428	567	18.5	5	2	210	0.37	1.80	2.69	1.76	170
* 413180UTG	428	614	11	5	2.5	232	0.40	1.68	2.50	1.64	240
* 423180UTG	428	613.5	25	5	2.5	256.5	0.40	1.68	2.50	1.64	290
* 413084UTG	448	589	8	5	2	199.5	0.37	1.80	2.69	1.76	140
* 423084UTG	448	586	19	5	2	220	0.37	1.80	2.69	1.76	180
* 413184UTG	448	658.5	12	5	2.5	258	0.40	1.68	2.50	1.64	320
* 423184UTG	448	663	28	5	2.5	287	0.40	1.68	2.50	1.64	380
* 413088UTG	468	618	8.5	5	2.5	208	0.37	1.80	2.69	1.76	160
* 423088UTG	468	617.5	19.5	5	2.5	229.5	0.37	1.80	2.69	1.76	190
* 413188UTG	468	675	12.5	5	2.5	263	0.40	1.68	2.50	1.64	330
* 423188UTG	468	681.5	28.5	5	2.5	288.5	0.40	1.68	2.50	1.64	460
* 413092UTG	488	650	9	5	2.5	217.5	0.37	1.80	2.69	1.76	180
* 423092UTG	488	647.5	20.5	5	2.5	239.5	0.37	1.80	2.69	1.76	230
* 423192UTG	496	715.5	30	6	3	305	0.40	1.68	2.50	1.64	480
* 41200CUTC	FOR	660	0	-	0.5	200 5	0.07	1.00	0.60	1.70	100
* 413096UTG * 423096UTG	508 508	669 667.5	9 20.5	5	2.5 2.5	222.5 245.5	0.37 0.37	1.80 1.80	2.69	1.76 1.76	190 240
* 423096UTG * 423196UTG	516	761.5	31	5 6	3	328.5	0.37	1.68	2.50	1.64	540
7 423 1300 IG	סוכ	701.5	31	O	3	320.3	0.40	1.00	2.50	1.04	340
* 4130/500UTG	528	690	9	5	2.5	230	0.37	1.80	2.69	1.76	200
* 4230/500UTG	528	687	21	5	2.5	249.5	0.37	1.80	2.69	1.76	250
* 4131/500UTG	536	784	14.5	6	3	296	0.40	1.68	2.50	1.64	530



# Double Row Tapered Roller Bearings

# NTN

# Back-to-back arrangement



## *d* 530 ∼ 710mm

			Boun	dary dime	nsions		Basic load	rating	Fatigue load	Allowab	le speed
				mm			dynamic kN	static	limit kN	mi Grease	n-1 Oil
	d	D	$B_1$	C	$r_{\mathrm{s}\mathrm{min}^{1)}}$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$	$C_{ m r}$	$C_{0{ m r}}$	$C_{ m u}$	lubrication	lubrication
į	530	780	185	163	6	3	3 750	5 900	410	290	420
(	600	870	200	176	6	3	5 000	8 550	570	250	360

# Double Row Tapered Roller Bearings





Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≤</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

Bearing number 2)	Ab	utment	Load center	Constant	Axial	load fac	tors	Mass				
	$d_{\rm a}$			mm								
	Min.	Min.	Min.	Max.	Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)	
* 4130/530UTG	558	740	11	5	2.5	249.5	0.37	1.80	2.69	1.76	270	
* 4130/600UTG	628	828	12	5	2.5	277	0.37	1.80	2.69	1.76	350	





# Face-to-face arrangement



## *d* 110 ∼ 280mm

		Boundar	ry dimens	sions			ad rating	Fatigue load	Allowable	speed
			mm			dynamic _.	static	limit	min-	
d	D	B	$C_1$	$r_{1\mathrm{s}\mathrm{min}}{}^{1)}$	$r_{\mathrm{s}\mathrm{min}}$ 1)	$C_{ m r}$ k	$C_{0\mathrm{r}}$	$rac{kN}{C_{\mathrm{r}}}$	Grease Jubrication Ju	Oil
a	D	Ь	01	7 IS IIIIII	's min	Or	Our	Oi	Tubi Ication 10	abrication
110	180	56	56	2.5	2	330	485	53.0	1 600	2 200
	180	46	46	2.5	2	255	375	40.0	1 500	2 100
120	200	62	62	2.5	2	415	610	64.5	1 500	2 000
130	200	52	52	2.5	2	325	490	51.5	1 400	1 900
.00	210	64	64	2.5	2	455	675	70.5	1 400	1 800
	210	53	53	2.5	2	335	535	55.0	1 300	1 800
140	225	68	68	3	2.5	435	650	66.0	1 200	1 700
150	225	56	56	3	2.5	395	630	64.0	1 200	1 600
130	250	80	80	3	2.5	670	1 040	103.0	1 200	1 500
	240	60	60	3	2.5	475	765	76.0	1 100	1 500
160	270	86	86	3	2.5	865	1 180	114	1 100	1 600
	2,0		- 00		2.0	000	1 100	117	1 100	1 000
170	260	67	67	3	2.5	545	865	83.5	1 100	1 400
170	280	88	88	3	2.5	930	1 270	122	1 000	1 500
	000	74	74	0	0.5	745	1.050	00.5	1 000	1 100
180	280 300	74 96	96	3 4	2.5 3	745 1 130	1 050 1 530	99.5 144	1 000 960	1 400 1 400
	300	30	30	7	-	1 100	1 330	דדו	300	1 400
190	290	75	75	3	2.5	790	1 110	104	950	1 400
190	320	104	104	4	3	1 260	1 710	157	900	1 300
				_						
200	310	82	82	3	2.5	920	1 320	121	900	1 300
	340	112	112	4	3	1 400	1 910	173	850	1 200
	340	90	90	4	3	1 130	1 650	148	810	1 200
220	370	120	120	5	4	1 570	2 260	199	770	1 100
240	360	92	92	4	3	1 170	1 770	155	730	1 000
	400	128	128	5	4	1 790	2 600	223	700	1 000
	400	104	104	5	4	1 470	2 190	187	670	1 000
260	440	144	144	5	4	2 510	3 750	310	640	910
		• • • •	• • • •		•		0.00		0.3	
280	420	106	106	5	4	1 540	2 340	196	610	880

B-206

#### 1) Smallest allowable dimension for chamfer dimension r or $r_1$ .



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≤</b> e	$\frac{F_{i}}{F_{1}}$	;>e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

Bearing number ²⁾	In	stallat	ion-relat		nension	ıs	center	Constant	Axial	load fac	ctors	Mass
	a	,	$D_{a}$	$S_{ m a}$	0.0		mm					kg
	$d_{ m a}$ Max.	Max.	Min.	Min.	$r_{ m las}$ Max.	$r_{ m as}$ Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
323122	126.5	170	157.5	8	2	2	1	0.33	2.03	3.02	1.98	5.54
323024	134	168	162.5	8	2	2	12	0.37	1.80	2.69	1.76	4.08
323124	141.5	190	176	8	2	2	6.5	0.37	1.80	2.69	1.76	7.82
323026	148.5	190	178.5	8	2	2	13.5	0.37	1.80	2.69	1.76	5.74
323126	147.5	200	185	8	2	2	7.5	0.37	1.80	2.69	1.76	8.38
323028	157.5	200	187.5	8	2	2	14	0.37	1.84	2.74	1.80	6.36
323128	161	213	197.5	10	2.5	2	8	0.37	1.80	2.69	1.76	9.82
323030	167.5	213	200	10	2.5	2	15.5	0.37	1.80	2.69	1.76	7.63
323130	175.5	238	219	10	2.5	2	6.5	0.37	1.80	2.69	1.76	15.7
323032	179	228	215.5	10	2.5	2	17.5	0.37	1.80	2.69	1.76	9.42
* 323132UTG	187.5	258	233.5	10	2.5	2	8	0.37	1.80	2.69	1.76	20
323034E1	192	248	231	10	2.5	2	18	0.37	1.80	2.69	1.76	12.8
* 323134UTG	195.5	268	244	10	2.5	2	8.5	0.37	1.80	2.69	1.76	21.8
* 323036UTG	205	268	248.5	10	2.5	2	17	0.37	1.80	2.69	1.76	16.5
* 323136UTG	206	286	262	12	3	2.5	8	0.37	1.80	2.69	1.76	27.2
* 323038UTG	213	278	258	12	2.5	2	17.5	0.37	1.80	2.69	1.76	17.9
* 323138UTG	220.5	306	279.5	12	3	2.5	8.5	0.37	1.80	2.69	1.76	33.2
* 323040UTG	225.5	298	275	12	2.5	2	19	0.37	1.80	2.69	1.76	22.3
* 323140UTG	233	326	294.5	12	3	2.5	8.5	0.37	1.80	2.69	1.76	41.8
* 323044UTG	249	326	302.5	12	3	2.5	21.5	0.37	1.80	2.69	1.76	29.8
* 323144UTG	254.5	352	317	14	4	3	14	0.40	1.68	2.50	1.64	52.2
* 323048UTG	269	346	322	14	3	2.5	25.5	0.37	1.80	2.69	1.76	32.5
* 323148UTG	277.5	382	347	14	4	3	17	0.40	1.68	2.50	1.64	63.4
* 323052UTG	291.5	382	354.5	14	4	3	25	0.37	1.80	2.69	1.76	47.7
* 323152UTG	300.5	422	381.5	16	4	3	16.5	0.40	1.68	2.50	1.64	90.5
* 323056UTG	311.5	402	376	16	4	3	29.5	0.37	1.80	2.69	1.76	50.5

# Face-to-face arrangement



#### *d* 280 ∼ 710mm

		Bounda	ry dimen	sions		Basic loa	ad rating	Fatigue load	Allowable	speed
			mm			dynamic k	static N	limit kN	min-1 Grease	Oil
d	D	В	$C_1$	$r_{1\mathrm{s}\mathrm{min}}{}^{1)}$	$r_{\rm s  min}^{1)}$	$C_{ m r}$	$C_{0r}$	$\widetilde{C}_{\mathrm{r}}$	lubrication lu	
280	460	146	146	6	5	2 480	3 650	300	590	830
	460	118	118	5	4	2 070	3 150	257	570	810
300	500	160	160	6	5	2 690	4 050	325	540	770
320	480	121	121	5	4	2 030	3 100	247	530	750
320	540	176	176	6	5	3 200	4 900	385	500	710
240	520	133	133	6	5	2 420	3 750	295	490	700
340	580	190	190	6	5	4 300	6 500	500	460	660
360	540	134	134	6	5	2 630	4 200	325	460	660
300	600	192	192	6	5	4 100	6 500	495	430	620
380	560	135	135	6	5	2 310	4 350	335	440	580
300	620	194	194	6	5	3 700	6 700	505	410	540
400	600	148	148	6	5	3 250	5 450	410	410	580
400	650	200	200	6	6	4 800	7 850	580	380	540
420	620	150	150	6	5	3 400	5 900	435	390	550
420	700	224	224	6	6	6 150	9 700	705	360	510
440	650	157	157	6	6	3 350	5 450	400	370	520
440	720	226	226	6	6	6 400	10 300	740	340	480
460	680	163	163	6	6	3 950	6 750	485	350	500
+00	760	240	240	7.5	7.5	6 300	10 300	725	320	450
480	700	165	165	6	6	3 900	6 700	480	330	470
700	790	248	248	7.5	7.5	6 750	11 100	775	300	430
500	720	167	167	6	6	3 950	6 900	485	320	450

B-208

# Dynamic equivalent radial load $P_r = XF_r + YF_a$



Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

Bearing number 2)	lr	stallati	<b>ion-relat</b>		nension	s	Load center mm	Constant	Axial	load fac	ctors	<b>Mass</b> kg
	$d_{ m a}$ Max.	Max.	O _a Min.	$S_{ m a}$ Min.	$r_{ m las}$ Max.	$r_{ m as}$ Max.	a	e	$Y_1$	$Y_2$	$Y_0$	(approx.)
* 323156UTG	318.5	438	402	16	5	4	19.5	0.40	1.68	2.50	1.64	93.6
* 323060UTG	337	442	566	16	4	3	31	0.37	1.80	2.69	1.76	69.2
* 323160UTG	344.5	478	432	16	5	4	16.5	0.40	1.68	2.50	1.64	130
* 323064UTG	354	462	432	16	4	3	34	0.37	1.80	2.69	1.76	73.4
* 323164UTG	369.5	518	464	18	5	4	18.5	0.40	1.68	2.50	1.64	170
* 323068UTG	379	498	463.5	18	5	4	36	0.37	1.80	2.69	1.76	100
* 323168UTG	388.5	558	500	18	5	4	20.5	0.40	1.68	2.50	1.64	210
* 323072UTG	398	518	483.5	18	5	4	41	0.37	1.80	2.69	1.76	110
* 323172UTG	412.5	578	518.5	18	5	4	25.5	0.40	1.68	2.50	1.64	220
323076	418	538	504	18	5	4	42.5	0.37	1.80	2.69	1.76	110
323176	428	598	537.5	20	5	4	27	0.40	1.68	2.50	1.64	230
* 323080UTG	444	578	535.5	18	5	4	45	0.37	1.80	2.69	1.76	150
* 323180UTG	452.5	622	566	20	5	5	32.5	0.40	1.68	2.50	1.64	260
* 323084UTG	464.5	598	555	20	5	4	50	0.37	1.80	2.69	1.76	150
* 323184UTG	475	672	611	25	5	5	35	0.40	1.68	2.50	1.64	350
* 323088UTG	485.5	622	584	20	5	5	52.5	0.37	1.80	2.69	1.76	180
* 323188UTG	493.5	692	629	25	5	5	33	0.40	1.68	2.50	1.64	360
* 323092UTG	507.5	652	612.5	25	5	5	56.5	0.37	1.80	2.69	1.76	200
* 323192UTG	525	724	660	25	6	6	31	0.40	1.68	2.50	1.64	430
* 323096UTG	527	672	632.5	25	5	5	60.5	0.37	1.80	2.69	1.76	210
* 323196UTG	547.5	754	688.5	30	6	6	34.5	0.40	1.68	2.50	1.64	480
* 3230/500UTG	548.5	692	652	25	5	5	61.5	0.37	1.80	2.69	1.76	220

# **Spherical Roller Bearings**



# Spherical Roller Bearings





# 1. Types, design features, and characteristics

Spherical roller bearings consist of an outer ring having a continuous spherical raceway and two rows of barrel-shaped rollers guided by an inner ring with two raceways. (Refer to Fig. 1) This bearing has self-aligning properties, and therefore is suited for use where misalignment between the inner and outer rings occurs from housing installation error or shaft bending.

Spherical roller bearings have a large capacity for radial loads, axial loads in either direction, and combined loads. They are also suited for applications where vibration and shock loads are encountered. When spherical roller bearings are used with a vertical shaft or under a large axial load, the load on the rollers of the row that is not subject to the axial load becomes small, and the resulting skidding on the rollers may result in wear. If the ratio of the axial load to the radial load exceeds the factor e in the dimension table  $(F_a/F_r > e)$ , consult **NTN** Engineering.

In addition to spherical roller bearings with cylindrical bores, spherical roller bearings with tapered bores are also available. Bearings with tapered bores are specified by the suffix "K" at the end of the spherical roller bearing part number. The standard taper ratio is 1:12 for bearings with a "K" suffix; for bearings in series 240 and 241, the suffix "K30" indicates the taper ratio for a bearing is 1:30. Most tapered bore bearings incorporate the use of adapters and withdrawal sleeves for shaft mounting.



Fig. 1

NTN

# NTN

#### Table 1 Types of spherical roller bearings

	s of spherical roller bearings	ULTAGE series 1)							
Туре	EA type	EM type	EM type (large size)						
Design									
Bearing series	Series other than 213 with outer	diameter of 420 mm or smaller	Series with outer diameter of 440 to 580 mm						
Rollers									
Cage type	Pressed cage	Machined cage	Machined cage						
Cage shape									
Max. operating temperature		200°C							
Туре	B type	213C type	213 type						
Design									
Bearing series	Other than ULTAGE series (outer diameter of 300 mm or larger)	Series 213 with bore diameter of 50 mm or smaller	Series 213 with bore diameter of 55 mm or larger						
Rollers	Asymmetrical	Symmetrical	Asymmetrical						
Cage type	Two-piece machined cage	Two-piece pressed cage	Machined cage						
Cage shape									
Max. operating temperature	120°C	C (instantaneous) 100°C (contin	uous)						

¹⁾ ULTAGE series spherical roller bearings has been developed for "longer life," "improved loading capability," and "higher speed," which are required for various types of industrial machinery.

# 2. ULTAGE series fits

Table 2 Shaft tolerance class in common use

Spherical Roller Bearings

	Condition	Shaft dian	neter (mm)	Shaft	Note
	Condition	Over	Incl.	tolerance class	Note
		Cylindric	cal bore bear	ring (class 0	)
Inner ring rotational load or load of undetermined direction	Light load ¹⁾ or Normal load ¹⁾ or Fluctuating load	18 25 40 60 100 200	25 40 60 100 200 500	k5 m5 n6 p6 r6	
ational d of lirection	Heavy load ¹⁾ or Impact load	50 70 140	70 140 200 ²⁾	n5 p6 r6	Use bearings with larger internal clearances than CN clearance bearings.
Inner ring: Stationary	Inner ring must move easily over shaft.	Overall sha	ft diameter	g6	For large bearings, f6 will suffice to facilitate movement.
Load			Overall shaft diameter		
	Tapered b	ore bearing	(class 0) (wit	h adapter o	r withdrawal sleeve)
	Full load	Overall sha	ft diameter	h9/IT5 ³⁾	h10/IT7 ³⁾ will suffice for power transmitting shafts.

¹⁾ Standards for light loads, normal loads, and heavy loads

(d: bearing bore diameter (mm), B: inner ring width (mm),  $F_r$ : radial load, (N),  $C_{0r}$ : basic static rating load (N))

When the difference between the bearing temperature and the ambient temperature during bearing operation is to be considered, consider the effective interference  $\Delta_{dT}(\mu m)$  by the temperature difference as the necessary interference.  $\Delta_{dT} = 0.0015 \cdot d \cdot \Delta T$ 

( $\Delta T$ : Difference between bearing temperature and ambient temperature °C)

For details, please refer to the special catalog "ULTAGE series spherical roller bearings [EA and EM types] (CAT. No. 3033/E)."

ſ Light loads: dynamic equivalent radial load ≤ 0.05 Cr

Normal loads:  $0.05 C_r < \text{dynamic equivalent radial load} \le 0.10 C_r$ 

Heavy loads:  $0.10 C_r < dynamic equivalent radial load$ 

²⁾ When the shaft diameter exceeds  $\phi$  200 mm and the bearing is to be used under heavy load or impact load conditions, please consult NTN Engineering.

³⁾ The shaft shape error (roundness, cylindricity, etc.) must be within the tolerance range of IT5 and IT7.

Note: 1. All values and fits listed in the above tables are for solid steel shafts.

^{2.} Use the formula below to calculate necessary interference. The upper limit value should not exceed 1/1 000 of the shaft

[∫] When  $F_r \le 0.3 \, C_{0r}$ , necessary interference  $\Delta d_F (\mu m)$  is  $\Delta d_F = 0.08 \, (d \cdot F_r/B)^{1/2}$ 

When  $F_r > 0.3 C_{0r}$ ,  $\Delta d_F = 0.02 (F_r/B)$ 

# lowable speed of LUTACE sori

#### Table 3 Housing bore tolerance class in common use

		Condition		Housing		
Housing	ĺ	Load type, etc.	Outer ring axial direction movement	bore tolerance class	Note	
		All types of loads	Yes	H7	G7 can be used for large bearings or bearings with a large temperature differential between the outer ring and housing.	
Single housing or		Light ¹⁾ or ordinary load ¹⁾	Yes	H8	_	
divided housing	Static outer ring load	Shaft and inner ring become hot.	Easily	G7	F7 can be used for large bearings or bearings with a large temperature differential between the outer ring and housing.	
		Requires precise rotation under light or ordinary loads.	Basically no Yes	K6 JS6	<u> </u>	
		Requires low noise operation.	Yes	H6	_	
		Light or ordinary load	Yes	JS7	_	
Single housing	Indeterminate load	Ordinary or heavy load ¹⁾	Basically no	K7	_	
Single nousing	load	High impact load	No	M7	_	
		Light or fluctuating load	No	M7	_	
	Rotating outer	Ordinary or heavy load	No	N7	_	
	ring load	Heavy load or large impact load with thin wall housing	No	P7	_	

1) Standards for light loads, normal loads, and heavy loads

Light loads: dynamic equivalent radial load  $\leq 0.05 C_r$ 

Normal loads:  $0.05 C_r < \text{dynamic equivalent radial load} \le 0.10 C_r$ 

Heavy loads:  $0.10 C_r \le dynamic equivalent radial load$ 

Note: All values and fits listed in the above tables are for cast iron or steel housings.

# 3. Allowable speed of ULTAGE series

Spherical Roller Bearings

As the rotational speed of the bearing increases, the temperature of the bearing also increases because of the friction heat produced inside the bearing. Excessive heat will significantly deteriorate the bearing performance, causing abnormal temperature rises and seizure.

Factors affecting the allowable speed of bearings are as follows.

- (1) Bearing type
- (2) Bearing size
- (3) Lubrication (grease lubrication, circulating lubrication, oil lubrication, etc.)
- (4) Bearing internal clearance (bearing internal clearance during operation)
- (5) Bearing load
- (6) Shaft and housing accuracy

The allowable speed specified in the bearing dimension table is the limit for heat dissipation and satisfactory lubrication conditions before the bearing is adversely affected.

The allowable speed of ULTAGE series spherical roller bearings specified in the catalog is defined as follows.

#### [Oil lubrication]

The allowable speed for oil lubrication is the speed at which the outer ring temperature reaches 80°C with room temperature spindle oil (lubrication oil viscosity: VG32) supplied at 1 liter/min under an operating load of 5% of the basic static load rating  $C_{0r}$ .

#### [Grease lubrication]

The allowable speed for grease lubrication is the speed at which the outer ring temperature reaches 80°C with lithium-based grease (consistency: NLGI3) filled 20%-30% of the free space under an operating load of 5% of the basic static load rating  $C_{0r}$ .

In either of the lubrication methods, the bearing temperature rise differs if the usage condition (operating load, rotational speed pattern, lubricating condition, etc.) is different; therefore, the bearings must be selected with sufficient allowable speed as specified in the catalog.

If 80% of the allowable speed specified in the dimension table is exceeded or the bearing is used in vibration or impact conditions, please consult **NTN** Engineering.

See section "9. Allowable speed" for the allowable speed of the spherical roller bearings that are not part of the ULTAGE series.

# 4. Oil hole and groove for outer ring

Both ULTAGE series and B type spherical roller bearings are provided with oil holes and an oil groove. (See Fig. 2 and Table 4)

Types 213 and C do not have oil holes and grooves. However, they can be made based on customer request. Contact **NTN** Engineering with the bearing numbers and supplementary suffix code "D1" (refer to page A-48).

If a pin to prevent outer ring rotation is necessary, contact **NTN** Engineering.



Fig. 2

#### Table 4 Oil inlet number

	al bearing	Number of oil holes				
	diameter	D1	W33 (European spec)			
Incl.	Below	$Z_{O}$	$Z_{O}$			
-	320	4	3			
320	1 010	8	3			
1 010	-	12	-			

For oil groove width  $W_0$  and diameter of oil hole  $d_0$ , see the dimension table.

# 5. Allowable misalignment angle

Spherical roller bearings have the same selfaligning properties as other self-aligning bearings. The allowable misalignment angle varies according to dimension series and load conditions, but the general allowable misalignment angles are listed below:

<ul> <li>Normal load or more:</li> </ul>	 1/115
• Light load: ·····	 1/30

*Increasing the misalignment angle beyond the allowable angle may cause the rollers to protrude from the outer ring and interfere with nearby components.

# 6. Adapters and withdrawal sleeves

Spherical Roller Bearings

Adapters are used for installation of bearings with tapered bores on cylindrical shafts. Withdrawal sleeves are also used to install and disassemble bearings with tapered bores onto and off of cylindrical shafts. In disassembling the bearing from the shaft, the nut is turned against the side face of the inner ring utilizing the bolt provided on the withdrawal sleeve, and then the sleeve is drawn away from the bearing's bore. (Precision and dimensions of adapter and withdrawal sleeve are defined in JIS B 1552 and JIS B 1556).

For bearings with a bore diameter of 200 mm or more, high pressure oil (hydraulic) type adapters and withdrawal sleeves can be made to make installation and disassembly easier. As shown in **Fig. 3** construction is designed to reduce friction by injecting high pressure oil between the surfaces of the adapter sleeve and bearing inner bore by means of a pressure fitting.

If the oil supply inlet is attached in the nut side of the adapter, the supplementary suffix "HF" is added to the bearing number; if the oil supply inlet is attached on the opposite side, the suffix "HB" is added to the bearing number. For adapter sleeves, the supplementary suffix "H" is added to the bearing's number for both cases. The hydraulic sleeve nut is equipped with holes for bolts used for mounting and dismounting and holes for hydraulic piping. The suffix SP (with screw holes) or SPB (with bolts) is added to the bearing number of the nut.

For information on the hydraulic adapters and withdrawal sleeves, see the special catalog (CAT. No. 4201/E).



Fig. 3



#### d 25 ~ 60mm

	Bound	lary o	limensi	ons		Basic load	l rating	Fatigue load	Allowab	ole speed	Bearing r	numbers 1)
		m	m			dynamic	static	limit		in-1		
d	D	В	$r_{ m smin}^{3)}$	$W_0$	$d_0$	$C_{ m r}$ kN	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore ^{2) 4)}
25	52 52	18 18	1 1	3	1.5 1.5	57.3 57.3	46.1 46.1	3.23 3.23	10 400 10 400	13 000 13 000		*22205EAKW33 *22205EMKW33
30	62 62	20 20	1 1	4 4	2	75.7 75.7	64.5 64.5	4.58 4.58	8 800 8 800	11 000 11 000	*22206EAW33 *22206EMW33	*22206EAKW33 *22206EMKW33
35	72 72	23 23	1.1 1.1	5 5	2	100 100	92.0 92.0	6.11 6.11	7 500 7 500	9 400 9 400	*22207EAW33 *22207EMW33	*22207EAKW33 *22207EMKW33
40	80 80 90 90	23 23 23 33 33	1.1 1.1 1.5 1.5 1.5	5 5 6 6	2.5 2.5 3 3	116 110 98.0 169 169	105 98.0 90.0 152 152	7.78 7.29 12.6 9.36 9.36	6 800 6 800 4 900 5 400 5 400	8 500 8 500 6 400 6 600 6 600	*22208EAD1 *22208EMD1 21308C *22308EAD1 *22308EMD1	*22208EAKD1 *22208EMKD1 21308CK *22308EAKD1 *22308EMKD1
45	85 85 100 100 100	23 23 25 36 36	1.1 1.1 1.5 1.5	6 6 6 6	2.5 2.5 3 3	121 116 114 206 206	113 106 106 187 187	8.76 8.24 14.1 11.8 11.8	6 100 6 100 4 400 4 600 4 600	7 700 7 700 5 700 5 700 5 700	*22209EAD1 *22209EMD1 21309C *22309EAD1 *22309EMD1	*22209EAKD1 *22209EMKD1 21309CK *22309EAKD1 *22309EMKD1
50	90 90 110 110	23 23 27 40 40	1.1 1.1 2 2 2	6 6 6 7 7	2.5 2.5 3 3.5 3.5	130 125 131 250 250	124 117 127 232 232	10.1 9.54 13.7 14.0 14.0	5 700 5 700 4 000 4 300 4 300	7 200 7 200 5 200 5 300 5 300	*22210EAD1 *22210EMD1 21310C *22310EAD1 *22310EMD1	*22210EAKD1 *22210EMKD1 21310CK *22310EAKD1 *22310EMKD1
55	100 100 120 120 120	25 25 29 43 43	1.5 1.5 2 2 2	6 6 6 8	3 3 3 3.5 3.5	155 148 161 296 296	148 140 163 274 274	12.6 11.9 16.1 17.4 17.4	5 300 5 300 3 700 3 900 3 900	6 700 6 700 4 800 4 800 4 800	*22211EAD1 *22211EMD1 21311 *22311EAD1 *22311EMD1	*22211EAKD1 *22211EMKD1 21311K *22311EAKD1 *22311EMKD1
60	110 110 130 130 130	28 28 31 46 46	1.5 1.5 2.1 2.1 2.1	7 7 7 9	3 3 4 4 4	187 179 186 340 340	181 171 191 319 319	15.4 14.6 28.2 20.3 20.3	4 800 4 800 3 400 3 600 3 600	6 000 6 000 4 400 4 600 4 600	*22212EAD1 *22212EMD1 21312 *22312EAD1 *22312EMD1	*22212EAKD1 *22212EMKD1 21312K *22312EAKD1 *22312EMKD1

- 1) Bearing part numbers with * are ULTAGE Series and have outer ring oil holes and oil grooves as standard.
  2) "K" indicates bearings having a tapered bore with a taper ratio of 1:12. 3) Smallest allowable dimension for chamfer dimension r.
  4) "W33" indicates the specification for Europe and have three oil holes.



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

	Installation-		nensions	<b>3</b>	Constant	Axia	I load fact	ors	<b>Mass</b> (approx.) kg		
		mm							Cultinal distant	T	
$d_1$	$d_{ m amin}$	$D_{\mathrm{amax}}$	$D_1$	$r_{\text{as max}}$	e	$Y_1$	$Y_2$	$Y_0$	Cylindrical bore	Tapered bore	
30	30	46	46	1	0.34	2.00	2.98	1.96	0.173	0.169	
30	30	46	46	1	0.34	2.00	2.98	1.96	0.174	0.171	
37	36	56	55	1	0.31	2.15	3.20	2.10	0.278	0.272	
37	36	56	55	1	0.31	2.15	3.20	2.10	0.281	0.275	
45	42	65	63	1.1	0.31	2.21	3.29	2.16	0.438	0.43	
45	42	65	63	1.1	0.31	2.21	3.29	2.16	0.442	0.433	
50	47	73	71	1.1	0.27	2.47	3.67	2.41	0.528	0.518	
50	47	73	71	1.1	0.27	2.47	3.67	2.41	0.529	0.519	
52	48.5	81.5	76	1.5	0.26	2.55	3.80	2.50	0.705	0.694	
52	49	81	78	1.5	0.36	1.87	2.79	1.83	1.02	1	
52	49	81	78	1.5	0.36	1.87	2.79	1.83	1.03	1.01	
54	52	78	76	1.1	0.26	2.64	3.93	2.58	0.572	0.561	
54	52	78	76	1.1	0.26	2.64	3.93	2.58	0.577	0.566	
58	53.5	91.5	85	1.5	0.26	2.60	3.87	2.54	0.927	0.912	
58	54	91	87	1.5	0.36	1.90	2.83	1.86	1.37	1.34	
58	54	91	87	1.5	0.36	1.90	2.83	1.86	1.38	1.35	
59	57	83	81	1.1	0.24	2.84	4.23	2.78	0.614	0.602	
59	57	83	81	1.1	0.24	2.84	4.23	2.78	0.616	0.604	
65	60	100	93	2	0.26	2.64	3.93	2.58	1.21	1.19	
63	61	99	95	2	0.36	1.87	2.79	1.83	1.82	1.79	
63	61	99	95	2	0.36	1.87	2.79	1.83	1.84	1.8	
66	64	91	90	1.5	0.23	2.95	4.40	2.89	0.83	0.814	
66	64	91	90	1.5	0.23	2.95	4.40	2.89	0.827	0.811	
73	65	110	102	2	0.25	2.69	4.00	2.63	1.71	1.69	
68	66	109	104	2	0.36	1.87	2.79	1.83	2.31	2.26	
68	66	109	104	2	0.36	1.87	2.79	1.83	2.34	2.29	
71	69	101	99	1.5	0.24	2.84	4.23	2.78	1.14	1.12	
71	69	101	99	1.5	0.24	2.84	4.23	2.78	1.15	1.13	
78	72	118	109	2	0.25	2.69	4.00	2.63	2.1	2.07	
75	72	118	113	2.1	0.35	1.95	2.90	1.91	2.86	2.8	
75	72	118	113	2.1	0.35	1.95	2.90	1.91	2.91	2.85	









Tapered bore

d 65  $\sim$  95mm

	Bound	lary dii	mensi	ons		Basic load	l rating	load	Allowabl	le speed	Bearing numbers 1)		
		mm				dynamic	static	limit	mii		6 1: 1: 1	<del>-</del> .	
d	D	В	r _{s min} 3)	$W_0$	$d_0$	$C_{ m r}$ kN	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore ²⁾	
	120 120	31 31	1.5 1.5	8	3.5 3.5	226 217	224 212	18.2 17.2	4 400 4 400	5 500 5 500	*22213EAD1 *22213EMD1	*22213EAKD1 *22213EMKD1	
65	140 140 140	33 48 48	2.1 2.1 2.1	7 9 9	4 4	216 369 369	228 343 343	31.0 23.4 23.4	3 100 3 300 3 300	4 000 4 100 4 100	21313 *22313EAD1 *22313EMD1	21313K *22313EAKD1 *22313EMKD1	
	125	31	1.5	7	3.5	235	240	20.1	4 100	5 200	*22214EAD1	*22214EAKD1	
	125	31	1.5	7	3.5	235	240	20.1	4 100	5 200	*22214EMD1	*22214EMKD1	
70	150	35	2.1	7	4	245	262	33.5	2 900	3 800	21314	21314K	
	150	51	2.1	10	5	420	396	26.0	3 000	3 800	*22314EAD1	*22314EAKD1	
	150	51	2.1	10	5	420	396	26.0	3 000	3 800	*22314EMD1	*22314EMKD1	
	130	31	1.5	7	3.5	244	249	21.1	4 000	5 000	*22215EAD1	*22215EAKD1	
	130	31	1.5	7	3.5	244	249	21.1	4 000	5 000	*22215EMD1	*22215EMKD1	
75	160	37	2.1	7	4	266	287	27.5	2 700	3 500	21315	21315K	
	160	55	2.1	10	5	491	467	29.8	2 900	3 600	*22315EAD1	*22315EAKD1	
	160	55	2.1	10	5	491	467	29.8	2 900	3 600	*22315EMD1	*22315EMKD1	
	140	33	2	8	3.5	278	287	24.0	3 700	4 600	*22216EAD1	*22216EAKD1	
	140	33	2.1	8 7	3.5	267	272	22.8	3 700	4 600	*22216EMD1	*22216EMKD1	
80	170	39 58	2.1	-	4	289	315	30.5	2 500	3 300 3 400	21316	21316K	
	170 170	58	2.1	10	5 5	541 541	522 522	32.5 32.5	2 700 2 700	3 400	*22316EAD1 *22316EMD1	*22316EAKD1 *22316EMKD1	
	170	56	2.1	10	5	541	522	32.5	2 700	3 400	*223 IOEMID I	*223 IOEWIND I	
	150	36	2	8	3.5	324	330	27.1	3 400	4 300	*22217EAD1	*22217EAKD1	
0.5	150	36	2	8	3.5	324	330	27.1	3 400	4 300	*22217EMD1	*22217EMKD1	
85	180	41 60	3	7	4	320	355	45.0	2 400	3 100	21317	21317K	
	180 180	60	3	11	5 5	599 599	604 604	36.4 36.4	2 600 2 600	3 200 3 200	*22317EAD1 *22317EMD1	*22317EAKD1 *22317EMKD1	
	100	00	3	11	5	599	004	30.4	2 000	3 200	*22317EMD1	*22317EWIND1	
	160	40	2	10	4.5	384	398	30.2	3 200	4 000	*22218EAD1	*22218EAKD1	
	160	40	2	10	4.5	384	398	30.2	3 200	4 000	*22218EMD1	*22218EMKD1	
90	160	52.4	2	9 7	4	467	513	30.0	2 600	3 200	*23218EMD1	*23218EMKD1	
	190 190	43 64	3	12	4 5	355 668	400 652	50.5 40.0	2 300 2 500	3 000	21318 *22318EAD1	21318K *22318EAKD1	
	190	64	3	12	5	668	652	40.0	2 500	3 000	*22318EAD1 *22318EMD1	*22318EAKD1 *22318EMKD1	
	190	04	3	14	Ü	000	002	40.0	2 500	3 000	*223 IOEIVID I	*223 IOEWINU I	
95	170	43	2.1	10	4.5	416	417	33.4	3 000	3 800	*22219EAD1	*22219EAKD1	
- 55	170	43	2.1	10	4.5	416	417	33.4	3 000	3 800	*22219EMD1	*22219EMKD1	



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
$\overline{X}$	Y	X	Y			
1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

1	Installation-	related din	nensions	s	Constant	Axia	l load fact	ors	<b>Mass</b> (approx.) kg	
		mm							Cylindrical	Tapered
$d_1$	$d_{ m amin}$	$D_{\mathrm{amax}}$	$D_1$	$r_{as\;max}$	e	$Y_1$	$Y_2$	$Y_0$	bore	bore
78	74	111	107	1.5	0.24	2.79	4.15	2.73	1.52	1.49
78	74	111	107	1.5	0.24	2.79	4.15	2.73	1.53	1.5
85	77	128	119	2	0.25	2.69	4.00	2.63	2.55	2.51
81	77	128	122	2.1	0.33	2.06	3.06	2.01	3.48	3.41
81	77	128	122	2.1	0.33	2.06	3.06	2.01	3.5	3.43
84	79	116	113	1.5	0.22	3.01	4.48	2.94	1.61	1.58
84	79	116	113	1.5	0.22	3.01	4.48	2.94	1.64	1.6
91	82	138	126	2	0.25	2.69	4.00	2.63	3.18	3.14
85	82	138	131	2.1	0.34	2.00	2.98	1.96	4.25	4.16
85	82	138	131	2.1	0.34	2.00	2.98	1.96	4.31	4.22
88	84	121	118	1.5	0.22	3.14	4.67	3.07	1.67	1.64
88	84	121	118	1.5	0.22	3.14	4.67	3.07	1.71	1.67
99	87	148	136	2	0.24	2.84	4.23	2.78	3.81	3.76
91	87	148	139	2.1	0.34	2.00	2.98	1.96	5.18	5.07
91	87	148	139	2.1	0.34	2.00	2.98	1.96	5.27	5.16
94	91	129	127	2	0.22	3.14	4.67	3.07	2.09	2.05
94	91	129	127	2	0.22	3.14	4.67	3.07	2.11	2.07
105	92	158	144	2	0.23	2.95	4.40	2.89	4.53	4.47
98	92	158	148	2.1	0.34	2.00	2.98	1.96	6.12	5.99
98	92	158	148	2.1	0.34	2.00	2.98	1.96	6.28	6.15
100	96	139	137	2	0.22	3.07	4.57	3.00	2.59	2.54
100	96	139	137	2	0.22	3.07	4.57	3.00	2.67	2.62
111	99	166	152	2.5	0.25	2.69	4.00	2.63	5.35	5.28
107	99	166	157	3	0.32	2.09	3.11	2.04	7.18	7.04
107	99	166	157	3	0.32	2.09	3.11	2.04	7.29	7.15
105	101	149	144	2	0.23	2.90	4.31	2.83	3.34	3.27
105	101	149	144	2	0.23	2.90	4.31	2.83	3.43	3.37
104	101	149	141	2	0.30	2.25	3.34	2.20	4.43	4.31
119	104	176	162	2.5	0.24	2.84	4.23	2.78	6.3	6.21
110	104	176	166	3	0.33	2.06	3.06	2.01	8.42	8.25
110	104	176	166	3	0.33	2.06	3.06	2.01	8.53	8.35
110	107	158	153	2.1	0.23	2.95	4.40	2.89	3.98	3.9
110	107	158	153	2.1	0.23	2.95	4.40	2.89	4.06	3.98
									nade based on y	

Note: For the bearings other than ULTAGE Series, outer rings with oil inlets and oil grooves can also be made based on your request. In this case, supplementary suffix "D1" is added after a bearing number. Example: 21317D1

¹⁾ Bearing part numbers with * are **ULTAGE Series** and have outer ring oil holes and oil grooves as standard.
2) "K" indicates bearings having a tapered bore with a taper ratio of 1:12. 3) Smallest allowable dimension for chamfer dimension r. B-220







Tapered bore

*d* 95 ∼ 130mm

	Bound	lary dir	nensi	ons			ad rating	load	Allowab	•	Bearing numbers 1)		
		mm				dynamic	static	limit	mi		C 1: 1: 1	- I	
d	D	B $r$	s min 3)	$W_0$	$d_0$	$C_{ m r}$	$C_{0\mathbf{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore ²⁾	
	200	45	3	7	4	375	420	54.0	2 100	2 700	21319	21319K	
95	200	67	3	12	6	732	751	43.4	2 300	2 800	*22319EAD1	*22319EAKD1	
33	200	67	3	12	6	732	751	43.4	2 300	2 800	*22319EMD1	*22319EMKD1	
	165	52	2	8	4	464	563	30.7	2 400	3 000	*23120EAD1	*23120EAKD1	
	165	52	2	8	4	480	590	32.1	2 400	3 000	*23120EMD1	*23120EMKD1	
	180	46	2.1	11	5	472	495	36.9	2 800	3 600	*22220EAD1	*22220EAKD1	
400	180	46	2.1	11	5	472	495	36.9	2 800	3 600	*22220EMD1	*22220EMKD1	
100	180	60.3	2.1	9	4.5	586	661	36.3	2 300	2 900	*23220EMD1	*23220EMKD1	
	215	47	3	9	5	410	465	42.5	2 000	2 600	21320	21320K	
	215	73	3	13	6	827	844	50.1	2 100	2 600	*22320EAD1	*22320EAKD1	
	215	73	3	13	6	827	844	50.1	2 100	2 600	*22320EMD1	*22320EMKD1	
	170	45	2	8	3.5	417	517	32.1	2 600	3 300	*23022EAD1	*23022EAKD1	
	170	45	2	8	3.5	417	517	32.1	2 600	3 300	*23022EMD1	*23022EMKD1	
	180	56	2	9	4	547	669	36.2	2 200	2 800	*23122EAD1	*23122EAKD1	
	180	56	2	9	4	547	669	36.2	2 200	2 800	*23122EMD1	*23122EMKD1	
	180	69	2	8	4	622	769	35.7	2 200	2 700	*24122EMD1	*24122EMK30D1	
110	200	53	2.1	12	6	602	643	45.0	2 600	3 300	*2222EAD1	*2222EAKD1	
	200	53	2.1	12	6	602	643	45.0	2 600	3 300	*2222EMD1	*22222EMKD1	
	200	69.8	2.1	11	5	752	869	43.9	2 100	2 600	*23222EMD1	*23222EMKD1	
	240	50	3	9	5	550	615	61.5	1 800	2 300	21322	21322K	
	240	80	3	16	7	975	972	59.0	2 000	2 400	*22322EAD1	*22322EAKD1	
	240	80	3	16	7	975	972	59.0	2 000	2 400	*22322EMD1	*22322EMKD1	
	180	46	2	8	3.5	446	577	35.8	2 400	3 100	*23024EAD1	*23024EAKD1	
	180	46	2	8	3.5	446	577	35.8	2 400	3 100	*23024EMD1	*23024EMKD1	
	180	60	2	8	3.5	526	726	34.4	2 100	2 600	*24024EMD1	*24024EMK30D1	
	200	62	2	10	4.5	663	820	43.4	2 000	2 500	*23124EAD1	*23124EAKD1	
	200	62	2	10	4.5	663	820	43.4	2 000	2 500	*23124EMD1	*23124EMKD1	
120	200	80	2	10	4.5	756	991	41.3	1 900	2 500	*24124EMD1	*24124EMK30D1	
	215	58	2.1	12	6	688	753	49.9	2 400	3 000	*22224EAD1	*22224EAKD1	
	215	58	2.1	12	6	688	753	49.9	2 400	3 000	*22224EMD1	*22224EMKD1	
	215	76	2.1	11	5	857	998	49.8	1 900	2 400	*23224EMD1	*23224EMKD1	
	260	86	3	18	8	1 170	1 280	68.4	1 800	2 200	*22324EAD1	*22324EAKD1	
	260	86	3	18	8	1 170	1 280	68.4	1 800	2 200	*22324EMD1	*22324EMKD1	
100	200	52	2	9	4	565	721	44.2	2 200	2 900	*23026EAD1	*23026EAKD1	
130	200	52	2	9	4	565	721	44.2	2 200	2 900	*23026EMD1	*23026EMKD1	

1) Bearing part numbers with * are **ULTAGE** Series and have outer ring oil holes and oil grooves as standard. 2) Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 3) Smallest allowable dimension for chamfer dimension r.



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
$\overline{X}$	Y	X	Y			
1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

	Installation-		nensions	3	Constant	Axia	I load fact	ors	<b>Mass</b> (approx.) kg		
		mm							Culindrical	Tanarad	
$d_1$	$d_{ m amin}$	$D_{\mathrm{amax}}$	$D_1$	$r_{as\;max}$	e	$Y_1$	$Y_2$	$Y_0$	Cylindrical bore	Tapered bore	
127	109	186	171	2.5	0.22	3.01	4.48	2.94	7.1	7	
120	109	186	174	3	0.32	2.09	3.11	2.04	9.91	9.71	
120	109	186	174	3	0.32	2.09	3.11	2.04	10.0	9.82	
114	111	154	147	2	0.28	2.39	3.56	2.34	4.37	4.24	
114	111	154	147	2	0.28	2.39	3.56	2.34	4.45	4.32	
118	112	168	161	2.1	0.24	2.84	4.23	2.78	4.9	4.8	
118	112	168	161	2.1	0.24	2.84	4.23	2.78	5.02	4.93	
118	112	168	159	2.1	0.31	2.18	3.24	2.13	6.51	6.33	
133	114	201	179	2.5	0.22	3.01	4.48	2.94	8.89	8.78	
127	114	201	187	3	0.34	1.98	2.94	1.93	12.6	12.3	
127	114	201	187	3	0.34	1.98	2.94	1.93	12.9	12.7	
123	119	161	155	2	0.23	2.95	4.40	2.89	3.66	3.55	
123	119	161	155	2	0.23	2.95	4.40	2.89	3.66	3.55	
125	121	169	161	2	0.28	2.43	3.61	2.37	5.66	5.49	
125	121	169	161	2	0.28	2.43	3.61	2.37	5.53	5.36	
121	121	169	158	2	0.36	1.90	2.83	1.86	6.75	6.65	
130	122	188	179	2.1	0.25	2.69	4.00	2.63	7.1	6.95	
130	122	188	179	2.1	0.25	2.69	4.00	2.63	7.3	7.15	
130	122	188	176	2.1	0.32	2.12	3.15	2.07	9.41	9.14	
146	124	226	203	2.5	0.21	3.20	4.77	3.13	11.2	11.1	
139	124	226	209	3	0.32	2.09	3.11	2.04	17	16.6	
139	124	226	209	3	0.32	2.09	3.11	2.04	17.4	17.1	
134	129	171	165	2	0.22	3.14	4.67	3.07	4.02	3.9	
134	129	171	165	2	0.22	3.14	4.67	3.07	4.02	3.9	
132	129	171	161	2	0.29	2.32	3.45	2.26	5.28	5.21	
138	131	189	179	2	0.28	2.43	3.61	2.37	7.72	7.49	
138	131	189	179	2	0.28	2.43	3.61	2.37	7.77	7.54	
136	131	189	173	2	0.37	1.84	2.74	1.80	10	9.87	
141	132	203	193	2.1	0.25	2.74	4.08	2.68	8.88	8.68	
141	132	203	193	2.1	0.25	2.74	4.08	2.68	9.01	8.82	
139	132	203	190	2.1	0.32	2.09	3.11	2.04	11.7	11.3	
156 156	134 134	246 246	225 225	3	0.32 0.32	2.09 2.09	3.11 3.11	2.04 2.04	22.3 22.7	21.9 22.2	
145	139 139	191 191	183 183	2	0.22	3.01	4.48 4.48	2.94 2.94	5.88	5.71	
145				2	0.22	3.01			5.9 nade based on y	5.73	

Note: For the bearings other than ULTAGE Series, outer rings with oil inlets and oil grooves can also be made based on your request. In this case, supplementary suffix "D1" is added after a bearing number. Example: 21322D1







Tapered bore



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
ĺ	X	Y	X	Y			
	1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load  $P_{0\mathrm{r}} = F_{\mathrm{r}} + Y_0 F_{\mathrm{a}}$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

## *d* 130 ∼ 160mm

	Bound	dary c	limensi	ons		Basic lo	ad rating	Fatigue load	Allowab	le speed	Bearing numbers 1)		
		m	m			dynamic	static	limit	mi				
	_	_	2)				:N	kΝ	Grease	Oil	Cylindrical	Tapered	
d	D	B	$r_{\rm s  min}^{3)}$	$W_0$	$d_0$	$C_{\rm r}$	$C_{0\mathbf{r}}$	$C_{ m u}$	lubrication	lubrication	bore	bore 2)	
	200	69	2	9	4	682	936	42.2	1 900	2 400	*24026EMD1	*24026EMK30D1	
	210	64	2	10	4.5	710	906	47.1	1 900	2 400	*23126EAD1	*23126EAKD1	
	210	64	2	10	4.5	710	906	47.1	1 900	2 400	*23126EMD1	*23126EMKD1	
	210	80	2	10	4.5	803	1 080	45.0	1 800	2 400	*24126EMD1	*24126EMK30D1	
130	230	64	3	13	6	808	898	56.6	2 200	2 800	*22226EAD1	*22226EAKD1	
130	230	64	3	13	6	808	898	56.6	2 200	2 800	*22226EMD1	*22226EMKD1	
	230	80	3	12	5	958	1 130	55.4	1 700	2 300	*23226EMD1	*23226EMKD1	
	280	93	4	19	9	1 330	1 400	77.8	1 600	2 000	*22326EAD1	*22326EAKD1	
	280	93	4	19	9	1 330	1 400	77.8	1 600	2 000	*22326EMD1	*22326EMKD1	
	210	53	2	9	4	597	783	47.5	2 100	2 700	*23028EAD1	*23028EAKD1	
	210	53	2	9	4	597	783	47.5	2 100	2 700	*23028EMD1	*23028EMKD1	
	210	69	2	9	4	709	990	46.0	1 800	2 200	*24028EMD1	*24028EMK30D1	
	225	68	2.1	11	5	802	1 030	53.1	1 800	2 200	*23128EAD1	*23128EAKD1	
	225	68	2.1	11	5	802	1 030	53.1	1 800	2 200	*23128EMD1	*23128EMKD1	
140	225	85	2.1	10	4.5	951	1 280	53.3	1 700	2 200	*24128EMD1	*24128EMK30D1	
	250	68	3	14	7	912	1 010	65.8	2 000	2 500	*22228EAD1	*22228EAKD1	
	250	68	3	14	7	912	1 010	65.8	2 000	2 500	*22228EMD1	*22228EMKD1	
	250	88	3	13	6	1 140	1 370	64.2	1 600	2 100	*23228EMD1	*23228EMKD1	
	300	102	4	19	9	1 540	1 720	88.8	1 500	1 900	*22328EAD1	*22328EAKD1	
	300	102	4	19	9	1 540	1 720	88.8	1 500	1 900	*22328EMD1	*22328EMKD1	
	005	EG	0.1	10	4 E	660	000	E0.0	2 000	0.500	**02020EAD1	**22020EAKD1	
	225 225	56 56	2.1	10	4.5 4.5	660 660	893 893	52.9	2 000	2 500 2 500	*23030EAD1 *23030EMD1	*23030EAKD1 *23030EMKD1	
	225	75	2.1	10	4.5	789		52.9 51.2	1 700	2 100	*23030EMD1		
	250	80	2.1	13	6	1 060	1 140 1 350	65.1	1 600	2 000	*23130EAD1	*24030EMK30D1 *23130EAKD1	
	250	80	2.1	13	6	1 060	1 350	65.1	1 600	2 000	*23130EAD1 *23130EMD1	*23130EAKD1 *23130EMKD1	
150	250	100	2.1	12	6			62.8					
	270	73	3	15	7	1 180 1 080	1 590 1 220	74.4	1 600 1 800	2 000	*24130EMD1 *22230EAD1	*24130EMK30D1 *22230EAKD1	
	270	73	3	15	7	1 080	1 220	74.4	1 800	2 300	*22230EAD1	*22230EARD1	
	270	96	3	14	6	1 340	1 620	74.4	1 500	1 900	*23230EMD1	*23230EMKD1	
	320	108	4	20	9	1 740	1 890	98.9	1 400	1 700	*22330EMD1	*22330EMKD1	
	320	100	4	20	J	1 /40	1 090	30.3	1 400	1 700	ZZJJULIVID I	* ZZJJULIVINU I	
	220	45	2	9	4	455	683	45.6	1 900	2 400	*23932EMD1	*23932EMKD1	
	240	60	2.1	11	5	748	1 000	59.1	1 800	2 300	*23032EAD1	*23032EAKD1	
160	240	60	2.1	11	5	748	1 000	59.1	1 800	2 300	*23032EMD1	*23032EMKD1	
100	240	80	2.1	10	5	901	1 290	56.8	1 600	2 000	*24032EMD1	*24032EMK30D1	
	270	86	2.1	14	6	1 220	1 580	73.6	1 500	1 900	*23132EAD1	*23132EAKD1	
	270	86	2.1	14	6	1 220	1 580	73.6	1 500	1 900	*23132EMD1	*23132EMKD1	

1) Bearing part numbers with * are ULTAGE Series and have outer ring oil holes and oil grooves as standard. 2) Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 3) Smallest allowable dimension for chamfer dimension r.
B-224

	Installation-		nensions	5	Constant	Axia	l load fact	ors	Mass (approx.) kg		
$d_1$	$d_{ m amin}$	mm $D_{ m amax}$	$D_1$	$r_{as\;max}$	e	$Y_1$	$Y_2$	$Y_0$	Cylindrical bore	Tapered bore	
143	139	191	178	2	0.31	2.20	3.27	2.15	7.82	7.71	
148	141	199	189	2	0.27	2.51	3.74	2.45	8.45	8.19	
148	141	199	189	2	0.27	2.51	3.74	2.45	8.51	8.25	
146	141	199	183	2	0.34	1.96	2.92	1.92	10.7	10.5	
151	144	216	206	3	0.25	2.69	4.00	2.63	11	10.7	
151	144	216	206	3	0.25	2.69	4.00	2.63	11.1	10.9	
150	144	216	203	3	0.32	2.12	3.15	2.07	13.8	13.4	
164	147	263	243	4	0.33	2.06	3.06	2.01	27.2	26.6	
164	147	263	243	4	0.33	2.06	3.06	2.01	28	27.5	
155	149	201	193	2	0.22	3.14	4.67	3.07	6.32	6.13	
155	149	201	193	2	0.22	3.14	4.67	3.07	6.37	6.18	
153	149	201	188	2	0.28	2.37	3.53	2.32	8.27	8.15	
159	152	213	203	2.1	0.26	2.55	3.80	2.50	10.3	9.94	
159	152	213	203	2.1	0.26	2.55	3.80	2.50	10.3	10	
156	152	213	198	2.1	0.34	1.98	2.94	1.93	12.9	12.8	
163	154	236	224	3	0.25	2.74	4.08	2.68	13.9	13.6	
163	154	236	224	3	0.25	2.74	4.08	2.68	14.2	13.9	
162	154	236	220	3	0.33	2.06	3.06	2.01	18.2	17.7	
181	157	283	261	4	0.33	2.03	3.02	1.98	34.4	33.7	
181	157	283	261	4	0.33	2.03	3.02	1.98	35.4	34.7	
167	161	214	207	2.1	0.21	3.20	4.77	3.13	7.68	7.45	
167	161	214	207	2.1	0.21	3.20	4.77	3.13	7.73	7.5	
165	161	214	202	2.1	0.29	2.32	3.45	2.26	10.4	10.3	
171	162	238	223	2.1	0.29	2.35	3.50	2.30	15.7	15.2	
171	162	238	223	2.1	0.29	2.35	3.50	2.30	15.8	15.3	
168	162	238	216	2.1	0.36	1.85	2.76	1.81	19.7	19.4	
177	164	256	242	3	0.25	2.74	4.08	2.68	17.6	17.3	
177	164	256	242	3	0.25	2.74	4.08	2.68	18	17.7	
174	164	256	237	3 4	0.33	2.03	3.02	1.98	23.6	22.9	
188	167	303	279	4	0.34	2.00	2.98	1.96	42.2	41.3	
175	169	211	205	2	0.17	3.90	5.81	3.81	5.09	4.94	
177	171	229	221	2.1	0.21	3.20	4.77	3.13	9.32	9.03	
177	171	229	221	2.1	0.21	3.20	4.77	3.13	9.37	9.09	
175	171	229	215	2.1	0.29	2.32	3.45	2.26	12.6	12.4	
185	172	258	240	2.1	0.29	2.35	3.50	2.30	20.1	19.5	
185	172	258	240	2.1	0.29	2.35	3.50	2.30	20.2	19.6	







Tapered bore



Dynamic equivalent radial load  $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

#### *d* 160 ∼ 190mm

	Boundary dimensions						ad rating	Fatigue load	Allowab	le speed	Bearing numbers 1)		
		m	m			dynamic	static	limit	mi				
d	D	В	$r_{ m s~min}^{3)}$	$W_0$	$d_0$	$C_{ m r}$ k	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore ²⁾	
	270	109	2.1	14	6	1 360	1 860	70.6	1 500	1 800	*24132EMD1	*24132EMK30D1	
	290	80	3	17	8	1 220	1 390	84.1	1 700	2 100	*22232EAD1	*22232EAKD1	
160	290	80	3	17	8	1 220	1 390	84.1	1 700	2 100	*22232EMD1	*22232EMKD1	
.00	290	104	3	15	7	1 550	1 890	83.8	1 400	1 800	*23232EMD1	*23232EMKD1	
	340	114	4	20	10	1 950	2 210	109	1 300	1 600	*22332EMD1	*22332EMKD1	
	230	45	2	9	4.5	468	723	48.8	1 800	2 300	*23934EMD1	*23934EMKD1	
	260	67	2.1	12	5	914	1 240	68.8	1 700	2 200	*23034EAD1	*23034EAKD1	
	260	67	2.1	12	5	914	1 240	68.8	1 700	2 200	*23034EMD1	*23034EMKD1	
	260	90	2.1	11	5	1 100	1 600	66.3	1 500	1 900	*24034EMD1	*24034EMK30D1	
170	280	88	2.1	14	6	1 270	1 700	77.3	1 400	1 800	*23134EAD1	*23134EAKD1	
170	280	88	2.1	14	6	1 270	1 700	77.3	1 400	1 800	*23134EMD1	*23134EMKD1	
	280	109	2.1	14	6	1 410	1 990	74.4	1 400	1 700	*24134EMD1	*24134EMK30D1	
	310	86	4	18	8	1 400	1 610	94.7	1 600	2 000	*22234EMD1	*22234EMKD1	
	310	110	4	16	8	1 700	2 070	94.6	1 300	1 700	*23234EMD1	*23234EMKD1	
	360	120	4	20	10	2 200	2 630	121	1 200	1 500	*22334EMD1	*22334EMKD1	
	250	52	2	10	5	573	869	57.2	1 700	2 100	*23936EMD1	*23936EMKD1	
	280	74	2.1	13	6	1 080	1 450	78.6	1 600	2 000	*23036EAD1	*23036EAKD1	
	280	74	2.1	13	6	1 080	1 450	78.6	1 600	2 000	*23036EMD1	*23036EMKD1	
	280	100	2.1	13	6	1 310	1 880	76.0	1 400	1 800	*24036EMD1	*24036EMK30D1	
100	300	96	3	15	7	1 490	1 960	88.7	1 300	1 700	*23136EAD1	*23136EAKD1	
180	300	96	3	15	7	1 490	1 960	88.7	1 300	1 700	*23136EMD1	*23136EMKD1	
	300	118	3	15	7	1 660	2 290	85.5	1 300	1 600	*24136EMD1	*24136EMK30D1	
	320	86	4	18	8	1 450	1 660	101	1 500	1 900	*22236EMD1	*22236EMKD1	
	320	112	4	16	8	1 800	2 270	101	1 200	1 600	*23236EMD1	*23236EMKD1	
	380	126	4	21	10	2 420	2 810	132	1 100	1 400	*22336EMD1	*22336EMKD1	
	260	52	2	10	5	603	935	62.8	1 600	2 000	*23938EMD1	*23938EMKD1	
	290	75	2.1	13	6	1 140	1 570	83.5	1 500	1 900	*23038EAD1	*23038EAKD1	
	290	75	2.1	13	6	1 140	1 570	83.5	1 500	1 900	*23038EMD1	*23038EMKD1	
	290	100	2.1	13	6	1 360	2 000	80.7	1 300	1 700	*24038EMD1	*24038EMK30D1	
190	320	104	3	17	8	1 670	2 250	100	1 200	1 600	*23138EMD1	*23138EMKD1	
	320	128	3	16	8	1 900	2 700	96.8	1 200	1 500	*24138EMD1	*24138EMK30D1	
	340	92	4	20	9	1 620	1 870	112	1 400	1 800	*22238EMD1	*22238EMKD1	
	340	120	4	18	8	1 990	2 480	109	1 200	1 500	*23238EMD1	*23238EMKD1	
	400	132	5	21	10	2 600	3 120	145	1 000	1 300	*22338EMD1	*22338EMKD1	

1) Bearing part numbers with :		

	Installation-	related din	nensions	5	Constant	Axia	l load fact	ors	Mass (a	oprox.)
		mm							kg	
		111111							Cylindrical	Tapered
$d_1$	$d_{ m amin}$	$D_{\rm amax}$	$D_1$	$r_{\text{as max}}$	e	$Y_1$	$Y_2$	$Y_0$	bore	bore
404	470	050	000	0.4	0.07	4.00	0.70	4.70	05.4	05.4
181 190	172 174	258 276	232 260	2.1 3	0.37 0.25	1.83 2.69	2.72 4.00	1.79 2.63	25.4 22.3	25.1 21.8
190	174	276	260	3	0.25	2.69	4.00	2.63	22.9	22.4
187	174	276	254	3	0.23	2.03	3.02	1.98	29.6	28.8
205	174	323	296	4	0.33	2.03	3.02	1.98	50.5	49.5
203	177	323	290	4	0.33	2.03	3.02	1.90	50.5	49.5
185	179	221	215	2	0.16	4.11	6.12	4.02	5.39	5.23
190	181	249	238	2.1	0.22	3.07	4.57	3.00	12.7	12.3
190	181	249	238	2.1	0.22	3.07	4.57	3.00	12.8	12.4
186	181	249	231	2.1	0.30	2.23	3.32	2.18	17.2	16.9
195	182	268	250	2.1	0.28	2.39	3.56	2.34	21.5	20.9
195	182	268	250	2.1	0.28	2.39	3.56	2.34	21.6	20.9
193	182	268	243	2.1	0.35	1.91	2.85	1.87	26.7	26.3
201	187	293	277	4	0.26	2.60	3.87	2.54	28.3	27.7
199	187	293	272	4	0.33	2.03	3.02	1.98	35.8	34.8
223	187	343	313	4	0.32	2.09	3.11	2.04	60.3	59.1
199	189	241	232	2	0.17	3.90	5.81	3.81	7.79	7.56
201	191	269	255	2.1	0.23	2.95	4.40	2.89	16.8	16.3
201	191	269	255	2.1	0.23	2.95	4.40	2.89	16.9	16.4
199	191	269	248	2.1	0.31	2.15	3.20	2.10	22.8	22.4
205	194	286	267	3	0.29	2.32	3.45	2.26	27.2	26.4
205	194	286	267	3	0.29	2.32	3.45	2.26	27.4	26.5
202	194	286	259	3	0.36	1.87	2.79	1.83	33.5	33
209	197	303	287	4	0.25	2.74	4.08	2.68	29.3	28.7
210	197	303	282	4	0.33	2.06	3.06	2.01	38.2	37.1
229	197	363	329	4	0.32	2.09	3.11	2.04	70.2	68.7
209	199	251	243	2	0.17	4.05	6.04	3.96	8.2	7.96
213	201	279	266	2.1	0.17	3.01	4.48	2.94	17.8	17.3
213	201	279	266	2.1	0.22	3.01	4.48	2.94	17.9	17.4
209	201	279	258	2.1	0.22	2.23	3.32	2.18	23.8	23.4
203	204	306	284	3	0.30	2.32	3.45	2.16	34.3	33.2
216	204	306	275	3	0.23	1.84	2.74	1.80	42.1	41.5
222	207	323	305	4	0.25	2.74	4.08	2.68	35.6	34.9
220	207	323	299	4	0.33	2.03	3.02	1.98	46.1	44.7
247	210	380	346	5	0.32	2.12	3.15	2.07	81.5	79.9
<u>_</u> -+1	210	000	0-10	9	0.02	L. 1 L	0.10	2.07	01.0	70.0

2) Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 3) Smallest allowable dimension for chamfer dimension r.

B-227 B-226







Tapered bore



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$					
X	Y	X	Y				
1	$Y_1$	0.67	$Y_2$				

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

#### *d* 200 ∼ 280mm

	Bounda	ary dii	nensi	ons		Basic load	d rating	Fatigue load	Allowab	ole speed	Bearing numbers 1)		
		mm				dynamic	static	limit		in-1			
d	D	В	$r_{ m s  min}$	$W_0$	$d_0$	$C_{ m r}$ ki	$C_{0r}$	$C_{ m u}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore ²⁾	
	280	60	2.1	12	6	766	1 190	71.8	1 500	1 900	*23940EMD1	*23940EMKD1	
	310	82	2.1	15	7	1 310	1 790	94.1	1 400	1 800	*23040EMD1	*23040EMKD1	
	310	109	2.1	14	7	1 570	2 280	91.1	1 200	1 600	*24040EMD1	*24040EMK30D1	
	340	112	3	18	8	1 890	2 510	110	1 100	1 400	*23140EMD1	*23140EMKD1	
200	340	140	3	17	8	2 130	2 930	105	1 100	1 400	*24140EMD1	*24140EMK30D1	
	360	98	4	20	10	1 810	2 100	124	1 400	1 700	*22240EMD1	*22240EMKD1	
	360	128	4	19	9	2 250	2 840	120	1 100	1 300	*23240EMD1	*23240EMKD1	
	420	138	5	21	10	2 830	3 530	158	950	1 200	*22340EMD1	*22340EMKD1	
	300	60	2.1	12	6	789	1 260	70.4	1 400	1 700	*23944EMD1	*23944EMKD1	
	340	90	3	15	7	1 530	2 110	109	1 300	1 600	*23044EMD1	*23044EMKD1	
	340	118	3	15	7	1 850	2 720	106	1 100	1 400	*24044EMD1	*24044EMK30D1	
	370	120	4	19	9	2 190	2 940	128	1 000	1 300	*23144EMD1	*23144EMKD1	
220	370	150	4	19	9	2 540	3 620	124	1 000	1 300	*24144EMD1	*24144EMK30D1	
	400	108	4	21	11	2 210	2 690	149	1 200	1 500	*22244EMD1	*22244EMKD1	
	400	144	4	20	10	2 890	3 830	147	1 000	1 200	*23244EMD1	*23244EMKD1	
	460	145	5	20	12	3 010	3 560	163	850	1 090	*22344EMD1	*22344EMKD1	
	320	60	2.1	12	6	815	1 350	97 7	1 300	1 600	*23948EMD1	*23948EMKD1	
	360	92	3	16	8	1 630	2 350	120	1 100	1 400	*23948EMD1	*23048EMKD1	
	360	118	3	16	8	1 940	2 980	116	1 000	1 300	*24048EMD1	*24048EMK30D1	
	400	128	4	20	9	2 510	3 500	147	960	1 200	*23148EMD1	*23148EMKD1	
240	400	160	4	19	9	2 910	4 290	142	960	1 200	*24148EMD1	*24148EMK30D1	
	440	120	4	16	10	2 470	3 110	159	1 060	1 350	*22248EMD1	*22248EMKD1	
	440	160	4	20	12	3 140	4 260	156	850	1 090	*23248EMD1	*23248EMKD1	
	500	155	5	20	12	3 500	4 170	193	780	1 000	*22348EMD1	*22348EMKD1	
	360	75	2.1	14	7	1 130	1 940	105	1 100	1 400	*23952EMD1	*23952EMKD1	
	400	104	4	18	8	2 060	2 910	144	1 000	1 300	*23052EMD1	*23052EMKD1	
	400	140	4	18	8	2 520	3 820	139	960	1 200	*24052EMD1	*24052EMK30D1	
260	440	144	4	20	12	2 780	4 020	160	860	1 090	*23152EMD1	*23152EMKD1	
200	440	180	4	27	16	3 290	4 880	147	850	1 090	*24152EMD1	*24152EMK30D1	
	480	130	5	20	12	2 890	3 680	183	970	1 240	*22252EMD1	*22252EMKD1	
	480	174	5	27	16	3 650	5 050	180	780	1 000	*23252EMD1	*23252EMKD1	
	540	165	6	27	16	4 020	4 830	221	720	920	*22352EMD1	*22352EMKD1	
	380	75	2.1	14	7	1 180	2 050	115	1 000	1 300	*23956EMD1	*23956EMKD1	
280	420	106	4	18	8	2 170	3 150	155	960	1 200	*23056EMD1	*23056EMKD1	
	720	100	-	10	U	_ 170	3 100	100	000	. 200	LOUGEIND	LOUGEMIND	

¹⁾ Bearing part numbers with * are **ULTAGE Series** and have outer ring oil holes and oil grooves as standard. Bearing models having outer diameter *D* dimension of 440 mm or more are the EM type (large size). 2) Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 3) Smallest allowable dimension for chamfer dimension *r*. B-228

	Installation-	related din	nensions		Constant	Δχία	I load fact	ors	Mass (approx.)		
	motunation	mm		•	Constant	71,710	ii iouu iuce	0.5	kg		
		111111							Cylindrical	Tapered	
$d_1$	$d_{ m amin}$	$D_{\text{a max}}$	$D_1$	r _{as max}	e	$Y_1$	$Y_2$	$Y_0$	bore	bore	
221	211	269	260	2.1	0.18	3.76	5.59	3.67	12	11.6	
223	211	299	283	2.1	0.23	2.95	4.40	2.89	22.8	22.1	
221	211	299	275	2.1	0.31	2.18	3.24	2.13	30.2	29.7	
231	214	326	301	3	0.30	2.25	3.34	2.20	41.9	40.6	
224	214	326	291	3	0.39	1.74	2.59	1.70	51.5	50.7	
234	217	343	323	4	0.25	2.74	4.08	2.68	42.7	41.8	
232	217	343	315	4	0.34	1.98	2.94	1.93	55.2	53.6	
265	220	400	364	5	0.31	2.15	3.20	2.10	94.6	92.7	
241	231	289	280	2.1	0.17	4.05	6.04	3.96	12.5	12.1	
246	233	327	310	3	0.23	2.95	4.40	2.89	29.9	29.1	
243	233	327	302	3	0.31	2.20	3.27	2.15	39.2	38.6	
252	237	353	328	4	0.30	2.28	3.39	2.23	52.3	50.7	
247	237	353	317	4	0.38	1.78	2.65	1.74	65.2	64.3	
264	237	383	358	4	0.25	2.74	4.08	2.68	59.6	58.4	
261	237	383	349	4	0.34	2.00	2.98	1.96	79.4	77.1	
277	240	440	388	5	0.32	2.10	3.13	2.06	119	116	
262	251	309	301	2.1	0.15	4.40	6.56	4.31	13.5	13.1	
267	253	347	329	3	0.22	3.07	4.57	3.00	32	31.7	
264	253	347	322	3	0.28	2.37	3.53	2.32	42.2	41.6	
276	257	383	356	4	0.29	2.32	3.45	2.26	65.1	63.1	
270	257	383	344	4	0.37	1.82	2.70	1.78	81	79.8	
288	257	423	383	4	0.27	2.53	3.77	2.47	82.6	80.9	
284	257	423	372	4	0.36	1.86	2.77	1.82	108	105	
299	260	480	421	5	0.32	2.12	3.15	2.07	149	146	
292	271	349	335	2.1	0.17	3.90	5.81	3.81	23.9	23.1	
291	275	385	366	4	0.23	2.95	4.40	2.89	47.8	46.3	
286	275	385	354	4	0.31	2.16	3.22	2.12	63.6	62.6	
302	277	423	380	4	0.31	2.15	3.20	2.10	92.2	89.5	
295	277	423	371	4	0.40	1.69	2.52	1.65	111	109	
312	280	460	415	5	0.27	2.53	3.77	2.47	108	105	
310	280	460	405	5	0.36	1.87	2.79	1.83	143	139	
324	286	514	456	6	0.31	2.16	3.22	2.12	186	183	
310	291	369	356	2.1	0.16	4.16	6.20	4.07	25.2	24.4	
310	295	405	386	4	0.22	3.07	4.57	3.00	51.3	49.7	







Tapered bore

d 280 ~ 360mm

	Boundary dimensions					Basic loa	d rating	Fatigue load	Allowab	le speed	Bearing numbers 1)		
		mm				dynamic	static	limit	mi	in-1			
d	D	В	$r_{ m smin}^3$	) IAZ.	$d_0$	$C_{ m r}$ ki	$C_{0r}$	$\frac{kN}{C_{11}}$	Grease	Oil lubrication	Cylindrical bore	Tapered bore ²⁾	
$\alpha$	D	D	s min	. ,, ()	$a_0$	Or	Our	Ou	iubiicatioii	lublication	bore	DOI e 27	
	420	140	4	18	8	2 620	4 060	150	880	1 100	*24056EMD1	*24056EMK30D1	
	460	146	5	20	12	2 980	4 400	182	810	1 030	*23156EMD1	*23156EMKD1	
000	460	180	5	27	16	3 550	5 450	167	810	1 030	*24156EMD1	*24156EMK30D1	
280	500	130	5	20	12	3 010	3 920	198	920	1 180	*22256EMD1	*22256EMKD1	
	500	176	5	27	16	3 810	5 420	193	740	950	*23256EMD1	*23256EMKD1	
	580	175	6	27	16	4 490	5 450	249	670	860	*22356EMD1	*22356EMKD1	
	420	90	3	14	8	1 600	2 620	145	890	1 140	*23960EMD1	*23960EMKD1	
	460	118	4	16	10	2 400	3 610	176	890	1 130	*23060EMD1	*23060EMKD1	
	460	160	4	20	12	3 150	5 190	166	760	970	*24060EMD1	*24060EMK30D1	
000	500	160	5	20	12	3 540	5 170	205	750	950	*23160EMD1	*23160EMKD1	
300	500	200	5	27	16	4 270	6 610	198	750	950	*24160EMD1	*24160EMK30D1	
	540	140	5	20	12	3 470	4 590	232	860	1 080	*22260EMD1	*22260EMKD1	
	540	192	5	27	16	4 520	6 280	228	690	880	*23260EMD1	*23260EMKD1	
	620	185	7.5	27	16	4 000	5 400	490	550	720	22360B	22360BK	
	440	90	3	14	8	1 670	2 820	154	840	1 080	*23964EMD1	*23964EMKD1	
	480	121	4	20	12	2 540	4 020	191	850	1 070	*23064EMD1	*23064EMKD1	
	480	160	4	20	12	3 250	5 400	184	720	920	*24064EMD1	*24064EMK30D1	
320	540	176	5	27	16	4 020	6 020	227	700	880	*23164EMD1	*23164EMKD1	
	540	218	5	33	20	5 010	7 720	225	690	880	*24164EMD1	*24164EMK30D1	
	580	150	5	20	12	3 950	5 100	261	800	1 020	*22264EMD1	*22264EMKD1	
	580	208	5	33	20	5 230	7 370	259	640	820	*23264EMD1	*23264EMKD1	
	460	90	3	14	8	1 710	2 980	162	800	1 020	*23968EMD1	*23968EMKD1	
	520	133	5	20	12	2 990	4 690	219	790	1 000	*23068EMD1	*23068EMKD1	
	520	180	5	27	16	3 910	6 510	206	670	860	*24068EMD1	*24068EMK30D1	
340	580	190	5	27	16	4 670	6 870	257	650	830	*23168EMD1	*23168EMKD1	
	580	243	5	33	20	5 980	9 340	254	650	830	*24168EMD1	*24168EMK30D1	
	620	224	6	33	20	4 950	8 000	585	490	630	23268B	23268BK	
	480	90	3	14	8	1 750	3 090	171	760	970	*23972EMD1	*23972EMKD1	
	540	134	5	20	12	3 070	4 910	232	750	950	*23972EMD1	*23072EMKD1	
360	540	180	5	27	16	4 040	6 840	220	640	820	*24072EMD1	*24072EMK30D1	
300	600	192	5	27	16	4 200	7 050	530	490	630	23172B	23172BK	
	600	243	5	33	20	5 100	9 150	470	490	630	24172B	24172BK30	
	650	232	6	33	20	5 400	8 700	620	450	590	23272B	23272BK	
	000	202	U	50	20	3 400	3 7 00	020	400	550	_52,20	-ULI LUIX	





Dynamic equivalent radial load  $P_{\rm r} = \!\! X F_{\rm r} + \!\! Y F_{\rm a}$ 

$\frac{F_{ m a}}{F_{ m r}}$	<b>≦</b> e	$\frac{F_a}{F_1}$	:>e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

	Installation-		nensions	;	Constant	Axia	l load fact	ors	<b>Mass</b> (approx.) kg		
$d_1$	$d_{ m amin}$	mm $D_{ m amax}$	$D_1$	$r_{asmax}$	e	$Y_1$	$Y_2$	$Y_0$	Cylindrical bore	Tapered bore	
306	295	405	376	4	0.29	2.30	3.42	2.25	67.3	66.3	
322	300	440	403	5	0.30	2.23	3.32	2.18	98.4	95.3	
316	300	440	394	5	0.38	1.78	2.65	1.74	118	117	
333	300	480	437	5	0.25	2.69	4.00	2.63	113	111	
331	300	480	426	5	0.35	1.95	2.90	1.91	152	148	
349	306	554	489	6	0.31	2.18	3.24	2.13	228	223	
329	313	407	387	3	0.20	3.42	5.09	3.34	40.1	39.2	
338	315	445	413	4	0.24	2.81	4.19	2.75	72.9	70.9	
332	315	445	401	4	0.33	2.04	3.04	2.00	98.0	96.9	
345	320	480	436	5	0.31	2.20	3.27	2.15	129	125	
340	320	480	425	5	0.39	1.74	2.59	1.70	159	157	
358	320	520	469	5	0.25	2.69	4.00	2.63	134	131	
352	320	520	461	5	0.35	1.92	2.86	1.88	194	188	
381	336	584	522	6	0.32	2.13	3.17	2.08	270	265	
350	333	427	407	3	0.19	3.62	5.39	3.54	42.1	40.8	
360	335	465	433	4	0.23	2.92	4.35	2.86	78.9	76.6	
352	335	465	423	4	0.31	2.15	3.20	2.10	104	102	
373	340	520	468	5	0.31	2.15	3.20	2.10	169	164	
363	340	520	457	5	0.39	1.71	2.54	1.67	204	201	
383	340	560	510	5	0.25	2.69	4.00	2.63	177	174	
376	340	560	493	5	0.35	1.91	2.85	1.87	245	238	
370	353	447	427	3	0.18	3.80	5.66	3.72	44.5	43.1	
384	358	502	466	5	0.24	2.87	4.27	2.80	98.5	95.5	
377	358	502	456	5	0.33	2.06	3.06	2.01	140	137	
393	360	560	500	5	0.32	2.12	3.15	2.07	213	206	
385	360	560	486	5	0.41	1.65	2.46	1.61	266	262	
435	368	592	598	5	0.37	1.84	2.75	1.80	300	291	
390	373	467	447	3	0.17	4.00	5.96	3.91	46.2	44.8	
405	378	522	488	5	0.23	2.98	4.44	2.92	111	108	
398	378	522	478	5	0.31	2.16	3.22	2.12	147	145	
417	382	578	520	4	0.32	2.11	3.15	2.07	222	215	
414	382	578	507	4	0.40	1.67	2.48	1.63	281	277	
429	388	622	551	5	0.36	1.87	2.78	1.83	339	329	

Note: Bearings other than the ULTAGE Series with outer diameter D dimension of 320 mm or more are also provided with outer ring oil inlets and oil grooves.







Tapered bore



*d* 380 ∼ 480mm

	Boundary dimensions						d rating	Fatigue load	Allowab	le speed	Bearing numbers 1)		
		mm				dynamic	static	limit	mi				
d	D	В	$r_{ m s  min}$	$W_0$	$d_0$	$C_{ m r}$	$C_{0r}$	$\frac{kN}{C_{\mathrm{u}}}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore ²⁾	
380	520	106	4	16	10	2 300	3 920	205	710	910	*23976EMD1	*23976EMKD1	
	560	135	5	20	12	3 230	5 270	247	720	910	*23076EMD1	*23076EMKD1	
	560	180	5	27	16	4 140	7 280	240	610	780	*24076EMD1	*24076EMK30D1	
	620	194	5	27	16	4 350	7 500	560	450	590	23176B	23176BK	
	620	243	5	33	20	5 350	9 650	570	450	590	24176B	24176BK30	
	680	240	6	33	20	5 800	9 650	665	430	550	23276B	23276BK	
400	540 600 600 650 650 720	106 148 200 200 250 256	4 5 5 6 6	16 20 27 27 33 33	10 12 16 16 20 20	2 370 3 300 4 250 4 650 5 650 6 500	4 170 6 050 8 400 8 050 10 300 10 600	215 450 485 630 585 740	680 520 460 430 430 400	870 680 600 560 560 520	*23980EMD1 23080B 24080B 23180B 24180B 23280B	*23980EMKD1 23080BK 24080BK30 23180BK 24180BK30 23280BK	
420	560	106	4	16	10	2 390	4 320	230	650	830	*23984EMD1	*23984EMKD1	
	620	150	5	20	12	3 450	6 400	475	490	640	23084B	23084BK	
	620	200	5	27	16	4 300	8 450	470	440	570	24084B	24084BK30	
	700	224	6	33	20	5 800	9 950	680	410	530	23184B	23184BK	
	700	280	6	33	20	6 850	12 200	755	410	530	24184B	24184BK30	
	760	272	7.5	33	20	7 300	12 000	820	380	490	23284B	23284BK	
440	600	118	4	16	10	2 260	4 700	325	500	650	23988	23988K	
	650	157	6	20	12	3 650	6 850	530	470	610	23088B	23088BK	
	650	212	6	33	20	4 800	9 450	530	420	540	24088B	24088BK30	
	720	226	6	33	20	5 800	10 100	685	390	500	23188B	23188BK	
	720	280	6	33	20	7 200	13 100	715	390	500	24188B	24188BK30	
	790	280	7.5	33	20	7 700	12 800	870	360	470	23288B	23288BK	
460	620	118	4	16	10	2 340	4 950	325	480	620	23992	23992K	
	680	163	6	27	16	4 000	7 450	560	450	580	23092B	23092BK	
	680	218	6	33	20	5 100	10 200	590	390	510	24092B	24092BK30	
	760	240	7.5	33	20	6 350	11 400	775	360	470	23192B	23192BK	
	760	300	7.5	33	20	7 900	14 500	805	360	470	24192B	24192BK30	
	830	296	7.5	33	20	8 650	14 500	925	340	440	23292B	23292BK	
480	650	128	5	20	12	2 590	5 500	365	450	590	23996	23996K	
	700	165	6	27	16	4 050	7 700	570	420	550	23096B	23096BK	
	700	218	6	33	20	5 200	10 500	610	380	490	24096B	24096BK30	



B-232



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load

 $P_{0r} = F_r + Y_0 F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

	Installation-related dimensions					Axia	l load fact	ors	Mass (approx.) kg		
$d_1$	$d_{ m amin}$	mm $D_{ m amax}$	$D_1$	$r_{asmax}$	e	$Y_1$	$Y_2$	$Y_0$	Cylindrical bore	Tapered bore	
412	395	505	481	4	0.18	3.66	5.46	3.58	68.0	65.9	
425	398	542	509	5	0.10	3.07	4.57	3.00	117	113	
420	398	542	499	5	0.22	2.25	3.34	2.20	154	151	
436	402	598	540	4	0.31	2.16	3.22	2.12	235	228	
431	402	598	529	4	0.39	1.73	2.58	1.69	292	287	
453	408	652	575	5	0.36	1.89	2.82	1.85	380	369	
433	415	525	501	4	0.18	3.80	5.66	3.72	71.4	69.2	
451	422	578	542	4	0.24	2.80	4.16	2.73	149	144	
446	422	578	528	4	0.32	2.09	3.11	2.04	202	200	
458	428	622	567	5	0.31	2.21	3.29	2.16	264	256	
453	428	622	552	5	0.38	1.77	2.63	1.73	329	324	
473	428	692	612	5	0.37	1.81	2.69	1.77	457	443	
454	435	545	522	4	0.17	3.95	5.88	3.86	74.9	72.6	
471	442	598	562	4	0.24	2.85	4.24	2.79	157	152	
465	442	598	551	4	0.32	2.13	3.17	2.08	210	207	
488	448	672	611	5	0.32	2.11	3.15	2.07	354	343	
477	448	672	592	5	0.40	1.69	2.51	1.65	440	433	
501	456	724	643	6	0.36	1.86	2.77	1.82	544	528	
483	458	582	551	3	0.18	3.66	5.46	3.58	101	98	
490	468	622	585	5	0.24	2.85	4.24	2.79	181	175	
486	468	622	576	5	0.32	2.11	3.15	2.07	245	241	
504	468	692	627	5	0.31	2.15	3.21	2.11	370	358	
498	468	692	614	5	0.39	1.75	2.61	1.71	456	449	
525	476	754	671	6	0.36	1.88	2.80	1.84	600	582	
503	478	602	572	3	0.17	3.95	5.88	3.86	107	104	
512	488	652	613	5	0.23	2.88	4.29	2.82	206	200	
509	488	652	604	5	0.31	2.15	3.21	2.11	276	272	
534	496	724	660	6	0.31	2.14	3.19	2.10	443	429	
523	496	724	645	6	0.39	1.71	2.55	1.67	550	541	
547	496	794	703	6	0.36	1.87	2.78	1.83	704	683	
527	502	628	599	4	0.18	3.85	5.73	3.76	123	119	
532	508	672	633	5	0.23	2.94	4.38	2.88	217	209	
530	508	672	625	5	0.30	2.22	3.30	2.17	285	280	

B-233

Note: Outer ring oil inlets/oil grooves are provided.





Tapered bore



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	$Y_1$	0.67	$Y_2$			

Static equivalent radial load

 $P_{0r} = F_r + Y_0 F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

#### d 480 ~ 630mm

	Boundary dimensions					Basic load rating		Fatigue load	Allowab	le speed	Bearing numbers		
	mm			dynamic	static	limit	mi	n-1					
d	D	В	$r_{ m s  min}^2$	$W_0$	$d_0$	$C_{ m r}$	$C_{0r}$	$C_{ m u}$	Grease lubrication	Oil lubrication	Cylindrical bore	Tapered bore ¹⁾	
	790	248	7.5	33	20	6 900	12 300	860	350	450	23196B	23196BK	
480	790	308	7.5	33	20	8 250	15 300	860	350	450	24196B	24196BK30	
	870	310	7.5	33	20	9 200	15 500	1 000	320	420	23296B	23296BK	
	670	128	5	20	12	2 640	5 600	460	430	560	239/500	239/500K	
	720	167	6	27	16	4 250	8 300	645	410	530	230/500B	230/500BK	
	720	218	6	33	20	5 300	10 900	640	350	460	240/500B	240/500BK30	
500	830	264	7.5	33	20	7 700	13 700	875	330	430	231/500B	231/500BK	
	830	325	7.5	42	25	9 000	16 700	870	330	430	241/500B	241/500BK30	
	920	336	7.5	42	25	10 500	17 800		310	400	232/500B	232/500BK30	
	920	330	7.5	42	25	10 500	17 800	1 100	310	400	232/500B	232/300BK	
	710	136	5	20	12	2 940	6 450	400	400	520	239/530	239/530K	
	780	185	6	27	16	4 850	9 350	710	380	490	230/530B	230/530BK	
530	780	250	6	33	20	6 200	12 700	700	330	430	240/530B	240/530BK30	
	870	272	7.5	33	20	7 800	14 200	920	310	400	231/530B	231/530BK	
	870	335	7.5	42	25	9 250	17 400	910	310	400	241/530B	241/530BK30	
	980	355	9.5	42	25	11 500	19 800		280	370	232/530B	232/530BK	
	750	140	5	20	12	3 200	6 900	525	380	490	239/560	239/560K	
	820	195	6	27	16	5 350	10 500	800	350	450	230/560B	230/560BK	
560	820	258	6	33	20	6 750	14 100	750	310	400	240/560B	240/560BK30	
000	920	280	7.5	33	20	8 550	15 500	1 000	280	370	231/560B	231/560BK	
	920	355	7.5	42	25	11 100	20 800	1 030	280	370	241/560B	241/560BK30	
	1 030	365	9.5	42	25	12 300	21 100	1 320	260	340	232/560B	232/560BK	
	800	150	5	20	12	3 600	8 000	490	350	450	239/600	239/600K	
	870	200	6	27	16	5 800	12 000	835	310	420	230/600B	230/600BK	
	870	272	6	33	20	7 150	15 600	750	280	370	240/600B	240/600BK30	
600	980	300	7.5	33	20	10 000	18 400	1 160	260	340	231/600B	231/600BK	
	980	375	7.5	42	25	11 900	23 200	1 130	260	340	241/600B	241/600BK30	
	1 090	388	9.5	42	25	13 600	23 700	930	250	320	232/600B	232/600BK	
	0.55	105				4.400	0.055	= 4=	005	400	000/000	000/000/	
	850	165	6	27	16	4 100	9 250	545	320	420	239/630	239/630K	
	920	212	7.5	33	20	6 550	13 000	950	310	400	230/630B	230/630BK	
630	920	290	7.5	33	20	8 400	17 900	915	270	350	240/630B	240/630BK30	
555	1 030	315	7.5	33	20	10 700	19 900	1 190	250	320	231/630B	231/630BK	
	1 030	400	7.5	42	25	12 900	25 000	1 200	250	320	241/630B	241/630BK30	
	1 150	412	12	42	25	15 200	26 800	1 540	230	300	232/630B	232/630BK	

I	Installation -	-related din	5	Constant	Axia	l load fact	ors	<b>Mass</b> (approx.) kg		
		mm							Cylindrical	-
$d_1$	$d_{ m amin}$	$D_{a \max}$	$D_1$	$r_{as\;max}$	e	$Y_1$	$Y_2$	$Y_0$	bore	Tapered bore
554	516	754	687	6	0.31	2.15	3.21	2.11	492	477
546	516	754	671	6	0.39	1.74	2.59	1.70	608	600
574	516	834	737	6	0.36	1.87	2.78	1.83	814	790
547	522	648	621	4	0.17	4.02	5.98	3.93	131	127
552	528	692	653	5	0.23	2.98	4.44	2.92	226	218
550	528	692	646	5	0.30	2.28	3.40	2.23	295	290
580	536	794	724	6	0.32	2.12	3.16	2.08	584	566
572	536	794	703	6	0.39	1.72	2.57	1.69	716	705
600	536	884	773	6	0.39	1.74	2.59	1.70	1 000	971
579	552	688	654	4	0.17	3.95	5.88	3.86	157	152
594	558	752	704	5	0.22	3.03	4.52	2.97	306	295
586	558	752	689	5	0.30	2.24	3.33	2.19	413	406
617	566	834	757	6	0.30	2.22	3.30	2.17	653	633
605	566	834	737	6	0.38	1.79	2.67	1.75	800	788
600	574	936	723	8	0.39	1.74	2.59	1.70	1 200	1 170
547	582	728	621	4	0.16	4.10	6.10	4.01	182	176
627	588	792	741	5	0.22	3.03	4.51	2.96	353	340
620	588	792	726	5	0.30	2.29	3.40	2.24	467	459
650	596	884	801	6	0.30	2.27	3.38	2.22	752	729
638	596	884	787	6	0.39	1.75	2.61	1.71	948	934
677	604	986	867	8	0.36	1.88	2.80	1.84	1 360	1 320
654	622	778	739	4	0.18	3.85	5.73	3.76	218	211
672	628	842	785	5	0.21	3.17	4.72	3.10	400	386
667	628	842	770	5	0.29	2.33	3.47	2.28	544	535
694	636	944	860	6	0.30	2.22	3.30	2.17	908	880
685	636	944	832	6	0.37	1.81	2.70	1.77	1 130	1 110
722	644	1 046	919	8	0.36	1.86	2.77	1.82	1 540	1 490
690	658	822	781	5	0.18	3.66	5.46	3.58	277	268
704	666	884	834	6	0.22	3.14	4.67	3.07	481	464
697	666	884	815	6	0.30	2.28	3.40	2.23	657	646
731	666	994	899	6	0.30	2.27	3.38	2.22	1 050	1 020
718	666	994	872	6	0.38	1.78	2.66	1.74	1 330	1 310
760	684	1 096	969	10	0.36	1.87	2.78	1.83	1 900	1 840

Note: Outer ring oil inlets/oil grooves are provided.

¹⁾ Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 2) Smallest allowable dimension for chamfer dimension r.





Tapered bore



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≦</b> e	$\frac{F_{i}}{F_{i}}$	>e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

### $d 670 \sim 950 \text{mm}$

	Boundary dimensions					Basic loa	ad rating	Fatigue Allowable speed load			Bearir	ng numbers
		mm				dynamic	static	limit	mi	in-1		
				) ***			:N	kN	Grease	Oil	Cylindrical	Tapered
d	D	B	$r_{\rm s  min}^2$	$W_0$	$d_0$	$C_{ m r}$	$C_{0\mathbf{r}}$	$C_{ m u}$	lubrication	lubrication	bore	bore 1)
	900	170	6	27	16	4 550	10 300	795	300	390	239/670	239/670K
	980	230	7.5	33	20	7 300		1 000	280	360	230/670B	230/670BK
	980	308	7.5	33	20	9 650	20 600	1 040	250	320	240/670B	240/670BK30
670	1 090	336	7.5	42	25	12 500	23 600	1 400	230	300	231/670B	231/670BK
	1 090	412	7.5	42	25	14 100	28 000	1 340	230	300	241/670B	241/670BK30
	1 220	438	12	42	25	17 900	32 000	1 770	220	280	232/670B	232/670BK
	950	180	6	27	16	4 950	11 500	665	280	370	239/710	239/710K
	1 030	236	7.5	33	20	8 000		1 140	260	340	230/710B	230/710BK
710	1 030	315	7.5	33	20	10 300	22 500	1 150	230	300	240/710B	240/710BK30
	1 150	345	9.5	42	25	13 000		1 470	220	280	231/710B	231/710BK
	1 150	438	9.5	42	25	16 100	32 000		220	280	241/710B	241/710BK30
	1 280	450	12	42	25	18 100	32 500	1 200	200	260	232/710B	232/710BK
	1 000	185	6	27	16	5 600	13 000	990	260	340	239/750	239/750K
	1 090	250	7.5	33	20	9 100	18 300	1 290	250	320	230/750B	230/750BK
750	1 090	335	7.5	42	25	11 300	24 600	1 230	220	280	240/750B	240/750BK30
	1 220	365	9.5	42	25	14 300	27 200	1 130	200	260	231/750B	231/750BK
	1 360	475	15	42	25	20 300	36 500	1 980	180	240	232/750B	232/750BK
	1 060	195	6	27	16	6 000	13 700	1 040	240	310	239/800	239/800K
800	1 150	258	7.5	33	20	9 350	19 500	1 340	220	290	230/800B	230/800BK
800	1 150	345	7.5	42	25	12 400	27 800	1 360	200	260	240/800B	240/800BK30
	1 280	375	9.5	42	25	16 000	31 000	1 780	180	240	231/800B	231/800BK
	1 120	200	6	27	16	6 500	15 100	1 080	220	290	239/850	239/850K
050	1 220	272	7.5	33	20	10 900	22 700	1 510	210	270	230/850B	230/850BK
850	1 220	365	7.5	42	25	13 900	31 500	1 490	180	240	240/850B	240/850BK30
	1 360	400	12	42	25	17 300	34 000	1 380	170	220	231/850B	231/850BK
	1 180	206	6	33	20	7 400	17 300	1 230	210	270	239/900	239/900K
	1 280	280	7.5	33	20	11 400	24 700	1 580	190	250	230/900B	230/900BK
900	1 280	375	7.5	42	25	14 700	33 500	1 580	170	220	240/900B	240/900BK30
	1 420	412	12	42	25	18 700	38 000	2 030	150	200	231/900B	231/900BK
	1 250	224	7.5	33	20	8 650	20 500	1 390	190	250	239/950	239/950K
950	1 360	300	7.5	33	20	12 800		1 750	180	230	230/950B	230/950BK
950	1 360	412	7.5	42	25	17 200	40 000		160	210	240/950B	240/950BK30
	1 300	412	7.3	42	20	17 200	+0 000	1 / 00	100	210	Z-10/330D	2 <del>1</del> 0/330DR30

1) Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 2) Smallest allowable dimension for chamfer dimension r.
B-236

	Installation	-related di	mensions	i	Constant	Axia	l load fact	ors	<b>Mass</b> (approx.) kg			
		mm										
$d_1$	$d_{ m amin}$	$D_{\mathrm{amax}}$	$D_1$	$r_{as\;max}$	e	$Y_1$	$Y_2$	$Y_0$	Cylindrical bore	Tapered bore		
733	698	872	830	5	0.18	3.76	5.59	3.67	317	307		
750	706	944	886	6	0.22	3.07	4.57	3.00	594	573		
741	706	944	870	6	0.29	2.29	3.41	2.24	794	781		
773	706	1 054	956	6	0.30	2.22	3.30	2.17	1 250	1 210		
764	706	1 054	926	6	0.37	1.83	2.73	1.79	1 530	1 510		
807	724	1 166	1 034	10	0.36	1.89	2.81	1.85	2 270	2 200		
778	738	922	876	5	0.18	3.85	5.73	3.76	375	363		
792	746	994	937	6	0.22	3.02	4.50	2.96	663	640		
783	746	994	916	6	0.29	2.36	3.51	2.31	884	870		
822	754	1 106	1 005	8	0.29	2.32	3.45	2.27	1 420	1 380		
805	754	1 106	979	8	0.37	1.83	2.72	1.79	1 800	1 770		
851	764	1 226	1 081	10	0.35	1.91	2.84	1.87	2 540	2 470		
818	778	972	924	5	0.17	3.90	5.81	3.81	412	399		
834	786	1 054	991	6	0.21	3.20	4.76	3.13	790	763		
828	786	1 054	969	6	0.29	2.35	3.49	2.29	1 060	1 040		
868	794	1 176	1 066	8	0.29	2.32	3.45	2.27	1 700	1 650		
903	814	1 296	1 149	12	0.35	1.92	2.86	1.88	3 050	2 960		
868	828	1 032	983	5	0.17	4.05	6.04	3.96	487	471		
893	836	1 114	1 049	6	0.21	3.15	4.69	3.08	890	859		
881	836	1 114	1 026	6	0.28	2.41	3.59	2.36	1 190	1 170		
912	844	1 236	1 122	8	0.29	2.32	3.45	2.27	1 890	1 830		
924	878	1 092	1 043	5	0.16	4.25	6.32	4.15	550	532		
945	886	1 184	1 114	6	0.20	3.32	4.95	3.25	1 050	1 010		
936	886	1 184	1 089	6	0.28	2.42	3.61	2.37	1 410	1 390		
979	904	1 306	1 194	10	0.28	2.37	3.54	2.32	2 270	2 200		
974	928	1 152	1 101	5	0.16	4.32	6.44	4.23	623	603		
999	936	1 244	1 167	6	0.20	3.32	4.95	3.25	1 170	1 130		
988	936	1 244	1 147	6	0.27	2.48	3.70	2.43	1 570	1 540		
1 031	954	1 366	1 251	10	0.28	2.42	3.60	2.36	2 500	2 420		
1 029	986	1 214	1 165	6	0.16	4.20	6.26	4.11	774	749		
1 063	986	1 324	1 239	6	0.21	3.26	4.85	3.18	1 430	1 380		
1 044	986	1 324	1 213	6	0.28	2.39	3.56	2.34	1 970	1 940		
	000	. 02 1		J	0.20	2.00	0.00	L.0 T	. 0.0	. 0 10		

B-237

Note: Outer ring oil inlets/oil grooves are provided.





Tapered bore

*d* 1000 ∼ 1400mm

	Bounda	ary di	mensio	ons		Basic load rating Fatig			Allowab	le speed	eed Bearing numbers			
d	D	B	$r_{ m smin}^2$	$W_0$	$d_0$	dynamic k $C_{ m r}$	static :N $C_{0\mathrm{r}}$	limit kN Cu	mi Grease lubrication	Oil	Cylindrical bore	Tapered bore 1)		
1000	1 320 1 420 1 420	236 308 412	7.5	33 33 42	20 20 25	9 550 13 800 17 800	22 700 30 000 42 000	1 520 1 460 1 890	180 170 150	230 220 190	239/1000 230/1000B 240/1000B	239/1000K 230/1000BK 240/1000BK30		
1060	1 400 1 500 1 500	250 325 438	9.5	33 42 42	20 25 25	10 400 15 100 19 800	24 700 33 500 47 000	1 670 1 610 2 060	160 150 140	210 200 180	239/1060 230/1060B 240/1060B	239/1060K 230/1060BK 240/1060BK30		
1120	1 460 1 580 1 580	250 345 462	9.5	33 42 42	20 25 25	10 900 17 400 21 700	26 700 39 000 52 500	1 470 2 310 2 230	150 150 120	200 190 160	239/1120 230/1120B 240/1120B	239/1120K 230/1120BK 240/1120BK30		
1180	1 540	272	7.5	33	20	12 200	29 800	1 650	140	180	239/1180	239/1180K		
1250	1 630	280	7.5	33	20	13 400	33 500	1 810	120	160	239/1250	239/1250K		
1320	1 720	300	7.5	33	20	15 100	38 000	1 930	120	150	239/1320	239/1320K		
1400	1 820	315	9.5	33	20	16 800	43 000	2 570	100	130	239/1400	239/1400K		



Dynamic equivalent radial load  $P_r = XF_r + YF_a$ 

$\frac{F_{\rm a}}{F_{\rm r}}$	<b>≤</b> e	$\frac{F_{z}}{F_{z}}$	<u></u> >e
X	Y	X	Y
1	$Y_1$	0.67	$Y_2$

Static equivalent radial load  $P_{0r}=F_r+Y_0F_a$ 

For values of e,  $Y_1$ ,  $Y_2$  and  $Y_0$  see the table below.

	Installation		imensions	5	Constant Axial load factors				Mass (approx.) kg		
$d_1$	$d_{ m amin}$	mm $D_{ m amax}$	$D_1$	$r_{as\;max}$	e	$Y_1$	$Y_2$	$Y_0$	Cylindrical bore	Tapered bore	
1 084 1 107 1 097	1 036 1 036 1 036	1 284 1 384 1 384	1 230 1 294 1 272	6 6 6	0.16 0.20 0.27	4.21 3.37 2.51	6.26 5.02 3.73	4.11 3.29 2.45	916 1 580 2 110	887 1 520 2 080	
1 153 1 172 1 160	1 096 1 104 1 104	1 364 1 456 1 456	1 400 1 368 1 343	6 8 8	0.16 0.20 0.27	4.20 3.36 2.49	6.26 5.00 3.71	4.11 3.28 2.44	1 090 1 850 2 450	1 060 1 790 2 140	
1 208 1 234 1 227	1 156 1 164 1 164	1 424 1 536 1 536	1 362 1 442 1 418	6 8 8	0.15 0.21 0.27	4.42 3.19 2.50	6.58 4.75 3.72	4.32 3.12 2.44	1 140 2 160 2 890	1 100 2 090 2 840	
1 271	1 216	1 504	1 437	6	0.15	4.40	6.56	4.31	1 390	1 340	
1 352	1 286	1 594	1 525	6	0.15	4.42	6.58	4.32	1 600	1 550	
1 423	1 356	1 684	1 605	6	0.16	4.34	6.46	4.24	1 900	1 840	
1 513	1 444	1 776	1 703	8	0.15	4.39	6.54	4.29	2 230	2 160	

¹⁾ Bearings appended with "K" have a tapered bore ratio of 1:12; bearings appended with "K30" have a tapered bore ratio of 1:30. 2) Smallest allowable dimension for chamfer dimension r.



 $d_1 \ 35 \sim 70 \text{mm}$ 

mm Bearing Adapter  d₁ B₁ d₂ B₂   Min. Max. Min. Min. Min. Max. Max. (approx  35 36 58 10 * 22208EAKD1;H 308X 44 50 5 71 73 1.1 0.18  36 58 10 * 21308CK;H 308X 44 52 5 76 81.5 1.5 0.18  46 58 10 * 22308EAKD1;H2308X 45 52 5 78 81 1.5 0.22  40 39 65 11 * 22209EAKD1;H 309X 49 54 8 76 78 1.1 0.24  40 39 65 11 * 21309CK;H 309X 49 57 5 85 91.5 1.5 0.28  40 39 65 11 * 22309EAKD1;H2309X 50 58 5 87 91 1.5 0.24  41 50 65 11 * 22309EAKD1;H300X 54 59 10 81 83 1.1 0.30  42 70 12 * 22210EAKD1;H 310X 54 65 5 93 100 2 0.30  45 42 70 12 * 22210EAKD1;H310X 54 66 5 5 93 100 2 0.30  55 70 12 * 22310EAKD1;H2310X 56 63 5 95 99 2 0.36  45 75 12 * 22311EAKD1;H2311X 60 66 11 90 91 1.5 0.34  50 45 75 12 * 22311EAKD1;H311X 60 73 6 102 110 2 0.34  59 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42  47 80 13 * 22212EAKD1;H 312X 65 78 5 109 118 2 0.39  55 47 80 13 * 22212EAKD1;H312X 65 78 5 109 118 2 0.39  55 47 80 13 * 22312EAKD1;H2311X 61 68 6 104 109 2 0.42  47 80 13 * 22312EAKD1;H2312X 65 78 5 109 118 2 0.39  50 85 14 * 22313EAKD1;H2312X 65 78 5 109 118 2 0.39  50 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45  60 50 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45  60 50 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45  60 50 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45  60 50 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45  60 50 85 15 * 22315EAKD1;H2313X 70 85 5 119 128 2 0.45  60 50 85 15 * 22315EAKD1;H2313X 80 99 5 136 148 2 0.83  70 59 105 17 * 22216EAKD1;H 316X 86 94 12 127 129 2 1.03  70 59 105 17 * 22216EAKD1;H 316X 86 94 12 127 129 2 1.03  70 59 105 17 * 22216EAKD1;H 316X 86 94 12 127 129 2 1.03													
d1         B1         d2         B2         Min.         Max.         Min.         Max.         (approx.           35         36         58         10         21308CK;H 308X         44         52         5         76         81.5         1.5         0.18           46         58         10         *22308EAKD1;H 309X         45         52         5         76         81.5         1.5         0.18           40         39         65         11         *22209EAKD1;H 309X         49         54         8         76         78         1.1         0.24           50         65         11         *22309EAKD1;H 309X         49         54         8         76         78         1.1         0.24           40         39         65         11         *22309EAKD1;H 310X         54         59         10         81         83         1.1         0.24           40         70         12         *22210EAKD1;H 310X         54         65         5         93         100         2         0.30	В	oundar	ry dimen	sions	Num	bers 1)		Installa	ition-rel	ated dim	ensions		Mass 2)
d1         B1         d2         B2         Min.         Max.         Min.         Max.         Max. <th></th> <th></th> <th>mm</th> <th></th> <th>Bearing</th> <th>Adapter</th> <th>$d_{\alpha}$</th> <th>$d_{\rm b}$</th> <th></th> <th></th> <th>D₀</th> <th>$r_{oo}$</th> <th>kg</th>			mm		Bearing	Adapter	$d_{\alpha}$	$d_{\rm b}$			D ₀	$r_{oo}$	kg
35 36 58 10 21308CK;H 308X 44 52 5 76 81.5 1.5 0.18 46 58 10 * 22308EAKD1;H2308X 45 52 5 78 81 1.5 0.22    39 65 11 * 22209EAKD1;H 309X 49 54 8 76 78 1.1 0.24    40 39 65 11 21309CK;H 309X 49 57 5 85 91.5 1.5 0.24    50 65 11 * 22309EAKD1;H2309X 50 58 5 87 91 1.5 0.24    42 70 12 * 22210EAKD1;H310X 54 59 10 81 83 1.1 0.30    45 42 70 12 21310CK;H 310X 54 65 5 93 100 2 0.30    55 70 12 * 22310EAKD1;H2310X 56 63 5 95 99 2 0.36    45 75 12 * 22311EAKD1;H311X 60 66 11 90 91 1.5 0.34    50 45 75 12 * 22311EAKD1;H311X 60 73 6 102 110 2 0.34    50 45 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42    47 80 13 * 22212EAKD1;H2311X 61 68 6 104 109 2 0.42    47 80 13 * 22212EAKD1;H312X 65 78 5 109 118 2 0.39    55 47 80 13 * 22312EAKD1;H312X 65 78 5 109 118 2 0.39    62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48    60 50 85 14 * 22313EAKD1;H2312X 70 78 8 107 111 1.5 0.45    60 50 85 14 * 22313EAKD1;H2312X 70 85 5 119 128 2 0.45    65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45    65 85 14 * 22313EAKD1;H313X 70 85 5 119 128 2 0.45    65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45    65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45    65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45    65 98 15 * 22215EAKD1;H315X 80 99 5 136 148 2 0.83    73 98 15 * 22215EAKD1;H315X 80 99 5 136 148 2 0.83    73 98 15 * 22315EAKD1;H2315X 82 91 5 139 148 2.1 1.05    70 59 105 17 * 22316EAKD1;H316X 86 94 12 127 129 2 1.03    70 59 105 17 * 21316K;H 316X 86 94 12 127 129 2 1.03    70 59 105 17 * 21316K;H 316X 86 94 12 127 129 2 1.03    70 59 105 17 * 21316K;H 316X 86 94 12 127 129 2 1.03    70 59 105 17 * 21316K;H 316X 86 94 12 127 129 2 1.03    70 59 105 17 * 21316K;H 316X 86 94 12 127 129 2 1.03    70 59 105 17 * 21316K;H 316X 86 95 5 144 158 2 1.03    70 59 105 17 * 21316K;H 316X 86 95 5 144 158 2 1.03    70 59 105 17 * 21316K;H 316X 86 95 5 144 158 2 1.03    70 59 105 17 * 21316K;H 316X 86 95 5 144 158 2 1.03    71 50 50 50 50 50 50 50 50 50 50 50 50 50	$d_1$	$B_1$	$d_2$	$B_2$									(approx.)
46 58 10 * 22308EAKD1;H2308X 45 52 5 78 81 1.5 0.22  39 65 11 * 22209EAKD1;H 309X 49 54 8 76 78 1.1 0.24  40 39 65 11 21309CK;H 309X 49 57 5 85 91.5 1.5 0.24  50 65 11 * 22309EAKD1;H2309X 50 58 5 87 91 1.5 0.24  42 70 12 * 22210EAKD1;H 310X 54 59 10 81 83 1.1 0.30  45 42 70 12 * 22310EAKD1;H 310X 54 65 5 93 100 2 0.30  55 70 12 * 22310EAKD1;H2310X 56 63 5 95 99 2 0.36  45 75 12 * 22211EAKD1;H 311X 60 66 11 90 91 1.5 0.34  50 45 75 12 * 22311EAKD1;H311X 61 68 6 102 110 2 0.34  59 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42  47 80 13 * 22212EAKD1;H311X 65 78 5 109 118 2 0.39  62 80 13 * 22312EAKD1;H312X 65 78 5 109 118 2 0.39  62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48  60 50 85 14 * 22213EAKD1;H2312X 66 75 5 113 118 2.1 0.48  60 50 85 14 * 22313EAKD1;H313X 70 78 8 107 111 1.5 0.45  65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45  65 85 14 * 22313EAKD1;H313X 70 85 5 119 128 2 0.45  65 85 14 * 22313EAKD1;H313X 70 85 5 119 128 2 0.45  65 85 14 * 22313EAKD1;H313X 70 85 5 119 128 2 0.45  65 98 15 * 22315EAKD1;H313X 70 85 5 119 128 2 0.45  65 55 98 15 * 22315EAKD1;H315X 80 89 5 136 148 2 0.83  73 98 15 * 22315EAKD1;H315X 80 99 5 136 148 2 0.83  73 98 15 * 22315EAKD1;H315X 80 99 5 136 148 2 0.83  70 59 105 17 * 22316EAKD1;H316X 86 94 12 127 129 2 1.03  70 59 105 17 * 22316EAKD1;H316X 86 94 12 127 129 2 1.03													0.189
40 39 65 11 21309CK;H 309X 49 57 5 85 91.5 1.5 0.24 50 65 11 * 22309EAKD1;H2309X 50 58 5 87 91 1.5 0.28   42 70 12 * 22210EAKD1;H 310X 54 59 10 81 83 1.1 0.30 55 70 12 * 22310EAKD1;H2310X 56 63 5 95 99 2 0.36   45 75 12 * 22311EAKD1;H 311X 60 66 11 90 91 1.5 0.34   50 45 75 12 * 22311EAKD1;H311X 60 73 6 102 110 2 0.34   50 45 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42   47 80 13 * 22212EAKD1;H312X 65 71 9 99 101 1.5 0.39   55 47 80 13 21312K;H 312X 65 78 5 109 118 2 0.39   62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48   60 50 85 14 * 22313EAKD1;H2312X 66 75 5 113 118 2.1 0.48   60 50 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45   65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45   65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45   65 85 14 * 22313EAKD1;H2313X 72 81 5 122 128 2.1 0.55   65 98 15 * 22215EAKD1;H315X 80 88 12 118 121 1.5 0.83   67 99 105 17 * 22315EAKD1;H2315X 82 91 5 139 148 2.1 1.05   67 90 105 17 * 22316EAKD1;H316X 86 94 12 127 129 2 1.03   68 105 105 17 * 22316EAKD1;H316X 86 94 12 127 129 2 1.03   68 105 105 17 * 22316EAKD1;H316X 86 105 5 144 158 2 1.03   69 105 17 * 22316EAKD1;H 316X 86 105 5 144 158 2 1.03   60 59 105 17 21316K;H 316X 86 105 5 144 158 2 1.03	35												0.189 0.224
50 65 11 * 22309EAKD1;H2309X 50 58 5 87 91 1.5 0.28  42 70 12 * 22210EAKD1;H 310X 54 59 10 81 83 1.1 0.30  55 70 12 * 22310EAKD1;H2310X 56 65 5 93 100 2 0.30  55 70 12 * 22310EAKD1;H2310X 56 63 5 95 99 2 0.36  45 75 12 * 22211EAKD1;H 311X 60 66 11 90 91 1.5 0.34  50 45 75 12 * 21311K;H 311X 60 73 6 102 110 2 0.34  59 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42  47 80 13 * 22212EAKD1;H 312X 65 71 9 99 101 1.5 0.39  55 47 80 13 * 21312K;H 312X 65 78 5 109 118 2 0.39  62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48  60 50 85 14 * 22313EAKD1;H2312X 66 75 5 113 118 2.1 0.48  60 50 85 14 * 22313EAKD1;H313X 70 85 5 119 128 2 0.45  65 85 14 * 22313EAKD1;H2313X 72 81 5 122 128 2.1 0.55  65 98 15 * 22215EAKD1;H315X 80 88 12 118 121 1.5 0.83  67 98 15 * 22215EAKD1;H315X 80 99 5 136 148 2 0.83  67 99 105 17 * 22216EAKD1;H315X 80 99 5 136 148 2 0.83  68 99 105 17 * 22216EAKD1;H315X 80 99 5 136 148 2 0.83  69 105 17 * 22216EAKD1;H315X 80 99 5 136 148 2 0.83  69 105 17 * 22216EAKD1;H316X 86 94 12 127 129 2 1.03  60 59 105 17 * 22216EAKD1;H316X 86 94 12 127 129 2 1.03  60 59 105 17 * 22216EAKD1;H316X 86 94 12 127 129 2 1.03  60 59 105 17 * 22316EAKD1;H316X 86 94 12 127 129 2 1.03	40												0.248
45 42 70 12 21310CK;H 310X 54 65 5 93 100 2 0.30 55 70 12 * 22310EAKD1;H2310X 56 63 5 95 99 2 0.36  45 75 12 * 22211EAKD1;H 311X 60 66 11 90 91 1.5 0.34 59 75 12 * 21311K;H 311X 60 73 6 102 110 2 0.34 59 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42  47 80 13 * 22212EAKD1;H 312X 65 71 9 99 101 1.5 0.39 55 47 80 13 * 21312K;H 312X 65 78 5 109 118 2 0.39 62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48  50 85 14 * 22213EAKD1;H2312X 66 75 5 113 118 2.1 0.48  60 50 85 14 * 21313K;H 313X 70 85 5 119 128 2 0.45 65 85 14 * 22313EAKD1;H2313X 72 81 5 122 128 2.1 0.55  65 98 15 * 22215EAKD1;H2313X 72 81 5 122 128 2.1 0.55  65 98 15 * 22215EAKD1;H2313X 80 99 5 136 148 2 0.83 73 98 15 * 22215EAKD1;H2315X 80 99 5 136 148 2 0.83 73 98 15 * 22215EAKD1;H2315X 80 99 5 136 148 2 0.83 75 90 105 17 * 22216EAKD1;H2315X 80 99 5 136 148 2 0.83 76 59 105 17 * 22216EAKD1;H316X 86 94 12 127 129 2 1.03  70 59 105 17 * 22216EAKD1;H 316X 86 94 12 127 129 2 1.03  70 59 105 17 * 22216EAKD1;H 316X 86 94 12 127 129 2 1.03	40												0.246
55 70 12 * 22310EAKD1;H2310X 56 63 5 95 99 2 0.36  45 75 12 * 22211EAKD1;H 311X 60 66 11 90 91 1.5 0.34  50 45 75 12 21311K;H 311X 60 73 6 102 110 2 0.34  59 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42  47 80 13 * 22212EAKD1;H 312X 65 71 9 99 101 1.5 0.39  55 47 80 13 21312K;H 312X 65 78 5 109 118 2 0.39  62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48  50 85 14 * 22213EAKD1;H2312X 66 75 5 113 118 2.1 0.48  60 50 85 14 * 21313K;H 313X 70 78 8 107 111 1.5 0.45  65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45  65 85 14 * 22313EAKD1;H2313X 72 81 5 122 128 2.1 0.55  65 98 15 * 22215EAKD1;H2313X 72 81 5 122 128 2.1 0.55  65 98 15 * 22315EAKD1;H2313X 80 99 5 136 148 2 0.83  73 98 15 * 22315EAKD1;H2315X 80 99 5 136 148 2 0.83  73 98 15 * 22315EAKD1;H2315X 82 91 5 139 148 2.1 1.05  59 105 17 * 22216EAKD1;H316X 86 94 12 127 129 2 1.03  70 59 105 17 * 22316EKD1;H 316X 86 94 12 127 129 2 1.03	45												0.303 0.303
50 45 75 12 21311K;H 311X 60 73 6 102 110 2 0.34 59 75 12 * 22311EAKD1;H2311X 61 68 6 104 109 2 0.42 47 80 13 * 22212EAKD1;H 312X 65 71 9 99 101 1.5 0.39 62 80 13 * 22312EAKD1;H2312X 66 75 5 109 118 2 0.39 62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48 60 50 85 14 * 22213EAKD1;H 313X 70 78 8 107 111 1.5 0.45 65 85 14 * 22313EAKD1;H2313X 70 85 5 119 128 2 0.45 65 85 14 * 22313EAKD1;H2313X 72 81 5 122 128 2.1 0.55 65 85 14 * 22313EAKD1;H2313X 72 81 5 122 128 2.1 0.55 65 98 15 * 22215EAKD1;H 315X 80 88 12 118 121 1.5 0.83 67 73 98 15 * 22315EAKD1;H2315X 80 99 5 136 148 2 0.83 73 98 15 * 22315EAKD1;H2315X 82 91 5 139 148 2.1 1.05 69 105 17 * 22316EAKD1;H316X 86 94 12 127 129 2 1.03 70 59 105 17 * 22316EAKD1;H 316X 86 94 12 127 129 2 1.03 70 59 105 17 * 21316K;H 316X 86 94 12 127 129 2 1.03													0.362
55 47 80 13 21312K;H 312X 65 78 5 109 118 2 0.39 62 80 13 * 22312EAKD1;H2312X 66 75 5 113 118 2.1 0.48 60 50 85 14 * 22213EAKD1;H 313X 70 78 8 107 111 1.5 0.45 65 85 14 21313K;H 313X 70 85 5 119 128 2 0.45 65 85 14 * 22313EAKD1;H2313X 72 81 5 122 128 2.1 0.55 65 98 15 * 22215EAKD1;H 315X 80 88 12 118 121 1.5 0.83 73 98 15 * 22315EAKD1;H2315X 80 99 5 136 148 2 0.83 73 98 15 * 22315EAKD1;H2315X 82 91 5 139 148 2.1 1.05 65 17 * 22216EAKD1;H 316X 86 94 12 127 129 2 1.03 70 59 105 17 21316K;H 316X 86 105 5 144 158 2 1.03	50	45	75	12	21311	K;H 311X	60	73	6	102	110	2	0.345 0.345 0.420
60	55	47	80	13	21312	K;H 312X	65	78	5	109	118	2	0.394 0.394 0.481
65 55 98 15 21315K;H 315X 80 99 5 136 148 2 0.83 73 98 15 * 22315EAKD1;H2315X 82 91 5 139 148 2.1 1.05    59 105 17 * 22216EAKD1;H 316X 86 94 12 127 129 2 1.03   70 59 105 17 21316K;H 316X 86 105 5 144 158 2 1.03	60	50 50	85 85	14 14	* 22213EAKD 21313	1;H 313X K;H 313X	70 70	78 85	8 5	107 119	111 128	1.5 2	0.458 0.458 0.557
<b>70</b> 59 105 17 21316K; <b>H 316X</b> 86 105 5 144 158 2 1.03	65	55	98	15	21315	K;H 315X	80	99	5	136	148	2	0.831 0.831 1.05
	70				21316	K;H 316X							1.03 1.03 1.28

 Bearing numbers marked "*" designate ULTAGE Series.
 Indicates the adapter mass.
 Refer to pages B-218 to B-221 for bearing dimensions, rated loads, and mass.
 Refer to pages D-2 to D-10 and D-12 to D-14 for adapter locknut and washer dimensions.
 Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washers with straight inner tabs.

B-240

Adapters

(For spherical roller bearings)





 $d_1 75 \sim 115$ mm

В	Boundai	ry dimen	sions	Numb	pers 1)		Installa	tion-rela	ated dim	nensions		Mass 2)
		mm		Bearing	Adapter	$d_{\mathrm{a}}$	$d_{ m b}$	$B_{ m a}$ m	nm <i>I</i>	$D_{\rm a}$	$r_{ m as}$	kg
$d_1$	$B_1$	$d_2$	$B_2$			Min.	Max.	Min.	Min.	Max.	Max.	(approx.)
	63	110	18	* 22217EAKD	1;H 317X	91	100	12	137	139	2	1.18
75	63	110	18	21317k	(;H 317X	91	111	6	152	166	2.5	1.18
	82	110	18	* 22317EAKD	1;H2317X	94	107	6	157	166	3	1.45
	65	120	18	* 22218EAKD		96	105	10	144	149	2	1.37
80	86	120	18	* 23218EMKD		99	104	18	141	149	2	1.69
00	65	120	18		(;H 318X	96	119	6	162	176	2.5	1.37
	86	120	18	* 22318EAKD	1;H2318X	99	110	6	166	176	3	1.69
	68	125	19	* 22219EAKD	1;H 319X	102	110	9	153	158	2.1	1.56
85	68	125	19	21319k	(;H 319X	102	127	7	171	186	2.5	1.56
	90	125	19	* 22319EAKD	;H2319X	105	120	7	174	186	3	1.92
	71	130	20	* 22220EAKD	;H 320X	107	118	8	161	168	2.1	1.69
90	97	130	20	* 23220EMKD		110	118	19	159	168	2.1	2.15
90	71	130	20		(;H 320X	107	133	7	179	201	2.5	1.69
	97	130	20	* 22320EAKD	;H2320X	110	127	7	187	201	3	2.15
	81	145	21	* 23122EAKD		117	125	7	161	169	2	2.25
	77	145	21	* 22222EAKD		117	130	6	179	188	2.1	2.18
100	105	145	21	* 23222EMKD		121	130	17	176	188	2.1	2.74
	77	145	21		(;H 322X	117	146	9	203	226	2.5	2.18
	105	145	21	* 22322EAKD	1;H2322X	121	139	7	209	226	3	2.74
	72	145	22	* 23024EAKD	;H3024X	127	134	7	165	171	2	1.93
	88	155	22	* 23124EAKD		128	138	7	179	189	2	2.64
110	88	155	22	* 22224EAKD		128	141	11	193	203	2.1	2.64
	112	155	22	* 23224EMKD		131	139	17	190	203	2.1	3.19
	112	155	22	* 22324EAKD	1;H2324X	131	156	7	225	246	3	3.19
	80	155	23	* 23026EAKI		137	145	8	183	191	2	2.85
446	92	165	23	* 23126EAKI		138	148	8	189	199	2	3.66
115	92	165	23	* 22226EAKI		138	151	8	206	216	3	3.66
	121	165	23	* 23226EMKI		142	150	21	203	216	3	4.6
	121	165	23	* 22326EAKI	D1 <b>;H2326</b>	142	164	8	243	263	4	4.6

 Bearing numbers marked "*" designate ULTAGE Series.
 Indicates the adapter mass.
 Refer to pages B-220 to B-225 for bearing dimensions, rated loads, and mass.
 Refer to pages D-2 to D-10 and D-12 to D-14 for adapter locknut and washer dimensions.
 Adapter numbers which are appended with the code "X" indicate narrow slit type adapters which use washers with straight inner tabs.





 $d_1 125 \sim 170 \text{mm}$ 

В	ounda	ry dimen	sions	Num	bers 1)		Installa	tion-rel	ated dim	ensions		Mass 2)
		mm		Bearing	Adapter			n	nm			kg
				2008	, laap to	$d_{\mathrm{a}}$	$d_{ m b}$	$B_{\rm a}$		$O_a$	$r_{\rm as}$	0
$d_1$	$B_1$	$d_2$	$B_2$			Min.	Max.	Min.	Min.	Max.	Max.	(approx.)
	82	165	24	* 23028EAK	D1 <b>:H3028</b>	147	155	8	193	201	2	3.16
	97	180	24	* 23128EAK	D1: <b>H3128</b>	149	159	8	203	213	2.1	4.34
125	97	180	24	* 22228EAK	D1: <b>H3128</b>	149	163	8	224	236	3	4.34
123	131	180	24	* 23228EMK	D1; <b>H2328</b>	152	162	22	220	236	3	5.55
	131	180	24	* 22328EAK	D1; <b>H2328</b>	152	181	8	261	283	4	5.55
	87	180	26	* 23030EAK		158	167	8	207	214	2.1	3.89
	111	195	26	* 23130EAK		160	171	8	223	238	2.1	5.52
135	111	195	26	* 22230EAK		160	177	15	242	256	3	5.52
	139	195	26	* 23230EMK		163	174	20	237	256	3	6.63
	139	195	26	* 22330EMK	D1; <b>H2330</b>	163	188	8	279	303	4	6.63
	93	190	28	* 23032EAK		168	177	8	221	229	2.1	5.21
	119	210	28	* 23132EAK		170	185	8	240	258	2.1	7.67
140	119	210	28	* 22232EAK		170	190	14	260	276	3	7.67
	147	210	28	* 23232EMK		174	187	18	254	276	3	9.14
	147	210	28	* 22332EMK	D1; <b>H2332</b>	174	205	8	296	323	4	9.14
	101	200	29	* 23034EAK	D1:H3034	179	190	8	238	249	2.1	5.99
	122	220	29	* 23134EAK		180	195	8	250	268	2.1	8.38
150	122	220	29	* 22234EAK		180	201	10	277	293	4	8.38
.00	154	220	29	* 23234EMK		185	199	18	272	293	4	10.2
	154	220	29	* 22334EMK		185	223	8	313	343	4	10.2
	109	210	30	* 23036EAK	D1 <b>:H3036</b>	189	201	8	255	269	2.1	6.83
	131	230	30	* 23136EAK	D1: <b>H3136</b>	191	205	8	267	286	3	9.5
160	131	230	30	* 22236EMK		191	209	18	287	303	4	9.5
	161	230	30	* 23236EMK	D1: <b>H2336</b>	195	210	22	282	303	4	11.3
	161	230	30	* 22336EMK	D1; <b>H2336</b>	195	229	8	329	363	4	11.3
	112	220	31	* 23038EAK	D1; <b>H3038</b>	199	213	9	266	279	2.1	7.45
	141	240	31	* 23138EMK	D1; <b>H3138</b>	202	221	9	284	306	3	10.8
170	141	240	31	* 22238EMK	D1; <b>H3138</b>	202	222	21	305	323	4	10.8
	169	240	31	* 23238EMK		206	220	21	299	323	4	12.6
	169	240	31	* 22338EMK		206	247	9	346	380	5	12.6

¹⁾ Bearing numbers marked "*" designate ULTAGE Series. 2) Indicates the adapter mass.

Note: 1. Refer to pages B-224 to B-227 for bearing dimensions, rated loads, and mass.

2. Refer to pages D-2 to D-10 and D-12 to D-14 for adapter locknut and washer dimensions.

(For spherical roller bearings)

Adapters



 $d_1 180 \sim 300 \text{mm}$ 

В	Bounda	ary dim	nensio	ons		Num	bers 1)		Installa	tion-rela	ated dim	ensions		Mass ²
		mm				Bearing	Adapter	$d_{\rm a}$	$d_{ m b}$	$B_{ m a}$ m	ım <i>1</i>	$D_a$	$r_{ m as}$	kg
$d_1$	$B_1$	$d_{i}$	2	$B_2$				Min.	Max.	Min.	Min.	Max.	Max.	(approx
	120	240	32	_	*	23040EMK	D1 <b>:H3040</b>	210	223	10	283	299	2.1	9.19
	150	250	32	_		23140EMK		212	231	10	301	326	3	12.1
180	150	250	32	_		22240EMK		212	234	24	323	343	4	12.1
.00	176	250	32	_	*	23240EMK	D1;H2340	216	232	20	315	343	4	13.9
	176	250	32	_	*	22340EMK	D1; <b>H2340</b>	216	265	10	364	400	5	13.9
	126	260	-	41	*	23044EMK	D1; <b>H3044</b>	231	246	12	310	327	3	10.3
	158	280	_	44			D1;H3144	233	252	10	328	353	4	14.7
200	158	280	-	44		22244EMK		233	264	22	358	383	4	14.7
	183		_	44			D1; <b>H2344</b>	236	261	11	349	383	4	16.7
	183	280	-	44	*	22344EMK	D1; <b>H2344</b>	236	277	10	388	440	5	16.7
	133	290	_	46		23048EMK		251	267	11	329	347	3	13.2
	169	300	-	46	*	23148EMK	(D1; <b>H3148</b>	254	276	11	356	383	4	17.3
220	169	300	-	46		22248EMK		254	288	19	383	423	4	17.3
	196	300	-	46		23248EMK		257	284	6	372	423	4	19.7
	196	300	-	46	*	22348EMK	D1; <b>H2348</b>	257	299	11	421	480	5	19.7
	145	310	_	46			D1; <b>H3052</b>	272	291	13	366	385	4	15.3
	187	330	-	49			(D1; <b>H3152</b>	276	302	11	380	423	4	22
240	187	330	-	49			(D1; <b>H3152</b>	276	312	25	415	460	5	22
	208	330	-	49			D1; <b>H2352</b>	278	310	2	405	460	5	24.2
	208	330	_	49	*	22352EMK	(D1 <b>;H2352</b>	278	324	11	456	514	6	24.2
	152		_	50			D1; <b>H3056</b>	292	310	12	386	405	4	17.7
	192	350	-	51		23156EMK		296	322	12	403	440	5	24.5
260	192	350	-	51		22256EMK		296	333	28	437	480	5	24.5
	221	350	-	51			(D1; <b>H2356</b>	299	331	11	426	480	5	27.8
	221	350	-	51	*	22356EMK	(D1; <b>H2356</b>	299	349	12	489	554	6	27.8
	168	360	_	54		23060EMK		313	338	12	413	445	4	22.8
280	208	380	_	53		23160EMK		317	345	12	436	480	5	30.2
200	208	380	-	53			(D1; <b>H3160</b>	317	358	32	469	520	5	30.2
	240	380	-	53	*	23260EMK	(D1; <b>H3260</b>	321	352	12	461	520	5	34.1
000	171	380	-	55	*	23064EMK	(D1; <b>H3064</b>	334	360	13	433	465	4	24.6
300	226	400	_	56	*	23164EMK	D1; <b>H3164</b>	339	373	13	468	520	5	34.9
	226	400	_	56	*	22264EMK	D1;H3164	339	383	39	510	560	5	34.9

Bearing numbers marked "*" designate ULTAGE Series.
 Indicates the adapter mass.
 Refer to pages B-228 to B-231 for bearing dimensions, rated loads, and mass.
 Refer to pages D-2 to D-10 and D-12 to D-14 for adapter locknut, washer, and lockplate dimensions.



### $d_1 300 \sim 470 \text{mm}$

<b>Boundary dimensions</b>		sions	Numbers 1)		Installa	tion-rela	ated din	nensions		Mass 2)	
		mm		Bearing Adapter				ım			kg
$d_1$	$B_1$	$d_2$	$B_2$		$d_{ m a}$ Min.	$d_{ m b}$ Max.	$B_{\mathrm{a}}$ Min.	Min.	$D_{ m a}$ Max.	$r_{ m as}$ Max.	(approx.)
300	258	400	56	* 23264EMKD1; <b>H3264</b>	343	376	13	493	560	5	39.3
	187	400	58	* 23068EMKD1; <b>H3068</b>	355	384	14	466	502	5	28.7
320	254	440	72	* 23168EMKD1;H3168	360	393	14	500	560	5	49.5
	288	440	72	23268BK; <b>H3268</b>	364	410	14	524	592	5	54.6
	188	420	58	* 23072EMKD1; <b>H3072</b>	375	405	14	488	522	5	30.5
340	259	460	75	23172BK; <b>H3172</b>	380	417	14	520	578	4	54.2
	299	460	75	23272BK; <b>H3272</b>	385	429	14	551	622	5	60.2
	193	450	62	* 23076EMKD1; <b>H3076</b>	396	425	15	509	542	5	35.8
360	264	490	77	23176BK; <b>H3176</b>	401	436	15	540	598	4	61.7
	310	490	77	23276BK; <b>H3276</b>	405	453	15	575	652	5	69.6
	210	470	66	23080BK; <b>H3080</b>	417	451	15	542	578	4	41.3
380	272	520	82	23180BK; <b>H3180</b>	421	458	15	568	622	5	70.6
	328	520	82	23280BK; <b>H3280</b>	427	473	15	612	692	5	81
400	212	490	66	23084BK; <b>H3084</b>	437	471	16	562	598	4	43.7
400	304	540	90	23184BK; <b>H3184</b>	443	488	16	611	672	5	84.2
410	228	520	77	23088BK; <b>H3088</b>	458	490	17	585	622	5	65.2
410	307	560	90	23188BK; <b>H3188</b>	464	504	17	627	692	5	104
430	234	540	77	23092BK; <b>H3092</b>	478	512	17	613	652	5	69.5
430	326	580	95	23192BK; <b>H3192</b>	485	534	17	660	724	6	116
450	237	560	77	23096BK; <b>H3096</b>	499	532	18	633	672	5	73.3
430	335	620	95	23196BK; <b>H3196</b>	505	554	18	687	754	6	133
470	247	580	85	230/500BK; <b>H30/500</b>	519	552	18	653	692	5	81.8
770	356	630	100	231/500BK; <b>H31/500</b>	527	580	18	724	794	6	143

1) Bearing numbers marked "*" designate ULTAGE Series. 2) Indicates the adapter mass.

Note: 1. Refer to pages B-230 to B-235 for bearing dimensions, rated loads, and mass.

2. Refer to pages D-2 to D-10 and D-12 to D-14 for adapter locknut and lockplate dimensions.

### Withdrawal Sleeves

(For spherical roller bearings)





 $d_1 \ 35 \sim 70 \ \text{mm}$ 

w ₁	55 - 70 1												
	Boundary of more Thread nominal dimension 1)	ım		B ₄ ²⁾	<b>Numbe</b> Bearing	Withdrawal	Installati $d_{ m a}$	1	mm I	) _a	$r_{ m as}$	kg	number Bearing number 5)
$d_1$	G	D3	Gl	D4 ²		sleeve	Min.	Max.	IVIII.	iviax.	iviax.	(approx.)	
35	M45×1.5 M45×1.5 M45×1.5	29 29 40	6 6 7	32 32 43	* 22208EAKD1 21308CK * 22308EAKD1	;AH 308	47 48.5 49	50 52 52	71 76 78	73 81.5 81	1.1 1.5 1.5	0.09 0.09 0.128	AN09 AN09 AN09
40	M50×1.5 M50×1.5 M50×1.5	31 31 44	6 6 7	34 34 47	* 22209EAKD1 21309CK * 22309EAKD1	;AH 309	52 53.5 54	54 57 58	76 85 87	78 91.5 91	1.1 1.5 1.5	0.109 0.109 0.164	AN10
45	M55×2 M55×2 M55×2	35 35 50	7 7 9	38 38 53	* 22210EAKD1 21310CK * 22310EAKD1	;AHX 310	57 60 61	59 65 63	81 93 95	83 100 99	1.1 2 2	0.137 0.137 0.209	AN11
50	M60×2 M60×2 M60×2	37 37 54	7 7 10	40 40 57	* 22211EAKD1 21311K * 22311EAKD1	;AHX 311	64 65 66	66 73 68	90 102 104	91 110 109	1.5 2 2	0.161 0.161 0.253	AN12
55	M65×2 M65×2 M65×2	40 40 58	8 8 11	43 43 61	* 22212EAKD1 21312K * 22312EAKD1	;AHX 312	69 72 72	71 78 75	99 109 113	101 118 118	1.5 2.1 2.1	0.189 0.189 0.297	AN13
60	M75×2 M75×2 M75×2	42 42 61	8 8 12	45 45 64	* 22213EAKD1 21313K * 22313EAKD1	;AH 313	74 77 77	78 85 81	107 119 122	111 128 128	1.5 2.1 2.1	0.253 0.253 0.395	AN15
65	M80×2 M80×2 M80×2	43 43 64	8 8 12	47 47 68	* 22214EAKD1 21314K * 22314EAKD1	;AH 314	79 82 82	84 91 85	113 126 131	116 138 138	1.5 2.1 2.1	0.28 0.28 0.466	AN16 AN16 AN16
70	M85×2 M85×2 M85×2	45 45 68	8 8 12	49 49 72	* 22215EAKD1 21315K * 22315EAKD1	;AH 315	84 87 87	88 99 91	118 136 139	121 148 148	1.5 2.1 2.1	0.313 0.313 0.534	AN17

¹⁾ Standard thread shapes and dimensions are as per JIS B 0205-1 and JIS B 0205-4 (general metric thread).
2) Indicates reference dimensions before withdrawal sleeves are attached.
3) Bearing numbers marked "*" designate ULTAGE Series.
4) Indicates withdrawal sleeve mass.
5) Indicates the number of nuts to be used at the time of disassembly. Refer to pages D-2 to D-10 for nut dimensions. Note: Refer to pages B-218 to B-221 for bearing dimensions, rated loads, and mass.



### $d_1 75 \sim 115$ mm

	<b>Boundary</b> o		nsion	S		Numbe	ers ³⁾		Installa	ation-re	lated	dimen	sions	Mass 4)	Applied nut number
$d_1$	Thread nominal dimension $^{\scriptscriptstyle (1)}$	$B_3$	$G_1$	$B_4^2$	)	Bearing	Withdi slee		d Min.			) _a Max.	$r_{ m as}$ Max.	kg (approx.)	Bearing number 53
	M90×2	48	8	52	ı.	22216EAKD1	:AH	316	91	94	127	129	2	0.365	AN110
75	M90×2	48	8	52	T	21316K	:AH	316	92	105	144	158	2	0.365	
75	M90×2	71	12	75					92	98	148	158	2.1		
	W90x2	71	12	75	*	22316EAKD1	;AHX	2316	92	98	148	158	2.1	0.597	ANT8
	M95×2	52	9	56	*	22217EAKD1	;AHX		96	100	137	139	2	0.429	
80	M95×2	52	9	56		21317K	;AHX	317	99	111	152	166	2.5	0.429	AN19
	M95×2	74	13	78	*	22317EAKD1	;AHX	2317	99	107	157	166	3.0	0.67	AN19
	M100×2	53	9	57	*	22218EAKD1	;АНХ;	318	101	105	144	149	2	0.461	AN20
٥-	M100×2	63	10	67	*	23218EMKD1	;AHX	3218	101	104	141	149	2	0.576	AN20
85	M100×2	53	9	57		21318K	;AHX		104	119	162	176	2.5	0.461	AN20
	M100×2	79	14	83	*	22318EAKD1	;AHX		104	110	166	176	3	0.779	
	M105×2	57	10	61	*	22219EAKD1	;АНХ;	319	107	110	153	158	2.1	0.532	AN21
90	M105×2	57	10	61		21319K	;AHX		109	127	171	186	2.5	0.532	
•	M105×2	85	16	89	*	22319EAKD1	;AHX		109	120	174	186	3	0.886	
	M110×2	59	10	63	*	22220EAKD1	;АНХ	320	112	118	161	168	2.1	0.582	AN22
	M110×2	73	11	77		23220EMKD1	:AHX		112	118	159	168	2.1	0.767	
95	M110×2	59	10	63	i	21320K	:AHX		114	133	179	201	2.5	0.582	
	M110×2	90	16	94	*	22320EAKD1	;AHX		114	127	187	201	3	0.998	
	M120×2	68	11	72	Ψ.	23122EAKD1	;АНХ;	3122	121	125	161	169	2	0.76	AN24
	M115×2	82	13	91		24122EMK30D1	;AH 2		121	121	158	169	2	0.73	AN23
	M120×2	68	11	72		22222EAKD1	:AHX		122	130	179	188	2.1	0.76	AN24
105	M125×2	82	11	86		23222EMKD1	:AHX		122	130	176	188	2.1	1.04	AN25
	M120×2	63	12	67	T	21322K	;AHX;		124	146	203	226	2.5	0.663	AN24
	M125×2	98	16		de	22322EAKD1	;AHX;		124	139	209	226	3	1.35	AN25
	IVITZJAZ	90	10	102	Т	ZZSZZLANDI	,AIIA	2322	124	109	209	220	3	1.00	AINZJ
	M130×2	60	13	64		23024EAKD1	;AHX		129	134	165	171	2	0.75	AN26
115	M125×2	73	13			24024EMK30D1	,		129	132	161	171	2	0.65	AN25
	M130×2	75	12	79		23124EAKD1	;AHX		131	138	179	189	2	0.95	AN26
	M130×2	93	13	102	*	24124EMK30D1	;AH 2	4124	131	136	173	189	2	1	AN26

### Withdrawal Sleeves

(For spherical roller bearings)





### $d_1 \ 115 \sim 150 \text{mm}$

	.15 - 15	OIIIII	•										
		nm	nsion	s	Numb	ers 3)	Installa	ation-re	lated	dimen	sions	Mass 4)	number
	Thread nomina	al							mm ္			kg	Bearing
,	dimension 1)	n	0	D 2	Bearing	Withdrawal	d			$O_a$	$r_{\rm as}$	, ,	number 5)
$d_1$	G	$B_3$	$G_1$	$B_{4}^{2}$	,	sleeve	Min.	Max.	Min.	Max.	Max.	(approx.)	
	M130×2	75	12	79	* 22224EAKD1	;AHX 3124	132	141	193	203	2.1	0.95	AN26
115	M135×2	90	13	94	* 23224EMKD1	;AHX 3224	132	139	190	203	2.1	1.3	AN27
	M135×2	105	17	109	* 22324EAKD1	;AHX 2324	134	156	225	246	3	1.6	AN27
	M140×2	67	11	71	* 23026EAKD1	ALLY 2026	120	145	100	191	0	0.00	AN28
	M135×2	67 83	14 14		* 24026EMK30D1	;AHX 3026 ;AH 24026	139 139	143	183 178	191	2	0.93 0.84	AN27
	M140×2	78	12		* 23126EAKD1	:AHX 3126	141	148	189	199	2	1.08	AN28
125	M140x2	94	14		* 24126EMK30D1		141	146	183	199	2	1.11	AN28
123	M140x2	78	12		* 22226EAKD1	:AHX 3126	144	151	206	216	3	1.08	AN28
	M145×2	98	15		* 23226EMKD1	;AHX 3226	144	150	203	216	3	1.58	AN29
	M145×2		19		* 22326EAKD1	;AHX 2326	147	164	243	263	4	1.97	AN29
						,							
	M150×2	68	14		* 23028EAKD1	;AHX 3028	149	155	193	201	2	1.01	AN30
	M145×2	83	14		* 24028EMK30D1		149	153	188	201	2	0.91	AN29
	M150×2	83	14		* 23128EAKD1	;AHX 3128	152	159	203	213	2.1	1.28	AN30
135	M150×2	99	14		* 24128EMK30D1		152	156	198	213	2.1	1.25	AN30
	M150×2	83	14		* 22228EAKD1	;AHX 3128	154	163	224	236	3	1.28	AN30
	M155×3	104	15		* 23228EMKD1	;AHX 3228	154	162	220	236	3	1.84	AN31
	M155×3	125	20	130	* 22328EAKD1	;AHX 2328	157	181	261	283	4	2.33	AN31
	M160×3	72	15	77	* 23030EAKD1	;AHX 3030	161	167	207	214	2.1	1.15	AN32
	M155×3	90	15		* 24030EMK30D1		161	165	202	214	2.1	1.04	AN31
	M165×3	96	15		* 23130EAKD1	;AHX 3130	162	171	223	238	2.1	1.79	AN33
145	M160×3	115	15		* 24130EMK30D1		162	168	216	238	2.1	1.56	AN32
0	M165×3	96	15	101	* 22230EAKD1	;AHX 3130	164	177	242	256	3	1.79	AN33
	M165×3	114	17		* 23230EMKD1	:AHX 3230	164	174	237	256	3	2.22	AN33
	M165×3	135	24	140	* 22330EMKD1	;AHX 2330	167	188	279	303	4	2.82	AN33
	1470.0		40	00	. 00000EAVE	411 0555	474	477	004	000	0.4	0.00	A N 10 4
	M170×3	77	16	-	* 23032EAKD1	;AH 3032	171	177	221	229	2.1	2.06	AN34
4-0	M170×3	95	15		* 24032EMK30D1		171	175	215	229	2.1	2.33	AN34
150	M180×3	103	16		* 23132EAKD1	;AH 3132	172	185	240	258	2.1	3.21	AN36
	M170×3	124	15		* 24132EMK30D1	,	172	181	232	258	2.1	3	AN34
	M180×3	103	16	108	* 22232EAKD1	;AH 3132	174	190	260	276	3	3.21	AN36

Standard thread shapes and dimensions are as per JIS B 0205-1 and JIS B 0205-4 (general metric thread).
 Indicates reference dimensions before withdrawal sleeves are attached.
 Bearing numbers marked "*" designate ULTAGE Series.
 Indicates withdrawal sleeve mass.
 Indicates the number of nuts to be used at the time of disassembly. Refer to pages D-2 to D-10 for nut dimensions.
 Note: Refer to pages B-220 to B-223 for bearing dimensions, rated loads, and mass.

¹⁾ Standard thread shapes and dimensions are as per JIS B 0205-1 and JIS B 0205-4 (metric trapezoidal screw thread).
2) Indicates reference dimensions before withdrawal sleeves are attached.
3) Bearing numbers marked "*" designate ULTAGE Series.
4) Indicates withdrawal sleeve mass.
5) Indicates the number of nuts to be used at the time of disassembly. Refer to pages D-2 to D-10 for nut dimensions.
Note: Refer to pages B-222 to B-227 for bearing dimensions, rated loads, and mass.



### $d_1 150 \sim 190 \text{mm}$

	Boundary	dime	nsion	s	Numbe	ers 3)		Installa	ation-re	lated	dimen	sions	Mass 4)	Applied nut
		nm												number
	Thread nomina	al								mm _			kg	Bearing
	dimension 1)	-	~	D 2)	Bearing		drawal	d			) _a	$r_{\rm as}$		number 5)
$d_1$	G	$B_3$	$G_1$	$B_4^{(2)}$		sle	eeve	Min.	Max.	Min.	Max.	Max.	(approx.	)
450	M180×3		20		* 23232EMKD1	;AH	3232	174	187	254	276	3	4.08	AN36
150	M180×3	140	24	146	* 22332EMKD1	;AH	2332	177	205	296	323	4	4.72	AN36
	14400 0	0.5	47	00	1: 00004EAKD4		0004	404	400	000	0.40	0.4	0.40	41100
	M180×3	85	17		* 23034EAKD1	;AH	3034	181	190	238	249	2.1	2.43	AN36
	M180×3		16		* 24034EMK30D1		24034	181	186	231	249	2.1	2.8	AN36
400	M190×3	104	16		* 23134EAKD1	;AH	3134	182	195	250	268	2.1	3.4	AN38
160	M180×3	125	16		* 24134EMK30D1		24134	182	193	243	268	2.1	3.21	AN36
	M190×3	104	16		* 22234EMKD1	;AH	3134	187	201	277	293	4	3.4	AN38
		134	24		* 23234EMKD1	;AH	3234	187	199	272	293	4	4.8	AN38
	M190×3	146	24	152	* 22334EMKD1	;AH	2334	187	223	313	343	4	5.25	AN38
	M190×3	92	17	98	* 23036EAKD1	:AH	3036	191	201	255	269	2.1	2.81	AN38
	M190×3		16		* 24036EMK30D1		24036	191	199	248	269	2.1	3.1	AN38
		116	19		* 23136EAKD1	:AH	3136	194	205	267	286	3	4.22	AN40
170	M190×3	134	16		* 24136EMK30D1		24136	194	202	254	286	3	3.68	AN38
	M200×3	105	17		* 22236EMKD1	:AH	2236	197	209	287	303	4	3.73	AN40
		140	24		* 23236EMKD1	:AH	3236	197	210	282	303	4	5.32	AN40
	M200×3	154	26		* 22336EMKD1	;AH	2336	197	229	324	363	4	5.83	AN40
						•								
	Tr205×4	96	18		* 23038EAKD1	;AH	3038	201	213	266	279	2.1	3.32	HNL41
	M200×3	118	18		* 24038EMK30D1		24038	201	209	258	279	2.1	3.5	AN40
	Tr210×4		20		* 23138EMKD1	;AH	3138	204	221	284	306	3	4.89	HN42
180		146	18		* 24138EMK30D1			204	216	275	306	3	4.28	AN40
	Tr210×4		18		* 22238EMKD1	;AH	2238	207	222	305	323	4	4.25	HN42
	Tr210×4		25		* 23238EMKD1	;AH	3238	207	220	299	323	4	5.9	HN42
	Tr210×4	160	26	167	* 22338EMKD1	;AH	2338	210	247	346	380	5	6.63	HN42
	Tr215×4	102	19	108	* 23040EMKD1	:AH	3040	211	223	283	299	2.1	3.8	HNL43
	Tr210x4		18		* 24040EMK30D1	,		211	221	275	299	2.1	3.93	HN42
190	Tr220×4		21		* 23140EMKD1	:AH	3140	214	231	301	326	3	5.49	HN44
	Tr210×4		18		* 24140EMK30D1		24140	214	224	291	326	3	5.1	HN42
	11210X4	130	10	171	* 24 140EMN30D1	,АП	24140	Z14	224	231	520	J	J. I	111142

# 1) Standard thread shapes and dimensions are as per JIS B 0205-1 and JIS B 0205-4 (general metric thread), and JIS B 0206 (metric trapezoidal screw thread).

### Withdrawal Sleeves

(For spherical roller bearings)





 $d_1 190 \sim 260 \text{mm}$ 

	Boundary	<b>dime</b> nm	nsion	IS		Number	rs ^{3) 4)}		Install	ation-re	lated	dimen	sions	Mass 5)	Applied nut number
$d_1$	Thread nomina dimension $^{\scriptscriptstyle 1)}$		$G_1$	$B_{4^{2}}$	)	Bearing		drawal eve	Min.	$l_{ m a}$ Max.		D _a Max.	$r_{ m as}$ Max	kg (approx.)	Bearing number 63
190	Tr220×4 Tr220×4	153	19 25	160	* 23	240EMKD1 240EMKD1	;AH ;AH	2240 3240	217	234 232	323 315	343 343	4	4.68 6.68	HN44 HN44
	Tr220×4	170	30	177	* 22	340EMKD1	;AH	2340	220	265	364	400	5	7.54	HN44
	Tr235×4		20			044EMKD1	;AH	3044	233	246	310	327	3	7.4	HNL47
	Tr230×4		20					24044H		243	302	327	3	8.25	HN46
	Tr240×4 Tr230×4		23			144EMKD1	;AH	3144	237	252 247	328 317	353 353	4	10.4 10.2	HN48 HN46
200	Tr240×4		20			144EMK30D1 244EMKD1	;AH	2244	237	264	358	383	4	9.1	HN48
	Tr240×4		30			244EMKD1	:AH	2344	237	261	349	383	4	13.5	HN48
	Tr240×4		30			344EMKD1	;AH	2344	240	277	388	440	5	13.5	HN48
	Tr260×4	116	21	123	* 230	048EMKD1	;AH	3048	253	267	329	347	3	8.75	HNL52
	Tr250×4		20			048EMK30D1				264	322	347	3	8.98	HN50
	Tr260×4		25			148EMKD1	;AH	3148	257	276	356	383	4	12	HN52
220	Tr260×4		20			148EMK30D1	,	_		270	344	383	4	12.5	HN52
	Tr260×4		21			248EMKD1	;AH	2248	257	288	383	423	4	11.1	HN52
	Tr260×4 Tr260×4		30 30			248EMKD1 348EMKD1	;AH ;AH	2348 2348	257 260	284 299	372 421	423 480	4 5	15.5 15.5	HN52 HN52
	Tr280×4	128	23	135	* 230	052EMKD1	;AH	3052	275	291	366	385	4	10.7	HNL56
	Tr270×4	162	22	178	* 240	052EMK30D1	;AH	24052	275	286	354	385	4	11.8	HN54
	Tr290×4		26			152EMKD1	;AH	3152	277	302	380	423	4	16.2	HN58
240	Tr280×4		22			152EMK30D1		24152H		295	371	423	4	15.4	HN56
	Tr290×4		23			252EMKD1	;AH	2252	280	312	415	460	5	14	HN58
	Tr290×4 Tr290×4		30 30			252EMKD1 352EMKD1	;AH ;AH	2352 2352	280 286	310 324	405 458	460 514	5 6	19.6 19.6	HN58 HN58
	Tr300×4	131	24	139	* 230	056EMKD1	:AH	3056	295	310	386	405	4	12	HNL60
260	Tr290×4		22					24056H		306	376	405	4	12.8	HN58
_55	Tr310×5		28			156EMKD1	;AH	3156	300	322	403	440	5	17.5	HN62

Standard thread shapes and dimensions are as per JIS B 0206 (metric trapezoidal screw thread).
 Indicates reference dimensions before withdrawal sleeves are attached.
 Bearing numbers marked "*" designate ULTAGE Series.

²⁾ Indicates reference dimensions before withdrawal sleeves are attached.
3) Bearing numbers marked "*" designate ULTAGE Series.

⁴⁾ Indicates withdrawal sleeve mass.
5) Indicates the number of nuts to be used at the time of disassembly. Refer to pages D-2 to D-10 for nut dimensions. Note: Refer to pages B-226 to B-229 for bearing dimensions, rated loads, and mass.

⁴⁾ Withdrawal sleeve numbers appended with the suffix "H" signify the high pressure oil (hydraulic) design.

⁽A) Withdrawal sleeve mains.

(b) Indicates withdrawal sleeve mass.

(c) Indicates withdrawal sleeve mass.

(d) Indicates the number of nuts to be used at the time of disassembly. Refer to pages D-2 to D-10 for nut dimensions. Note: Refer to pages B-228 to B-231 for bearing dimensions, rated loads, and mass.



### $d_1 260 \sim 360 \text{mm}$

	Boundary	dimei	nsion	s		Numbe	ers ^{3) 4)}		Installa	ition-re	lated o	dimens	ions	Mass 5)	Applied nut number
$d_1$	Thread nomina dimension $^{\scriptscriptstyle (1)}$		$G_1$	$B_4^{(2)}$		Bearing		drawal eeve	d Min.		mm L Min.		$r_{ m as}$ Max.	kg (approx.)	Bearing number 6)
	Tr300×4	202	22	219	*	24156EMK30E	)1; <b>AH</b>	24156F	<b>I</b> 300	316	394	440	5	16.3	HN60
260	Tr310×5		24	163		22256EMKD1	;AH	2256	300	333	437	480	5	15.2	HN62
200	Tr310×5		30	220	*	23256EMKD1	;AH	2356	300	331	426	480	5	21.6	HN62
	Tr310×5	212	30	220	*	22356EMKD1	;AH	2356	306	349	489	554	6	21.6	HN62
	Tr320×5	145	26	153	*	23060EMKD1	;АН	3060	315	338	413	445	4	14.4	HNL64
	Tr310×5	184	24	202	*	24060EMK30E	1; <b>AH</b>	24060F	<b>1</b> 315	332	401	445	4	15.5	HN62
280	Tr330×5	192	30	200	*	23160EMKD1	;AH	3160	320	345	436	480	5	20.8	HN66
200	Tr320×5	224	24	242		24160EMK30E	)1; <b>AH</b>	24160F	<b>i</b> 320	340	425	480	5	19.5	HN64
	Tr330×5		26	178		22260EMKD1	;AH	2260	320	358	469	520	5	18.1	HN66
	Tr330×5	228	34	236	*	23260EMKD1	;AH	3260	320	352	461	520	5	26	HN66
	Tr345×5	149	27	157	*	23064EMKD1	:AH	3064	335	360	433	465	4	16	HNL69
	Tr340×5		24	202		24064EMK30E				352	423	465	4	16.6	HN68
~~~	Tr350×5		31	217		23164EMKD1	:AH	3164	340	373	468	520	5	24.5	HN70
300	Tr340×5		24	260		24164EMK30E				363	457	520	5	21.4	HN68
	Tr350×5		27	190		22264EMKD1	:AH	2264	340	383	510	560	5	20.2	HN70
	Tr350×5	246	36	254	*	23264EMKD1	;AH	3264	340	376	493	560	5	30.6	HN70
	Tr365×5	162	28	171	*	23068EMKD1	:AH	3068	358	384	466	502	5	19.5	HNL73
	Tr360×5		26	225		24068EMK30E				377	456	502	5	21.7	HNL72
320	Tr370×5	225	33	234		23168EMKD1	;AH	3168	360	393	500	560	5	29	HN74
	Tr360×5	269	26	288	*	24168EMK30E	1; AH	24168F	i 360	385	486	560	5	27.1	HNL72
	Tr385×5	167	30	176	*	23072EMKD1	:AH	3072	378	405	488	522	5	21	HNL77
~ 4 ^	Tr380×5		26	226		24072EMK30E				398	478	522	5	22.7	HNL76
340	Tr400×5		35	238		23172BK	:AH	3172	382	417	520	578	5	33	HN80
	Tr380×5		26	289		24172BK30		24172F		414	507	578	5	29.6	HNL76
	Tr410×5	170	31	180	*	23076EMKD1	;AH	3076	398	425	509	542	5	23.2	HNL82
000	Tr400×5		28	228		24076EMK30E				420	499	542	5	23.7	HNL80
360	Tr420×5		36	242		23176BK	;AH	3176	402	436	540	598	5	35.7	HN84
	Tr400×5		28	291		24176BK30		24176F		431	529	598	5	31.3	HNL80

Withdrawal Sleeves

(For spherical roller bearings)

 $d_1 380 \sim 460 \text{mm}$

a_1	100 40	OIIIII	•											
	Boundary r Thread nomina	nm	nsion	s	Nur	nbers 3)		Installa	r	nm		ions	Mass 4)	Applied nut number Bearing
d_1	$\stackrel{\text{dimension 1)}}{G}$	B_3	G_1	$B_4^{(2)}$	Bearing		ndrawal eeve	$d_{\it a}$ Min.	Max.	D Min.		$r_{ m as}$ Max.	(approx.)	number 5)
380	Tr430×5 Tr420×5 Tr440×5 Tr420×5	228 240	33 28 38 28	193 248 250 298	23080BK 24080BK30 23180BK 24180BK30	;AH 24 ;AH 3	3180	422 422 428 428	451 446 458 452	542 528 568 552	578 578 622 622	5 5 6 6	27.1 39.5	HNL86 HNL84 HN88 HNL84
400	Tr450×5 Tr440×5 Tr460×5 Tr440×5	230 266	34 30 40 30	196 252 276 332	23084BK 24084BK30 23184BK 24184BK30	;AH 24 ;AH 3	184	442 442 448 448	471 465 488 477	562 551 611 592	598 598 672 672	5 5 6	46.5	HNL90 HNL88 HN92 HNL88
420	Tr470×5 Tr460×5 Tr480×5 Tr460×5	242 270	35 30 42 30	205 264 281 332	23088BK 24088BK30 23188BK 24188BK30	;AHX 3	1088H 3188	468 468 468 468	490 485 504 498	585 576 627 614	622 622 692 692	6 6 6	49.8	HNL94 HNL92 HN96 HN92
440	Tr490×5 Tr510×6 Tr480×5	285	37 43 32	213 296 355	23092BK 23192BK 24192BK30	;AHX 3 ;AHX 3 ;AH 24	3192	488 496 496	512 534 523	613 660 645	652 724 724	6 7.5 7.5		HNL98 HN102 HNL96
460	Tr520×6 Tr530×6		38 45	217 307	23096BK 23196BK	;AHX 3		508 516	532 554	633 687	672 754	6 7.5	39.2 63.1	HNL104 HN106

¹⁾ Standard thread shapes and dimensions are as per JIS B 0216 (metric trapezoidal screw thread).
2) Indicates reference dimensions before withdrawal sleeves are attached.
3) Bearing numbers marked "*" designate ULTAGE Series.
4) Withdrawal sleeve numbers appended with the suffix "H" signify the high pressure oil (hydraulic) design.
5) Indicates withdrawal sleeve mass.
6) Indicates the number of nuts to be used at the time of disassembly. Refer to pages D-2 to D-10 for nut dimensions. Note: Refer to pages B-230 to B-233 for bearing dimensions, rated loads, and mass.

Standard thread shapes and dimensions are as per JIS B 0216 (metric trapezoidal screw thread).
 Indicates reference dimensions before withdrawal sleeves are attached.
 Withdrawal sleeve numbers appended with the suffix "H" signify the high pressure oil (hydraulic) design.

⁴⁾ Indicates withdrawal sleeve mass.
5) Indicates withdrawal sleeve mass.
5) Indicates the number of nuts to be used at the time of disassembly. Refer to pages D-2 to D-10 for nut dimensions. Note: Refer to pages B-232 to B-235 for bearing dimensions, rated loads, and mass.

Thrust Bearings

Thrust Bearings

Single direction thrust ball bearings

Thrust spherical roller bearings

Thrust bearings are designed primarily to support axial loads at contact angles between 30° and 90°. Similar to radial bearings, thrust bearing designs may incorporate balls or rollers as rolling elements.

The configuration and characteristics of each type of bearing are given below.

With thrust bearings, it is necessary to supply an axial preload in order to prevent slipping between the bearing's rolling elements and raceways.

For more detailed information, please refer to section "8.3 Bearing preload."

1. Single direction thrust ball bearings

As shown in **Fig. 1**, the steel balls of single direction thrust ball bearings are arranged between a pair of a pair of washers (shaft washer and housing washer), and the normal contact angle is 90°. Axial loads can be supported in only one direction, and radial loads cannot be accommodated. These bearings are not suitable for high speed operation.

Table 1 lists the standard cage types for single direction thrust ball bearings.

Fig. 1 Single direction thrust ball bearing (example of pressed cage)

Table 1 Standard cage types for single direction thrust ball bearings

	direction thrust ball bearings		
Cage		Pressed cage	Machined cage
Bearing series			
511	51100 ~51107	51108 ~51152	51156 ~511/530
512	51200 ~51207	51208 ~51224	51226 ~51260
513	_	51305 ~51320	51322 ~51340
514	_	51405 ~51415	51416 ~51420

Note: Due to their material properties, resin cages can not be used in applications where temperatures exceed 120°C .

B-255

Just like spherical roller bearings, the center of the spherical surface for thrust spherical roller bearings is the point where the raceway surface of the housing raceway washer meets the center axis of the bearing. Since thrust spherical roller bearings incorporate barrel-shaped rollers as rolling elements, they also have self-aligning properties. (See Fig. 2) Under normal load conditions, the allowable misalignment is 1/60 to 1/30, although this will vary depending upon the bearing's dimension series.

These bearings use machined copper alloy cages and a guide sleeve for the cage is attached to the inner ring. These bearings have a high axial load capacity, and can accommodate some radial load when the ring is axially loaded. It is necessary to operate these bearings where the load condition meets $F_{\rm r}/F_{\rm a} \leq 0.55$.

The design for spherical thrust bearings is such that lubricant cannot enter the gap between the cage and the guide sleeve. Therefore, oil lubrication should be used, even in low speed operation.

Fig. 2 Thrust spherical roller bearings

3. Thrust cylindrical roller bearings

Thrust bearings incorporating cylindrical rollers are available in single row, double row, triple row, and four row varieties. (See Fig. 3) NTN Engineering offers the 811, 812 and 893 series that conform to dimension series 11, 12 and 93 prescribed in JIS, as well as other special dimensions.

While thrust cylindrical roller bearings are only able to receive axial loads, the axial loads can be heavy due to the high axial rigidity of the bearing. For series 811, 812, and 893, the dimension tables are listed section "E. Needle roller bearings." Bearings with dimensions not listed in the dimension tables are also manufactured. Contact NTN Engineering for more information.

Fig. 3 Double row thrust cylindrical roller bearings

4. Thrust tapered roller bearings

Although not listed in the dimension tables, tapered roller bearings like those in Fig. 4 are also manufactured. Contact NTN Engineering for more detailed information.

Fig. 4 Thrust tapered roller bearings

B-254

PO

Dynamic equivalent axial load Static equivalent axial load $P_{0a}=F_a$

d 10 ∼ 50mm

		dime	ndary nsion		Basic loa dynamic	static	Fatigue load limit kN	spe	vable eed in-1 Oil	Bearing numbers	Di	mensior mm	ıs		ation-i mensio mm Da		Mass kg
	d	D	T	$\gamma_{\rm s min}^{12}$		C_{0a}	$C_{ m u}$		lubrication		$d_{1\mathrm{s}\mathrm{max}}$	$^{2)}D_{1{ m s}{ m min}}{}^{3)}$	t	Min.			(approx.)
1	0	24 26	9 11	0.3 0.6	10.0 12.7	14.0 17.1	0.630 0.770	6 700 5 800	9 500 8 300	51100 51200	24 26	11 12	2.5 3.3	18 20	16 16	0.3 0.6	0.021 0.03
1	2	26 28	9 11	0.3 0.6	10.3 13.2	15.4 19.0	0.695 0.860	6 400 5 600	9 200 8 000	51101 51201	26 28	13 14	2.5 3.3	20 22	18 18	0.3	0.023 0.034
1	5	28 32	9 12	0.3 0.6	10.5 16.6	16.8 24.8	0.755 1.12	6 200 5 000	8 800 7 100	51102 51202	28 32	16 17	2.5 3.5	23 25	20 22	0.3 0.6	0.024 0.046
1	7	30 35	9 12	0.3 0.6	10.8 17.2	18.2 27.3	0.820 1.23	6 000 4 800	8 500 6 800	51103 51203	30 35	18 19	2.5 3.5	25 28	22 24	0.3 0.6	0.026 0.054
2	20	35 40	10 14	0.3 0.6	14.2 22.3	24.7 37.5	1.12 1.70	5 200 4 100	7 500 5 900	51104 51204	35 40	21 22	2.5 4.1	29 32	26 28	0.3 0.6	0.04 0.081
2	25	42 47 52 60	11 15 18 24	0.6 0.6 1	19.6 27.8 35.5 55.5	37.0 50.5 61.5 89.5	1.68 2.28 2.77 4.05	4 600 3 700 3 200 2 600	6 500 5 300 4 600 3 700	51105 51205 51305 51405	42 47 52 60	26 27 27 27	3 4.3 5 6.9	35 38 41 46	32 34 36 39	0.6 0.6 1	0.06 0.111 0.176 0.33
3	80	47 52 60 70	11 16 21 28	0.6 0.6 1	20.4 29.3 43.0 72.5	42.0 58.0 78.5 126	1.90 2.63 3.55 5.65	4 300 3 400 2 800 2 200	6 200 4 900 3 900 3 200	51106 51206 51306 51406	47 52 60 70	32 32 32 32	3 5 6.4 8.3	40 43 48 54	37 39 42 46	0.6 0.6 1	0.069 0.139 0.269 0.516
3	5	52 62 68 80	12 18 24 32	0.6 1 1 1.1	20.4 39.0 55.5 87.0	44.5 78.0 105 155	2.02 3.55 4.75 7.00	3 900 2 900 2 400 1 900	5 600 4 200 3 500 2 800	51107 51207 51307 51407	52 62 68 80	37 37 37 37	3.5 5.2 7.2 9.6	45 51 55 62	42 46 48 53	0.6 1 1 1	0.085 0.215 0.383 0.759
4	10	60 68 78 90	13 19 26 36	0.6 1 1 1.1	26.9 47.0 69.0 112	63.0 98.5 135 205	2.84 4.45 6.05 9.25	3 500 2 700 2 200 1 700	5 000 3 900 3 100 2 500	51108 51208 51308 51408	60 68 78 90	42 42 42 42	3.8 5.5 7.6 10.7	52 57 63 70	48 51 55 60	0.6 1 1	0.125 0.276 0.548 1.08
4	15	65 73 85 100	14 20 28 39	0.6 1 1 1.1	27.9 47.5 80.0 130	69.0 105 163 242	3.10 4.75 7.35 10.9	3 200 2 600 2 000 1 600	4 600 3 700 2 900 2 200	51109 51209 51309 51409	65 73 85 100	47 47 47 47	4 6 8.3 11.6	57 62 69 78	53 56 61 67	0.6 1 1	0.148 0.317 0.684 1.43
5	0	70 78	14 22	0.6	28.8 48.5	75.5 111	3.40 5.05	3 100 2 400	4 500 3 400	51110 51210	70 78	52 52	4	62 67	58 61	0.6	0.161 0.378

1) Smallest allowable dimension for chamfer dimension r. 2) Maximum allowable dimension for shaft washer outer dimension d_1 . 3) Smallest allowable dimension for housing washer inner dimension D_1 .

Dynamic equivalent axial load Static equivalent axial load $P_{0a}=F_a$

d 50 ∼ 90mm

	dime	ndary ensior		Basic loa	ad rating static	Fatigue load limit	Allov spe mi	e ed n-1	Bearing numbers ⁴⁾		nensio i mm	ns		ation-r mension mm		Mass kg
d	D	T	$r_{\rm s min}^{1}$		C_{0a}	$C_{ m u}$	Grease lubrication	Oil lubrication		$d_{1\mathrm{s}\mathrm{max}^{2)}}$	$D_{1 \text{s min}^{3)}}$	t	$d_{ m a}$ Min.	D_{a} Max.	$r_{ m as}$ Max.	(approx.)
50	95	31	1.1	96.5	202	9.10	1 800	2 600	51310	95	52	9.2	77	68	1	0.951
	110	43	1.5	148	283	12.8	1 400	2 000	51410A	110	52	12.9	86	74	1.5	1.9
55	78	16	0.6	35.0	93.0	4.20	2 800	4 000	51111	78	57	5	69	64	0.6	0.226
	90	25	1	69.5	159	7.15	2 100	3 000	51211	90	57	7.5	76	69	1	0.608
	105	35	1.1	119	246	11.1	1 600	2 300	51311	105	57	10.2	85	75	1	1.29
	120	48	1.5	178	360	16.2	1 300	1 800	51411	120	57	14.8	94	81	1.5	2.52
60	85	17	1	41.5	113	5.10	2 600	3 700	51112	85	62	5	75	70	1	0.296
	95	26	1	73.5	179	8.05	2 000	2 800	51212	95	62	8	81	74	1	0.676
	110	35	1.1	123	267	12.0	1 600	2 300	51312	110	62	10.2	90	80	1	1.37
	130	51	1.5	214	435	19.7	1 200	1 700	51412	130	62	15.3	102	88	1.5	3.12
65	90	18	1	41.5	117	5.30	2 400	3 500	51113	90	67	5.5	80	75	1	0.338
	100	27	1	75.0	189	8.50	1 900	2 700	51213	100	67	8.4	86	79	1	0.767
	115	36	1.1	128	287	13.0	1 500	2 200	51313	115	67	10.7	95	85	1	1.51
	140	56	2	232	495	22.0	1 100	1 600	51413	140	68	17.2	110	95	2	3.96
70	95	18	1	43.0	127	5.70	2 400	3 400	51114	95	72	5.5	85	80	1	0.356
	105	27	1	76.0	199	8.95	1 800	2 600	51214	105	72	8.4	91	84	1	0.793
	125	40	1.1	148	340	15.3	1 400	2 000	51314	125	72	12	103	92	1	2.01
	150	60	2	250	555	23.8	1 000	1 500	51414	150	73	18.6	118	102	2	4.86
75	100	19	1	44.5	136	6.15	2 200	3 200	51115	100	77	6	90	85	1	0.399
	110	27	1	77.5	209	9.40	1 800	2 600	51215	110	77	8.4	96	89	1	0.874
	135	44	1.5	171	395	17.4	1 300	1 800	51315	135	77	13.4	111	99	1.5	2.61
	160	65	2	269	615	25.6	940	1 400	51415	160	78	20.4	125	110	2	5.97
80	105	19	1	44.5	141	6.35	2 200	3 100	51116	105	82	6	95	90	1	0.422
	115	28	1	78.5	218	9.85	1 700	2 400	51216	115	82	8.9	101	94	1	0.916
	140	44	1.5	176	425	18.2	1 200	1 800	51316	140	82	13.4	116	104	1.5	2.72
	170	68	2.1	270	620	25.0	890	1 300	51416	170	83	21.3	133	117	2	7.77
85	110	19	1	46.0	150	6.80	2 100	3 000	51117	110	87	6	100	95	1	0.444
	125	31	1	95.5	264	11.6	1 600	2 200	51217	125	88	9.8	109	101	1	1.25
	150	49	1.5	206	490	20.3	1 100	1 600	51317	150	88	15	124	111	1.5	3.52
	180	72	2.1	288	685	26.8	840	1 200	* 51417	177	88	22.7	141	124	2	9.17
90	120 135 155 190	22 35 50 77	1 1.1 1.5 2.1	59.5 117 213 305	190 325 525 750	8.35 13.9 21.3 28.6	1 900 1 400 1 100 790		51118 51218 51318 * 51418 llest allowable dime	120 135 155 187	92 93 93 93	7 11.2 15.5 24.5	108 117 129 149	102 108 116 131		0.687 1.7 3.74 11

1) Smallest allowable dimension for chamfer dimension 7. 2) Maximum allowable dimension for shaft washer outer dimension 4. 3) Smallest allowable dimension for housing washer inner dimension 9. 4) Bearing numbers marked ** signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing.

B-257

B-256

Dynamic equivalent axial load Static equivalent axial load $P_{0a}=F_{a}$

d 100 ~ 200mm

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			dynamic	c static	Fatigue load limit kN	spe	vable eed n-1 Oil	Bearing numbers 4		mensior mm	ns		ation-r mension mm $D_{\rm a}$		Mass kg
d	D	T	$r_{\rm s min}^{1}$	$C_{\rm a}$	C_{0a}	C_{u}	lubrication	lubrication		$d_{1\mathrm{s}\mathrm{max}}$	$^{2)}D_{1\text{s min}}^{3)}$	t	Min.	Max.		(approx.)
	135	25	1	85.0	268	11.2	1 700	2 400	51120	135	102	7.5	121	114	1	0.987
400	150	38	1.1	147	410	16.6	1 300	1 800	51220	150	103	11.7	130	120	1	2.29
100	170	55	1.5	237	595	23.1	990	1 400	51320	170	103	17.3	142	128	1.5	4.88
	210	85	3	370	970	35.0	710	1 000	* 51420	205	103	26.6	165	145	2.5	14.7
	145	25	1	87.0	288	11.5	1 600	2 300	51122	145	112	7.5	131	124	1	1.07
110	160	38	1.1	153	450	17.5	1 200	1 800	51222	160	113	11.7	140	130	1	2.46
	190	63	2	267	705	25.9	870	1 200	* 51322	187	113	20	158	142	2	7.67
	155	25	1	89.0	310	11.8	1 500	2 200	51124	155	122	7.5	141	134	1	1.11
120	170	39	1.1	154	470	17.7	1 200	1 700	51224	170	123	12.2	150	140	1	2.71
	210	70	2.1	296	805	28.3	780	1 100	* 51324	205	123	22.3	173	157	2	10.8
	170	30	1	104	350	13.0	1 300	1 900	51126	170	132	9	154	146	1	1.73
130		45	1.5	191	565	20.2	1 000		* 51226	187	133	13.9	166	154	1.5	4.22
	225	75	2.1	330	960	32.5	720		* 51326	220	134	24.2	186	169	2	12.7
	180	31	1	107	375	13.4	1 300	1 800	* 51128	178	142	9.5	164	156	1	1.9
140	200	46	1.5	193	595	20.6	980	1 400	* 51228	197	143	14.4	176	164	1.5	4.77
	240	80	2.1	350	1 050	34.5	670	960	* 51328	235	144	26	199	181	2	15.3
	190	31	1	109	400	13.9	1 200	1 800	* 51130	188	152	10	174	166	1	2
150	215	50	1.5	227	720	24.0	900	1 300	* 51230	212	153	15.8	189	176	1.5	5.87
	250	80	2.1	360	1 130	36.0	660	940	* 51330	245	154	26	209	191	2	16.1
	200	31	1	112	425	14.4	1 200	1 700	* 51132	198	162	10	184	176	1	2.1
160	225	51	1.5	223	720	23.3	870	1 200	* 51232	222	163	16.3	199	186	1.5	6.32
	270	87	3	450	1 470	45.0	600	860	* 51332	265	164	27	225	205	2.5	20.7
	215	34	1.1	134	510	16.7	1 100	1 600	* 51134	213	172	10.5	197	188	1	2.77
170	240	55	1.5	261	835	26.3	810	1 200	* 51234	237	173	17.3	212	198	1.5	7.81
	280	87	3	465	1 570	47.5	590	840	* 51334	275	174	27	235	215	2.5	21.6
	225	34	1.1	135	525	16.7	1 100	1 500	* 51136	222	183	10.5	207	198	1	2.92
180	250	56	1.5	266	875	26.9	780	1 100	* 51236	247	183	17.8	222	208	1.5	8.34
	300	95	3	490	1 700	49.5	540	780	* 51336	295	184	29.7	251	229	2.5	27.5
	240	37	1.1	170	655	20.2	980	1 400	* 51138	237	193	11	220	210	1	3.75
190	270	62	2	310	1 060	31.5	710	1 000	* 51238	267	194	19.6	238	222	2	11.3
		105	4	545	1 950	55.0	500	710	* 51338	315	195	33.5	266	244	3	35
200		37	1.1	172	675	20.4	960		* 51140 allest allowable dime	247	203	11.5	230	220	1	3.92

a parameter where the bearing shaft washer outer dameter is smaller than the housing shaft washer outer dameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground underout on the outer dameter section of the bearing shaft washer as shown in the drawing. B-258

Dynamic equivalent axial load $P_{\rm a} = F_{\rm a}$ Static equivalent axial load $P_{0a}=F_{a}$

d 200 ~ 530mm

	dime	indary ension mm		dynami	oad rating ic static kN	Fatigue load limit kN	Allov spe mi Grease	ed	Bearing numbers 4)		mension mm	ns		ation-remaion D_{a}		l Mass kg
d	D	T	$r_{\rm s min}^{12}$		C_{0a}	$C_{ m u}$	lubrication			$d_{1\mathrm{smax}}$	$^{2)}D_{1s \min}^{3)}$	t	Min.			(approx.)
200	280 340	62 110	2	315 595	1 110 2 220	32.0 61.0	700 470		* 51240 * 51340	277 335	204 205	19.6 34.7	248 282	232 258	2	11.8 41.8
220	270 300	37 63	1.1	177 325	740 1 210	21.3 34.0	920 660		* 51144 * 51244	267 297	223 224	11.5 20.1	250 268	240 252	1	4.27 13
240	300 340	45 78	1.5 2.1	228 415	935 1 650	25.6 44.0	780 550		* 51148 * 51248	297 335	243 244	14 25	276 299	264 281	1.5 2	6.87 22.4
260	320 360	45 79	1.5 2.1	232 440	990 1 810	26.2 46.5	750 530		* 51152 * 51252	317 355	263 264	14 24.9	296 319	284 301	1.5 2	7.38 24.2
280	350 380	53 80	1.5 2.1	305 460	1 270 1 970	32.5 49.0	650 510		* 51156 * 51256	347 375	283 284	16 25.4	322 339	308 321	1.5 2	11.8 26.1
300	380 420	62 95	2	355 590	1 560 2 680	38.0 63.5	580 440		* 51160 * 51260	376 415	304 304	19.5 29.7	348 371	332 349	2 2.5	17.2 40.6
320	400	63	2	365	1 660	39.5	550	790	* 51164	396	324	20	368	352	2	18.4
340	420	64	2	375	1 760	40.5	530	760	* 51168	416	344	20.5	388	372	2	19.7
360	440	65	2	380	1 860	42.0	510	730	* 51172	436	364	21	408	392	2	21.1
380	460	65	2	380	1 910	42.0	500	710	* 51176	456	384	21	428	412	2	22.3
400	480	65	2	390	2 010	43.5	480	690	* 51180	476	404	21	448	432	2	23.3
420	500	65	2	395	2 110	44.5	470	670	* 51184	495	424	21	468	452	2	24.4
440	540	80	2.1	515	2 850	58.0	400	580	* 51188	535	444	26	499	481	2	40
460	560	80	2.1	525	3 000	60.0	390	560	* 51192	555	464	26	519	501	2	41.6
480	580	80	2.1	525	3 100	60.5	380	550	* 51196	575	484	29.5	539	521	2	43.3
500	600	80	2.1	575	3 400	65.5	370	540	511/500	595	504	25	559	541	2	45
530	640	85	3	645	4 000	74.5	350	500	511/530	635	534	26	595	575	2.5	55.8

Smallest allowable dimension for chamfer dimension r. 2) Maximum allowable dimension for shaft washer outer dimension d₁.
 Smallest allowable dimension for housing washer inner dimension D₁.
 Bearing numbers marked "*" signify bearings where the bearing shaft washer outer diameter is smaller than the housing shaft washer outer diameter. Therefore when using these bearings, it is possible to use the housing bore as is, without providing a ground undercut on the outer diameter section of the bearing shaft washer as shown in the drawing.
 B-259

Dynamic equivalent axial load P_a = F_a +1.2 F_r Static equivalent axial load $P_{0a}=F_a+2.7F_r$ Provided that $\frac{F_r}{F_a} \le 0.55$ only.

d 60 ∼ 160mm

	dime	ndary ensions nm		dynamic		Fatigue load limit	speed min-1	Bearing numbers			ension: mm	5	
d	D	T	$r_{\rm s min}^{1)}$	C _a	C_{0a}	$_{C_{\mathrm{u}}}^{kN}$	Oil lubrication		D_1	d_1	B_1	C	A
60	130	42	1.5	315	805	68.5	2 600	29412	89	123	15	20	38
65	140	45	2	370	945	75.5	2 400	29413	96	133	16	21	42
70	150	48	2	405	1 040	87.5	2 200	29414	103	142	17	23	44
75	160	51	2	465	1 190	102	2 100	29415	109	152	18	24	47
80	170	54	2.1	510	1 380	102	1 900	29416	117	162	19	26	50
85	150	39	1.5	295	820	78.5	2 300	29317	114	143.5	13	19	50
	180	58	2.1	545	1 480	118	1 800	29417	125	170	21	28	54
90	155	39	1.5	320	915	84.0	2 300	29318	117	148.5	13	19	52
	190	60	2.1	610	1 680	121	1 700	29418	132	180	22	29	56
100	170	42	1.5	385	1 160	96.0	2 100	29320	129	163	14	20.8	58
	210	67	3	760	2 130	156	1 500	29420	146	200	24	32	62
110	190	48	2	495	1 500	120	1 800	29322	143	182	16	23	64
	230	73	3	940	2 620	193	1 400	29422	162	220	26	35	69
120	210	54	2.1	595	1 770	151	1 600	29324	159	200	18	26	70
	250	78	4	1 080	3 050	212	1 300	29424	174	236	29	37	74
130	225	58	2.1	685	2 100	168	1 500	29326	171	215	19	28	76
	270	85	4	1 200	3 550	232	1 200	29426	189	255	31	41	81
140	240	60	2.1	760	2 360	182	1 400	29328	183	230	20	29	82
	280	85	4	1 240	3 750	252	1 200	29428	199	268	31	41	86
150	215	39	1.5	380	1 340	122	1 800	29230	178	208	14	19	82
	250	60	2.1	750	2 390	191	1 400	29330	194	240	20	29	87
	300	90	4	1 430	4 350	280	1 100	29430	214	285	32	44	92
160	225	39	1.5	400	1 460	126	1 700	29232	188	219	14	19	86
	270	67	3	915	2 860	223	1 300	29332	208	260	24	32	92
	320	95	5	1 670	5 150	320	1 000	29432	229	306	34	45	99

	llation-re limension mm		Mass kg
d_{a}	$D_{\rm a}$	$r_{\rm as}$	
Min.	Max.	Max.	(approx.)
90	108	1.5	2.78
100	115	2	3.44
105	125	2	4.19
115	132	2	5.07
120	140	2	6.09
115 130	135 150	1.5 2	2.94 7.2
130	150	2	1.2
120	140	1.5	3.08
135	157	2	8.38
130	150	1.5	3.94
150	175	2.5	11.5
145	165	2	5.78
165	190	2.5	15
160	180	2	7.92
180	205	3	18.6
170	195	2	9.76
195	225	3	23.7
185	205	2	11.4
205	235	3	25.2
179	196	1.5	4.56
195	215	2	12
220	250	3	30.5
189	206	1.5	4.88
210	235	2.5	15.9
230	265	4	37

1) Smallest allowable dimension for chamfer dimension r.

NTN

Dynamic equivalent axial load P_a = F_a +1.2 F_r Static equivalent axial load $P_{0a}=F_a+2.7F_r$ Provided that $\frac{F_r}{F_a} \le 0.55$ only.

d 170 ∼ 320mm

		undary ensions mm	i.		oad rating	Fatigue load limit kN	Allowable speed min-1 Oil	Bearing numbers		Din	nensions mm		
d	D	T	$r_{ m smin}$	$C_{\rm a}$	C_{0a}	C_{u}	lubrication		D_1	d_1	B_1	C	A
170	240	42	1.5	475	1 770	146	1 600	29234	198	233	15	20	92
	280	67	3	950	3 050	238	1 200	29334	216	270	23	32	96
	340	103	5	1840	5 750	345	940	29434	243	324	37	50	104
180	250	42	1.5	500	1 920	160	1 600	29236	208	243	15	20	97
	300	73	3	1 110	3 600	272	1 100	29336	232	290	25	35	103
	360	109	5	2 050	6 200	400	890	29436	255	342	39	52	110
190	270	48	2	585	2 230	184	1 400	29238	223	262	15	24	104
	320	78	4	1 280	4 250	294	1 100	29338	246	308	27	38	110
	380	115	5	2 230	6 800	430	840	29438	271	360	41	55	117
200	280	48	2	595	2 300	183	1 400	29240	236	271	15	24	108
	340	85	4	1 420	4 600	330	980	29340	261	325	29	41	116
	400	122	5	2 490	7 650	465	790	29440	286	380	43	59	122
220	300	48	2	620	2 480	198	1 300	29244	254	292	15	24	117
	360	85	4	1 540	5 200	360	940	29344	280	345	29	41	125
	420	122	6	2 560	8 100	505	760	29444	308	400	43	58	132
240	340	60	2.1	890	3 600	271	1 100	29248	283	330	19	30	130
	380	85	4	1 530	5 250	390	910	29348	300	365	29	41	135
	440	122	6	2 680	8 700	530	740	29448	326	420	43	59	142
260	360	60	2.1	960	3 950	296	1 100	29252	302	350	19	30	139
	420	95	5	1 910	6 800	445	810	29352	329	405	32	45	148
	480	132	6	3 050	10 000	610	670	29452	357	460	48	64	154
280	380	60	2.1	975	4 050	245	1 000	29256	323	370	19	30	150
	440	95	5	2 010	7 250	480	790	29356	348	423	32	46	158
	520	145	6	3 700	12 400	710	610	29456	387	495	52	68	166
300	420	73	3	1 330	5 350	385	870	29260	353	405	21	38	162
	480	109	5	2 380	8 250	580	700	29360	379	460	37	50	168
	540	145	6	3 850	13 200	735	590	29460	402	515	52	70	175
320	440	73	3	1 400	5 800	415	840	29264	372	430	21	38	172
	500	109	5	2 470	8 800	605	680	29364	399	482	37	53	180
	580	155	7.5	4 100	14 200	820	550	29464	435	555	55	75	191

	llation-re limension		Mass
,	mm		kg
$d_{ m a}$ Min.	$D_{ m a}$ Max.	$r_{ m as}$ Max.	(approx.)
201	218	1.5	6.02
220 245	245 285	2.5 4	16.6 45
240	200	4	40
211	228	1.5	6.27
235	260	2.5	21.2
260	300	4	52.9
225	245	2	8.8
250	275	3	26
275	320	4	62
235	255	2	9.14
265	295	3	31.9
290	335	4	73.3
260	275	2	9.94
285	315	3	34.5
310	355	5	77.8
285	305	2	17.5
300	330	3	36.6
330	375	5	82.6
305	325	2	18.6
330	365	4	52
360	405	5	108
325	345	2	19.8
350	390	4	54.6
390	440	5	140
355	380	2.5	30.9
380 410	420 460	4 5	75.8 147
375	400	2.5	33.5
400	440	4	79.9
435	495	6	181

1) Smallest allowable dimension for chamfer dimension r.

B-262 B-263

NTN

Thrust Spherical Roller Bearings

 $\begin{array}{l} \mbox{Dynamic equivalent axial load} \\ P_a = F_a + 1.2F_r \\ \mbox{Static equivalent axial load} \\ P_{0a} = F_a + 2.7F_r \\ \mbox{Provided that } \frac{F_r}{F_a} \leqq 0.55 \mbox{ only.} \end{array}$

d 340 ∼ 500mm

		undary		Basic I	oad rating	Fatigue load	Allowable speed	Bearing numbers	Dimensions				
	uiii	mm	5	dynami	ic static kN	limit kN	min-1 Oil	numbers			mm		
d	D	T	$r_{\mathrm{s} \mathrm{min}^1}$	$C_{\rm a}$	C_{0a}	C_{u}	lubrication		D_1	d_1	B_1	C	A
	460	73	3	1 380	5 800	395	820	29268	395	445	21	37	183
340	540	122	5	2 950	10 700	695	610	29368	428	520	41	59	192
	620	170	7.5	4 900	17 500	925	500	29468	462	590	61	82	201
	500	85	4	1 680	7 050	480	720	29272	423	485	25	44	194
360	560	122	5	3 000	11 100	915	590	29372	448	540	41	59	202
	640	170	7.5	5 000	18 500	950	490	29472	480	610	61	82	210
	520	85	4	1 770	7 650	505	700	29276	441	505	27	42	202
380	600	132	6_	3 550	13 300	835	550	29376	477	580	44	63	216
	670	175	7.5	5 450	19 700	1 060	470	29476	504	640	63	85	230
	540	85	4	1 800	7 950	525	680	29280	460	526	27	42	212
400	620	132	6	3 750	14 500	865	530	29380	494	596	44	64	225
	710	185	7.5	6 050	22 100	1 140	440	29480	534	680	67	89	236
	580	95	5	2 330	10 400	670	620	29284	489	564	30	46	225
420	650	140	6	4 000	15 500	925	500	29384	520	626	48	68	235
	730	185	7.5	6 100	22 800	1 190	430	29484	556	700	67	89	244
	600	95	5	2 390	10 900	695	600	29288	508	585	30	49	235
440	680	145	6	4 200	16 400	965	480	29388	548	655	49	70	245
	780	206	9.5	7 100	26 200	1 340	390	29488	588	745	74	100	260
	620	95	5	2 390	11 000	900	590	29292	530	605	30	46	245
460	710	150	6	4 700	18 500	1060	460	29392	567	685	51	72	257
	800	206	9.5	7 350	27 900	1390	380	29492	608	765	74	100	272
	650	103	5	2 670	12 000	760	550	29296	556	635	33	55	259
480	730	150	6	4 700	18 700	1 100	450	29396	590	705	51	72	270
	850	224	9.5	8 350	31 500	1 490	350	29496	638	810	81	108	280
	670	103	5	2 830	13 000	810	530	292/500	574	654	33	55	268
500	750	150	6	4 750	19 300	1 140	440	293/500	611	725	51	74	280
	870	224	9.5	8 450	33 000	1 610	340	294/500	661	830	81	107	290

	llation-re limension		Mass
d_a	$\begin{array}{c} mm \\ D_{\mathbf{a}} \end{array}$	$r_{\rm as}$	kg
Min.	Max.	Max.	(approx.)
395	420	2.5	34.4
430	470	4	107
465	530	6	230
420	455	3	50.5
450	495	4	112
485	550	6	240
440	475	3	53.4
480	525	5	143
510	575	6	267
460	490	3	55.8
500	550	5	148
540	610	6	321
490	525	4	76.6
525	575	5	172
560	630	6	333
510	545	4	79.6
550	600	5	195
595	670	8	428
530	570	4	82.8
575	630	5	221
615	690	8	443
555	595	4	98.6
595	650	5	228
645	730	8	552
575	615	4	102
615	670	5	235
670	750	8	569

1) Smallest allowable dimension for chamfer dimension r.

B-264 B-265

Special Application Bearings Contents

ULTAGE series Sealed four-row tapered roller bearings for rolling mill roll necks [CROU...LL type] C- 2 **ULTAGE** series Sealed spherical roller bearings [WA type] C- 6 **ULTAGE** series Spherical roller bearings with high-strength cage [EMA type] ... C-10 **ULTAGE** series Deep groove ball bearings for high-speed servo motors [MA type] C-14 Four-row cylindrical roller bearings C-18 Four-row tapered roller bearings C-36 Ultra-thin section type ball bearings C-58 SL type cylindrical roller bearings C-66 **ULTAGE** series Precision rolling bearings for machine tools C-76 Bearings for special environments C-76 Rubber molded bearings ····· C-76 MEGAOHMTM series insulated bearings C-77 Clutches/torque limiters ····· C-77

Special Application Bearings

The ULTAGE series sealed four-row tapered roller bearings [CROU...LL type] are designed to provide "high-load capacity," "high static load capacity," and "high sealing performance." These traits are required for steel rolling mill roll neck applications neck applications to improve reliability with a longer operating life.

1. Features

1) High-load capacity design

Higher load capacity and longer operating life are achieved by maximizing the size and number of rollers in the bearing.

specification specification

2) World class static load capacity

Static load capacity is greatly improved due to optimized crowning of the rolling elements, reducing edge stress in the application under heavy loads.

3) Compact seal design with high sealing performance

The ULTAGE series four-row tapered roller bearing utilizes a specially designed fluorine rubber seal for high sealing performance, while minimizing the volume of the seal within the bearing.

Optimizing the tension force of the main seal lip and the overall design of the seal to minimize contamination ingress, reduces the internal water immersion by 50% or more while preventing grease from flowing out from the sub lip.

4) Standard adoption of long-life grease

This bearing is filled with an ample amount of long-life grease to avoid the need for cleaning or filling the bearing with grease before assembling into the application.

2. Part number

^{*} austenite-strengthening treatment

3. Chamfer dimension

Unit: mm

				Offic. Ithiri		
₹s min Or	Nominal bearing bore	diameter	rs max Or r 1s max			
₹1s min	Over a Inc	il.	Radial direction	Axial direction		
1	50 —		1.9	3		
1.5	120 25 250 —	0	2.8 3.5	3.5 4		
2.5	120 25 250 —	0	4 4.5	5.5 6		
3	120 25 250 40 400 —		4.5 5 5.5	6.5 7 7.5		

4. Operating temperature range

-20~120°C

5. Bearing fits (recommended)

Metric series: Shaft d6/housing G7 Inch series : Contact NTN Engineering.

6. Standard grease fill

Brand: Kyodo Yushi Palmax RBG (L373) Amount: Space volume ratio 35%

7. Allowable speed

 $d_{\rm m} \cdot n \leq 30 \times 10^4$

 $d_{\rm m}$: Roller pitch diameter (mm) = (d+D)/2

d: Bearing bore diameter (mm) D: Bearing outside diameter (mm)

n: Rotational speed (min⁻¹)

The above are approximate standard values and may not be appropriate depending on the usage condition. For details, please contact NTN Engineering.

8. Material

Inner and outer rings: Case hardened steel : Bearing steel Rolling elements

(* mark in the dimension table indicates case

hardened steel.)

C-2

ω.		ı	Boundary dim		(approx.) Standard radial	Standard axial		
Series			mm				clearance 2)	clearance 2)
σ,	d	D	B	C	$r_{ m 1s~min}^{ m 1)}$	$r_{s \min}^{1)}$	mm	mm
	220	295	315	315	1	2.5	$0.093 \sim 0.106$	$0.420 \sim 0.480$
	225	320	230	230	1	2.5	$0.099 \sim 0.115$	$0.360 \sim 0.420$
	240	338	248	248	1	2.5	$0.104 \sim 0.118$	0.450 ~ 0.510
	240	338	340	340	1	2.5	$0.107 \sim 0.123$	0.400 ~ 0.460
Ñ	250	365	270	270	1	2.5	0.113 ~ 0.129	0.420 ~ 0.480
serie	260	365	340	340	1	2.5	$0.115 \sim 0.131$	$0.430 \sim 0.490$
Metric series	300	420	310	310	1	2.5	$0.131 \sim 0.147$	$0.490 \sim 0.550$
Ĕ	310	430	350	350	1	2.5	0.136 ~ 0.154	$0.520 \sim 0.590$
	410	546	400	400	1.5	2.5	0.173 ~ 0.188	$0.780 \sim 0.850$
	440	590	480	480	1.5	2.5	$0.188 \sim 0.204$	$0.850 \sim 0.920$
	440	620	454	454	3	2.5	$0.195 \sim 0.211$	$0.880 \sim 0.950$
	530	780	570	570	3	2.5	$0.244 \sim 0.259$	1.100 ~ 1.170
	220.662	314.325	239.712	239.712	1	2.5	$0.098 \sim 0.111$	$0.450 \sim 0.510$
	254.000	358.775	269.875	269.875	1	2.5	$0.111 \sim 0.127$	$0.430 \sim 0.490$
ies	304.902	412.648	266.700	266.700	1	2.5	$0.130 \sim 0.150$	$0.450 \sim 0.520$
nch series	343.052	457.098	254.000	254.000	1	2.5	$0.136 \sim 0.158$	$0.430 \sim 0.500$
lnc	343.052	457.098	299.000	299.000	1	2.5	$0.143 \sim 0.163$	$0.500 \sim 0.570$
	501.650	711.200	520.700	520.700	3	2.5	$0.206 \sim 0.226$	$0.730 \sim 0.800$
	595.312	844.550	615.950	615.950	3	2.5	$0.266 \sim 0.282$	1.200 ~ 1.270

- 1) Smallest allowable dimension for chamfer dimension r. 2) Consult with $\bf NTN$ Engineering because the appropriate value may change depending on the use conditions.

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

Static equivalent radial load $P_{0r}=F_r+Y_0F_a$ For values of e, Y_1 , Y_2 and Y_0 see the table below.

Basic lo	ad rating	Bearing number 3)	Installation-related dimensions		Constant	Axia	Axial load factors			
$C_{ m r}$	$C_{0\mathrm{r}}$		$d_{ m a}$ m	m D_{a}	e	Y_1	Y_2	Y_0		
				-		_	_			
1 890	4 650	CROU-4401LLA1X	235	267	0.33	2.03	3.02	1.98		
1 870	3 700	CROU-4501LLA1X	241	294	0.41	1.64	2.44	1.60		
2 320	4 600	CROU-4801LLA1X	257	309	0.35	1.95	2.90	1.91		
2 970	6 850	CROU-4802LLA1X	257	309	0.40	1.68	2.50	1.64		
2 760	5 300	CROU-5001LLA1X	272	333	0.40	1.68	2.50	1.64		
3 350	7 450	CROU-5201LLA1X	275	327	0.40	1.68	2.50	1.64		
3 600	7 650	CROU-6001LLA1X	318	382	0.40	1.68	2.50	1.64		
4 050	8 900	CROU-6201LLA1X	329	388	0.39	1.72	2.56	1.68		
5 500	13 300	CROU-8201LLA1X	434	504	0.33	2.03	3.02	1.98		
6 600	16 200	CROU-8801LLA1X	462	540	0.33	2.03	3.02	1.98		
7 650	16 700	CROU-8802LLA1X	473	570	0.33	2.03	3.02	1.98		
13 500	29 400	CROU-10601LLA1X*	581	710	0.33	2.03	3.02	1.98		
2 240	4 350	CROU-4402LLA1X	240	290	0.33	2.07	3.09	2.03		
2 770	5 700	CROU-5101LLA1X	274	328	0.39	1.74	2.59	1.70		
2 810	5 850	CROU-6101LLA1X	323	379	0.43	1.56	2.32	1.52		
2 830	5 950	CROU-6901LLA1X	364	423	0.47	1.43	2.12	1.40		
3 500	8 150	CROU-6902LLA1X	364	423	0.43	1.57	2.34	1.53		
10 100	23 900	CROU-10001LLA1X*	542	642	0.42	1.60	2.38	1.56		
14 000	33 000	CROU-11901LLA1X	638	770	0.33	2.03	3.02	1.98		

³⁾ Bearing numbers marked "*" use rolling elements made of case hardened steel.

The ULTAGE series sealed spherical roller bearings [WA type] are designed to meet the demands of "long operating life," "improved reliability," and "improved easy handling," which are required for various types of industrial machinery.

1. Features

1) World class load capacity

Higher load capacity and longer operating life have been realized by adopting the internal specifications of the EA type, which includes maximum possible roller diameter size, maximum possible number of rollers, and a "basket-shaped" pressed steel cage.

2) Compact design with minimized seal volume

The standard seal design is a "contact type" dust resistant seal designed to minimize the volume of the seal within the bearing.

- (1) Foreign matter intrusion is prevented by the adoption of the specially designed contact type rubber seal.
- (2) Consistent dust resistance is achieved without changing the contact surface pressure of the seal with respect to the bearing alignment.

3) Standard adoption of long-life grease

This bearing is filled with an ample amount of long-life grease to avoid the need for cleaning or filling the bearing with grease before assembling into the application.

- (1) Grease brand: Shell Alvania EP Grease 2 (8A) with extreme-pressure additive for heavy loads
- (2) Grease amount: Space volume ratio 15 to 25%

4) Standard adoption of oil holes

The bearing is able to be re-greased due to the oil grooves and oil holes that are standard in the outer ring.

2. Part number

3. Allowable speed

When grease is supplied : $d_n \le 6 \times 10^4$ When no grease is supplied: $d_n \le 8 \times 10^4$

 $*d_n$ value:

 $[d_n] = bearing bore diameter d (mm) \times$ rotational speed $n \text{ (mm}^{-1})$

4. Allowable temperature range

Bearing temperature: -20~110°C

5. Allowable misalignment angle

1/115 (mm/mm)

6. Handling precautions

- 1) The radial internal clearance on an ULTAGE series sealed spherical roller bearing with tapered bore cannot be measured with a clearance (thickness) gauge. Please manage the clearance after assembly by measuring the movement in the axial direction shown in Table 15.1 (A-159) in section "15. Bearing handling."
- 2) When the bearing misalignment exceeds the allowable misalignment (1/115), the rollers may come in contact with seal and cause seal deformation. It should be noted that the seal may come off when a large force is applied in this state.
- 3) Use Li-based mineral grease when re-greasing. Consult with NTN Engineering when using other types of grease.
- 4) When temperature mounting for assembly, the bearing temperature must be 100°C or below. The method of immersing bearings in hot oil cannot be used for this bearing type.

C-6 C-7

Basic load rating Fatigue

 C_{0r}

46.1

64.5

105

113

124

148

181

224

240

249

287

330

398

417

495

643

753

898

dvnamic static

 $C_{\rm r}$

57.3

75.7

100

155

187

kΝ

load

limit

kΝ

4.58

7.78

8.76

10.1

12.6

15.4

18.2

20.1

21.1

24.0

27.1

30.2

33.4

36.9

45.0

49.9

56.6

Boundary dimensions

d25

30

35

40

45

50

55 100 31 1.5

75 130

80 140

85 150

95

100

110

120

130

52 23

62 25

72

80 28

85 28 1.1

90 28 1.1

125

160

180

200 63

215 69

230 75 3

28

34 1.5

38 1.5

38 1.5

38 1.5

40 2

44 2

48 2

55

2.1

 $B r_{\rm smin}^{1)} W_0 d_0$

3 1.5

2

5 2.5 116

6 2.5 121

6 2.5 130

8 3.5 226

7 3.5 235

7 3.5 244

8 3.5 278

8 3.5 324

10 4.5 384

10 4.5 416

472

602

688

808

4 2

6 3

7 3

5

Cylindrical

bore

WA22206EALLSW33/8A

WA22207EALLSW33/8A

WA22208EALLSD1/8A

WA22209EALLSD1/8A

WA22210EALLSD1/8A

WA22211EALLSD1/8A

WA22212EALLSD1/8A

WA22213EALLSD1/8A

WA22214EALLSD1/8A

WA22215EALLSD1/8A

WA22216EALLSD1/8A

WA22217EALLSD1/8A

WA22218EALLSD1/8A

WA22219EALLSD1/8A

WA22220EALLSD1/8A

WA2222EALLSD1/8A

WA22224EALLSD1/8A

WA22226EALLSD1/8A

3.23 WA22205EALLSW33/8A

Bearing number

Tapered

bore 2)

WA22207EALLSKW33/8A

WA22208EALLSKD1/8A

WA22209EALLSKD1/8A

WA22210EALLSKD1/8A

WA22211EALLSKD1/8A

WA22212EALLSKD1/8A

WA22213EALLSKD1/8A

WA22214EALLSKD1/8A

WA22215EALLSKD1/8A

WA22216EALLSKD1/8A

WA22217EALLSKD1/8A

WA22218EALLSKD1/8A

WA22219EALLSKD1/8A

WA22220EALLSKD1/8A

WA2222EALLSKD1/8A

WA22224EALLSKD1/8A

WA22226EALLSKD1/8A

Z	70
D1	W33
4	3

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F_{\rm a}}{F_{\rm r}} > e$				
X	Y	X	Y			
1	Y_1	0.67	Y_2			

Static equivalent radial load $P_{0r}=F_r+Y_0F_a$ For values of e, Y_1 , Y_2 and Y_0 see the table below.

Ins	tallation-	-related o	dimensi	ons	Constant Axial load factors			Mass Amount o (approx.) fillec kg (appr			n	
d_1	$d_{ m amin}$	$D_{ m amax}$	D_1	$r_{ m smax}$	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore	g	,
29	30	46	47	1	0.34	2.00	2.98	1.96	0.19	_	1.4~	2.4
36	36	56	56	1	0.31	2.15	3.20	2.10	0.30	-	2.0 ~	3.3
43	42	65	65	1.1	0.31	2.21	3.29	2.16	0.50	0.49	2.3 ~	3.9
48	47	73	73	1.1	0.27	2.47	3.67	2.41	0.58	0.57	3.1 ~	5.2
53	52	78	78	1.1	0.26	2.64	3.93	2.58	0.63	0.61	3.4 ~	5.7
58	57	83	83	1.1	0.24	2.84	4.23	2.78	0.70	0.68	3.4 ~	5.6
64	64	91	93	1.5	0.23	2.95	4.40	2.89	0.94	0.91	4.7 ~	7.9
70	69	101	102	1.5	0.24	2.84	4.23	2.78	1.25	1.22	6.6 ∼	11.0
76	74	111	110	1.5	0.24	2.79	4.15	2.73	1.72	1.67	8.5 ~	14.2
82	79	116	116	1.5	0.22	3.01	4.48	2.94	1.78	1.73	9.6 ∼	16.0
86	84	121	121	1.5	0.22	3.14	4.67	3.07	1.88	1.83	9.9~	16.4
93	91	129	131	2	0.22	3.14	4.67	3.07	2.32	2.27	12.0 ~	20.0
98	96	139	140	2	0.22	3.07	4.57	3.00	2.90	2.83	16.9 ~	28.1
103	101	149	147	2	0.23	2.90	4.31	2.83	3.68	3.59	20.0 ~	34.0
108	107	158	157	2.1	0.23	2.95	4.40	2.89	4.39	4.27	25.9 ~	43.2
115	112	168	165	2.1	0.24	2.84	4.23	2.78	5.40	5.25	28.8 ~	48.0
127	122	188	183	2.1	0.25	2.69	4.00	2.63	7.79	7.58	41.6 ~	69.3
138	132	203	197	2.1	0.25	2.74	4.08	2.68	9.76	9.48	52.8 ~	88.0
148	144	216	211	3	0.25	2.69	4.00	2.63	11.9	11.6	62.6 ~ 1	04.4

2.1 11 5

2.1 12 6

2.1 12 6

13 6

¹⁾ Smallest allowable dimension for chamfer dimension r.

²⁾ Indicates bearings with a tapered bore having a taper ratio of 1 / 12.

Unit: mm

1. Features

The ULTAGE series spherical roller bearings with high-strength cage [EMA type] use dedicated machined brass cages. These bearings are suitable for mining machinery (vibrating screens, crushers, etc.), which experience eccentric rotation and impact loads.

2. Accuracy and clearance (specification for vibrating screens)

The inner and outer diameter tolerance and the radial internal clearance are set for vibrating screens to obtain the desired operating clearance. See the table below for the specifications of the ULTAGE series spherical roller bearings for the bearing specifications (accuracy, clearance, etc.) to be used with vibrating screens.

													Offic. Iffiff
	nensional ore diame			Dim mean out	ensional side dian			Radial internal clearance (cylindrical bore)					
Nominal bearing bore diameter		VS1, VS2		Nominal bearing outside diameter		VS1, VS2		Nominal bearing bore diameter		V	51	VS2	
Over	Incl.	Upper	Lower	Over	Incl.	Upper	Lower	Over	Incl.	Min.	Max.	Min.	Max.
	80	0	-0.010		150	-0.005	-0.013		65	0.075	0.090	0.100	0.120
80	120	0	-0.013	150	180	-0.005	-0.018	65	80	0.090	0.110	0.120	0.145
120	180	0	-0.015	180	315	-0.010	-0.023	80	100	0.110	0.135	0.150	0.180
180	200	0	-0.018	315	400	-0.013	-0.028	100	120	0.135	0.160	0.180	0.210
				400	420	-0.014	-0.030	120	140	0.160	0.190	0.205	0.240
								140	160	0.190	0.220	0.240	0.280
								160	180	0.200	0.240	0.260	0.310
								180	200	0.220	0.260	0.285	0.340

3. Part number

4. Allowable axial load

 $F_a/F_r \leq e$ F_a : Axial load Fr: Radial load

e : Constant (see dimension table)

If this bearing type is used under a large axial load, the load on the rollers of the row that is not subject to the axial load can become small. This small load on the rollers can result in skidding of the rollers, which can cause bearing damage. If the ratio of the radial load exceeds the factor ein the dimension table $(F_a/F_r > e)$, consult **NTN** Engineering.

5. Allowable misalignment angle

Normal load or more 1/115 (mm/mm)

*For a rough estimate of normal loads and light loads, see Note 1 in General Description A-81.

C-10 C-11

Number of oil holes on outer ring Nominal bearing Number outer diameter of oil holes mm Z_0 Below Incl. 320 4 320 8

Cylindrical bore

D

150

160

170

180

190

200

215

240

260

280

300

320

340

360

380

400

420

d

70

75

80

85

90

95

100

110

120

130

140

150

160

170

180

190

200

Tapered bore

Dynamic equivalent radial load $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$

$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F_{\rm g}}{F_{ m r}}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load $P_{0r} = F_r + Y_0 F_a$ For values of e, Y_1 , Y_2 and Y_0 see the table below.

Poundany	dimensions			Basic loa	d rating	Allowable	Bearing
·	umensions im			dynamic	static	speed min-1	number
В	$r_{ m smin}^{11}$	W_0	d_0	$C_{ m r}$		Oil lubrication	Cylindrical bore
51				397			000445MAD4
51	2.1	10	5		368	4 700	22314EMAD1
55	2.1	10	5	464	434	4 400	22315EMAD1
58	2.1	10	5	512	485	4 100	22316EMAD1
60	3	11	5	538	524	3 900	22317EMAD1
64	3	12	5	632	605	3 700	22318EMAD1
67	3	12	6	658	650	3 500	22319EMAD1
73	3	13	6	743	731	3 300	22320EMAD1
80	3	16	7	869	833	3 000	22322EMAD1
86	3	18	8	1 060	1 120	2 700	22324EMAD1
93	4	19	9	1 260	1 310	2 500	22326EMAD1
102	4	19	9	1 400	1 500	2 400	22328EMAD1
108	4	20	9	1 570	1 640	2 200	22330EMAD1
114	4	20	10	1 760	1 940	2 100	22332EMAD1
120	4	20	10	2 010	2 320	1 900	22334EMAD1
126	4	21	10	2 190	2 460	1 800	22336EMAD1
132	5	21	10	2 370	2 750	1 700	22338EMAD1
138	5	21	10	2 590	3 140	1 600	22340EMAD1

¹⁾ Smallest allowable dimension for chamfer dimension r.

²⁾ Bearings having a tapered bore with a taper ratio of 1:12.

The ULTAGE series deep groove ball bearings for high-speed servo motors [MA type] are nextgeneration bearings with an optimized internal design for high-speed servo motors. These bearings have improved durability and longer grease life for high-speed operation and rapid acceleration/deceleration.

1. Features

1) High speed and high reliability

Deformation from high-speed operation is reduced and limiting speeds of $d_{mn} = 1$ million are achieved by using high performance cages. These cages are made of self-lubricating resin and have interlocking tabs for high rigidity (Fig. 1).

*dmn value:

 $d_{\rm m}$ (rolling element pitch diameter mm) ×

Fig.1 MA resin cage

2) Longer grease life

Outer ring grease pockets designed to maintain grease near the rolling elements improve lubrication reliability. In addition, long-life grease for motors "ME-1" (see Table 11.6 (A-116)) is applied for the initial grease fill.

(Longer life of five times or more is achieved compared with the lithium-based grease used for general purposes.)

3) Low noise

A new resin interlocking cage design allows for low noise operation. The noise is reduced by 3 dB-A with respect to metal pressed cages.

Table 1 Measurement result of noise values

Specification	Noise value
Metal pressed cage	57 dB-A
ULTAGE product	54 dB-A

2. Part number

3. Operating temperature range

-20~120°C

4. Allowable speed

The allowable speed refers to a rotational speed of the bearing based on:

- Maximum outer ring temperature of 80°C
- · Standard ME-1 grease filled to a fill volume of 15-20% of the free space.
- · Spring preload is applied to the bearing.
- · Bearing operation at room temperature after

depending on the usage condition (operating load, environmental temperature, rotational speed pattern, etc.); therefore, the bearings must be selected with sufficient allowable speed as specified in the catalog.

If the bearing will continuously operate above 80% of the limiting speed listed in the bearing dimension tables, please consult NTN Engineering.

n (rotational speed min⁻¹) break-in procedure. Fig. 2 Grease pockets The bearing temperature increase differs

> C-14 C-15

Shielded type (ZZ)

Non-contact sealed type (LLB)

Во	undary	dimens	sions	Basic loa	d rating	Fatigue load	Factor	Allowable speed min-1	Bearing	number Non-
		ım		dynamic ki	-	limit kN		Grease lubrication	Shielded	contact sealed
d	D	B	$r_{\rm s min}^{1)}$	C_{r}	$C_{0\mathbf{r}}$	$C_{ m u}$	f_0	ZZ, LLB	type	type
40	90	23	1.5	45.0	24.0	1.83	13.2	15,400	6308MAZZ	6308MALLB
45	85	19	1.1	36.0	20.4	1.60	14.1	14,300	6209MAZZ	6209MALLB
50	90	20	1.1	39.0	23.2	1.82	14.4	15,400	6210MAZZ	6210MALLB
	110	27	2	68.5	38.5	2.99	13.2	12,200	6310MAZZ	6310MALLB
60	130	31	2.1	90.5	52.0	4.10	13.2	10,500	6312MAZZ	6312MALLB

	Dynamic equivalent radial load $P_r = XF_r + YF_a$									
$\frac{f_0 \cdot F_a}{C_{0r}}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F}{F}$	$\frac{a}{r} > e$					
Cor		X	Y	X	Y					
0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.19 0.22 0.26 0.28 0.30 0.34 0.38 0.42	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04					

Static equivalent radial load $P_{0r} = 0.6F_r + 0.5F_a$ When $P_{0r} < F_r$ use $P_{0r} = F_r$.

Ins	tallation-rel	ated dimens	ions	Mass (approx.)
Min.	$d_{ m a}$ Max.	D_{a} Max.	$r_{\rm as}$	kg
48	54	82	1.5	0.634
51.5	55.5	78.5	1	0.398
56.5	60	83.5	1	0.454
59	68.5	101	2	1.07
71	80.5	119	2	1.73

Four-row cylindrical roller bearings

1. Features

- The bearings are mainly used in the roll necks of steel rolling mills and designed so that the load rating is maximized in the allowable space of the roll neck part.
- 2) The cage types include a comb type cage and a pin type cage (that uses hollow rollers). The pin type cage maximizes the number of rollers for high load capacity.
- Carburizing steel is used in some cases to prevent inner ring cracks and to improve shock resistance.
- 4) Consult **NTN** Engineering for bearing internal clearance and fits to be used for back-up rolls of rolling mills.
- 5) There are many varieties of these bearings, including bearings which are sealed, have tapered bores, designed for high speed, have creep prevention, etc. Contact NTN Engineering for further details.

Pin type cage

2. Designs

Illustrations 1 to 7 show the several types of four-row cylindrical roller bearings that differ by the basic structure of inner rings, outer rings, and outer ring spacers.

The dimension table has the identification code (illustration + suffix code + oil groove code) specified in the illustration number column.

Example) In the case of illustration: 6, suffix code: M, oil groove code: 1, identification code "6M1" is specified in the illustration number column.

Design

Identification code

See the above illustrations 1 to 7.

- * Illustrations 1 to 5 use solid rollers + comb type machined cage.
- * Illustrations 6 to 7 use hollow rollers + pin type cage.

Suffix code

- M: The oil hole of the outer ring is provided with a fitting nozzle for oil mist.
- R: The inner diameter surface of the inner ring has a helical groove.
- S: Special specification

Oil groove code

- ①: Oil groove on both side faces of inner ring
- ②: Oil groove on one width surface of inner ring
- ③: Oil groove on one width surface of outer ring
- 4: No oil hole or oil groove on outer ring spacer

C-18 C-19

Drawings 1 to 5 2)

		Boundary	dimensi	ons		Basic loa	Ū	Fatigue load	Bearing number 2)	Drawing number 3)
						dynamic	static	limit		
,	D		nm _	1)	1)	kl a	N G	kN		
d	D	B_1	C_1	$r_{\rm s min^{1)}}$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$		
100	150	74	74	2	2	291	510	58.5	4R2035	1
100										
120	180	92	92	2.5	2.5	445	785	84.5	4R2437	1
120	180	105	105	2.5	2.5	495	855	92.5	4R2438	1
130	200	104	104	2.5	2.5	540	955	100	4R2628	1
4.40	190	119	119	1.5	1.5	550	1 190	125	4R2832	22
140	210	116	116	2.5	2.5	565	1 030	106	4R2823	1
	210	155	155	2.5	2.5	780	1 640	168	4R2906	1
145	225	156	156	2.5	2.5	900	1 750	177	4R2904	1
	000	107	100	0.5	0.5	005	1 000	100	4D0000	4
	220	127	120	2.5	2.5	685	1 280	129	4R3036	1
	220	150	150	2.5	2.5	830	1 640	167	4R3031	1
450	220	150	150	2.5	2.5	830	1 640	167	4R3056	1
150	230 230	130	130	2.5	2.5	800	1 520	153	4R3029	1
	230	156	156	2.5 2	2.5 2	1 030 935	2 040	204	4R3040	1
		168	168				1 950	194	4R3042	1
	250	150	150	2.5	2.5	985	1 640	162	4R3039	1
151.5	230	168	168	1.5	2.5	945	2 060	205	4R3033K	1
	220	180	180	2.5	2.5	1 020	2 490	250	4R3224	1
	230	130	130	2.5	2.5	740	1 340	133	4R3226	1
	230	168	168	2.5	2.5	1 020	2 170	217	4R3232	1
160	230	168	168	2.5	2.5	995	2 200	220	4R3229	1
	230	168	168	2.5	2.5	990	2 210	219	4R3231	1
	230	180	180	2.5	2.5	1 020	2 490	250	4R3228	43
	240	170	170	2	2.5	1 090	2 290	227	4R3225	1
	230	120	120	2.5	2.5	685	1 520	151	4R3426	1
	230	120	120	2.3	2.3	685	1 520	151	4R3443	3
	240	156	156	2.5	2.5	1 000	2 170	213	4R3429	1
170	240	160	160	2.5	2.5	1 000	2 180	213	4R3423	1
170	250	168	168	2.5	2.5	1 080	2 220	216	4R3432	1
	250	168	168	2.5	2.5	1 140	2 390	232	4R3428	1
	255	180	180	2.5	2.5	1 220	2 430	236	4R3425	1
	260	150	150	2.5	2.5	925	1 750	171	4R3433	i

	_00	100	100	0	0
1) Sm	allest allowable	dimension	for chamfe	r dimensio	on r or r_1 .

Dimensions	Installa	Mass			
					kg
$F_{ m w}$	$d_{\rm a}$	$D_{\rm a}$	$r_{\rm as}$	r_{1as}	(approx.)
115	109	141	2	2	4.68
137	131	169	2	2	8.2
135	131	169	2	2	9.3
150	141	189	2	2	12.1
154	148	182	1.5	1.5	9.93
160	151	199	2	2	13.9
166	156	199	2	2	18
169	156	214	2	2	23.3
168	161	209	2	2	15.7
168	161	209	2	2	19.4
168	161	209	2	2	19.6
174	161	219	2	2	20
174	161	219	2	2	24.5
178	159	221	2	2	25.8
177	161	239	2	2	29.6
179	159.5	219	1.5	2	25.4
177	171	209	2	2	20.2
180	171	219	2	2	16.6
179	171	219	2	2	23.4
180	171	219	2	2	23.2
182	171	219	2	2	23.2
177	171	219	2	2	24.8
183	169	229	2	2	27.8
187	181	219	2	2	14.2
187	179	221	2	2	14.6
189	181	229	2	2	22.2
190	181	229	2	2	22.8
193	181	239	2	2	28.2
193	181	239	2	2	28.5
193	181	244	2	2	19.3
192	181	249	2	2	29.5

²⁾ Bearings marked "K" have a tapered bore with a taper ratio of 1:12.

3) Boundary dimension parts are shown in the above drawing. Refer to C-19 for the details of drawings.

C-20

Drawings 1 to 5 2)

		Boundary	y dimensio	ons		Basic load	Ū	Fatigue load	Bearing number	Drawing number 2)
			mm			dynamic kN	static	limit kN		
d	D	B_1	C_1	$r_{ m s min^{1)}}$	$r_{ m 1s\ min^{1)}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$		
170	260	225	225	2.5	2.5	1 450	3 150	305	4R3431	1
	250	156	156	2.5	2.5	995	2 180	211	4R3625	1
400	250	168	168	2	2	980	2 470	239	4R3639	1
180	260	168	168	2.5	2.5	1 130	2 400	230	4R3628	1
	265	180	180	2.5	2.5	1 200	2 510	241	4R3618	1
	260	168	168	2.5	2.5	1 080	2 600	248	4R3820	1
	270	170	170	2.5	2.5	1 210	2 660	252	4R3818	1
	270	200	200	2.5	2.5	1 400	3 100	292	4R3821	1
190	270	200	200	2.5	2.5	1 360	3 200	305	4R3817	1
	280	200	200	2.5	2.5	1 370	2 910	274	4R3823	2
	280	200	200	2.5	2.5	1 370	2 910	274	4R3830	3
	270	170	170	2.5	2.5	1 080	2 610	245	4R4039	1
	280	152	152	2.1	2.1	1 110	2 320	217	4R4054	22
200	280	170	170	2.5	2.5	1 150	2 430	228	4R4048	1
	280	190	190	2.5	2.5	1 320	3 150	294	4R4026	1
_00	280	200	200	2.5	2.5	1 460	3 300	310	4R4037	1
	280	200	200	2.5	2.5	1 380	3 350	310	4R4027	1
	290	192	192	2.5	2.5	1 430	3 150	292	4R4041	1
210	290	192	192	2.5	2.5	1 370	3 350	310	4R4206	1
	290	192	192	2.5	2.5	1 320	3 350	310	4R4413	1
	300	160	160	2.5	2.5	1 110	2 590	237	4R4419	1
	300	160	160	2.1	2.1	1 110	2 590	237	4R4445	3
	310	192	192	2.5	2.5	1 500	3 550	320	4R4410	1
	310	192	192	2.5	2.5	1 540	3 400	310	4R4426	1
220	310	204	204	2.5	2.5	1 570	3 750	340	4R4425	1
220	310	215	215	2.5	2.5	1 690	3 750	340	4R4420	1
	310	225	225	2.5	2.5	1 640	3 950	360	4R4416	1
	310	225	225	2.5	2.5	1 760	3 950	360	4R4449	1
	320	160	160	3	3	1 320	2 550	231	4R4428	1
	320	210	210	2.5	2.5	1 720	3 650	325	4R4429	1
	320	210	210	2.5	2.5	1 720	3 600	330	4R4444	1
230	330	206	206	2.5	2.5	1 680	3 900	345	4R4610	1
_00	330	206	206	2.5	2.5	1 690	3 800	340	4R4614	1

	290	192	192	2.5	2.5	1 320	3 350	310	4R4413	1
	300	160	160	2.5	2.5	1 110	2 590	237	4R4419	i
	300	160	160	2.1	2.1	1 110	2 590	237	4R4445	3
	310	192	192	2.5	2.5	1 500	3 550	320	4R4410	1
	310	192	192	2.5	2.5	1 540	3 400	310	4R4426	1
220	310	204	204	2.5	2.5	1 570	3 750	340	4R4425	1
220	310	215	215	2.5	2.5	1 690	3 750	340	4R4420	1
	310	225	225	2.5	2.5	1 640	3 950	360	4R4416	1
	310	225	225	2.5	2.5	1 760	3 950	360	4R4449	1
	320	160	160	3	3	1 320	2 550	231	4R4428	1
	320	210	210	2.5	2.5	1 720	3 650	325	4R4429	1
	320	210	210	2.5	2.5	1 720	3 600	330	4R4444	1
	000	000	000	0.5	٥٢	1 000	0.000	0.45	4D4640	4
230	330	206	206	2.5	2.5	1 680	3 900	345	4R4610	1

Dimensions	Installa	sions	Mass		
					kg
$F_{ m w}$	d_{a}	$D_{\rm a}$	$r_{\rm as}$	$r_{\rm las}$	(approx.)
196	181	249	2	2	44
200	191	239	2	2	23.2
202	189	241	2	2	25.6
202	191	249	2	2	29.4
204	191	254	2	2	34.2
212	201	249	2	2	26.9
213	201	259	2	2	31.7
212	201	259	2	2	37.5
212	201	259	2	2	37.2
214	201	269	2	2	41.5
214	201	269	2	2	42.8
222	211	259	2	2	28.5
222	211	269	2	2	29.5
222	211	269	2	2	33
223	211	269	2	2	36.7
222	211	269	2	2	40.5
224	211	269	2	2	38.8
226	211	279	2	2	42.5
236	221	279	2	2	39.5
239	231	279	2	2	33.8
245	231	289	2	2	32.8
245	231	289	2	2	33.7
247	231	299	2	2	46.3
246	231	299	2	2	46.9
247	231	299	2	2	49.8
242	231	299	2	2	51.5
245	231	299	2	2	54.9
244	231	299	2	2	54.3
245	233	307	2.5	2.5	46.5
248	231	309	2	2	60.5
246	231	309	2	2	57.3
260	241	319	2	2	58.3
258	241	319	2	2	58.6

¹⁾ Smallest allowable dimension for chamfer dimension r or r_1 . 2) Boundary dimension parts are shown in the above drawing. Refer to **C-19** for the details of drawings.

Drawings 1 to 5²⁾

Drawings 6²⁾

_				
	$r_{\rm a}$			Ī
$\phi \overset{1}{D}_{ m a}$	}		 	φda
			$\left(\right)$	
		1111		

Dimensions	Installa	sions	Mass		
					kg
$F_{ m w}$	$d_{\rm a}$	$D_{\rm a}$	$r_{\rm as}$	r_{1as}	(approx.)
261	243	327	2.5	2.5	82.6
270	253	317	2.5	2.5	56.8
264	253	317	2.5	2.5	57.1
268	253	317	2.5	2.5	57.1
270	253	317	2.5	2.5	57.1
268	253	327	2.5	2.5	63.6
274	251	349	2	2	79.6
274	251	349	2	2	80.1
278	263	337	2.5	2.5	66
292	271	349	2	2	62.7
287	271	349	2	2	81.5
292	273	357	2.5	2.5	77.1
292	273	357	2.5	2.5	76.5
294	273	367	2.5	2.5	109
296	276	391	3	2	135
300	273	362	1.5	1.5	78.9
297	281	369	2	2	101
299.7	281	369	2	2	105
298	291	339	2	2	46.4
312	293	377	2.5	2.5	81.3
312	293	377	2.5	2.5	82
312	291	379	2	2	105
323	296	404	3	3	139
320	303	397	2.5	2.5	103
327	303	407	2.5	2.5	141
328	313	387	2.5	2.5	104
334	313	407	2.5	2.5	106
334	313	407	2.5	2.5	105
336	313	407	2.5	2.5	105
332	313	407	2.5	2.5	105
331	313	407	2.5	2.5	136

-24 C-25

¹⁾ Smallest allowable dimension for chamfer dimension r or r_1 .

²⁾ Boundary dimension parts are shown in the above drawing. Refer to C-19 for the details of drawings.

 $\phi d \phi F_{\rm W}$

Drawings 1 to 5 2)

Drawings 6 to 7 2)

d 300 ∼ 380mm

		Daumala	ا - ممسا			Danie Is	ad vatina	Cations	Dunaudin -	
		Boundary	aimensi	ons			ad rating	Fatigue load	Bearing number 2)	Drawing number 3)
		r	nm			dynamic	static N	limit kN		
d	D	B_1	C_1	$r_{ m s min}^{1)}$	$r_{1 \text{s min}^{1)}}$	C_{r}	C_{0r}	$C_{ m u}$		
	420	300	300	3	3	3 000	7 600	-	E-4R6015	1
	420	300	300	3	3	3 200	7 850	_	E-4R6020	6 ^①
300	420	320	300	3	3	3 200	7 850	_	E-4R6018	6 ^②
	430	240	240	3	3	2 400	5 150	_	E-4R6021	1
	460	270	270	3	3	2 780	5 350	-	E-4R6019	1
310	430	240	240	3	3	2 480	5 950	-	E-4R6202	1
	440	240	230	3	3	2 540	6 050	_	E-4R6414	1
200	450	240	240	3	3	2 630	6 150	_	E-4R6411	1
320	460	340	340	3	3	3 750	9 450	_	E-4R6412	1
	470	350	350	3	3	4 600	10 900	-	E-4R6406	6 ^④
	440	200	200	3	3	2 020	4 850	_	E-4R6603	2
000	440	200	200	5	3	1 910	4 550	_	E-4R6608	2 ^①
330	460	340	340	4	4	3 600	8 850	_	E-4R6605	1
	460	340	340	4	4	3 650	9 550	-	E-4R6602	1
	480	350	350	4	4	4 400	10 900	_	E-4R6819	6M ^①
040	480	370	350	5	5	3 800	9 650	_	E-4R6811	1
340	490	300	300	4	4	3 700	8 300	_	E-4R6804	1
	490	300	300	5	5	3 450	7 950	-	E-4R6805	1
356.76	550	400	400	4	4	5 650	13 800	-	E-4R7105	〈 5
	480	290	290	3	3	3 300	8 150	_	E-4R7207	1
360	510	370	370	4	4	3 950	9 700	_	E-4R7212	3
300	510	400	380	4	2	4 850	11 900	_	E-4R7205	5 ^①
	510	400	400	5	5	4 700	11 500	-	E-4R7203	2
	480	230	230	5	5	2 330	6 250	_	E-4R7405	1
070	480	250	250	3	3	2 440	6 450	_	E-4R7408	1
370	520	380	380	5	5	4 350	10 800	_	E-4R7411	1
	520	400	400	5	5	5 150	13 500	-	E-4R7404	1
	520	280	280	4	4	3 800	9 150	_	E-4R7605	1
380	520	290	290	4	4	3 800	9 150	_	E-4R7617	1
300	520	300	300	4	4	3 950	9 600	_	E-4R7607	7 ^①
	540	400	400	•			0 000		E-4R7604	7 ^②

		\
ϕD_{a}	$r_{\rm a}$	$\oint \int
φDa		
<u> </u>		/ '

Dimensions	Installatio	n-relate	d dimens	ions	Mass
					kg
$F_{ m w}$	d_{a}	$D_{\rm a}$	$r_{\rm as}$	r_{1as}	(approx.)
334	313	407	2.5	2.5	125
332	313	407	2.5	2.5	130
332	313	407	2.5	2.5	136
338	313	417	2.5	2.5	115
344	313	447	2.5	2.5	162
344.5	323	417	2.5	2.5	108
351	333	427	2.5	2.5	106
358	333	437	2.5	2.5	125
360	333	447	2.5	2.5	178
361.7	333	457	2.5	2.5	212
360	343	427	2.5	2.5	83.6
360	350	427	4	2.5	85.6
365	346	444	3	3	181
368	346	444	3	3	177
378	356	464	3	3	211
378	360	460	4	4	198
377	356	474	3	3	187
380	360	470	4	4	189
426	372.757	534	3	3	354
388	373	467	2.5	2.5	148
400	376	494	3	3	244
399	376	509	3	2	251
397	380	490	4	4	262
400	390	460	4	4	106
401	383	467	2.5	2.5	118
409	390	500	4	4	256
409	390	500	4	4	273
417	396	504	3	3	174
417	396	504	3	3	185
416	396	504	3	3	210
422	396	524	3	3	325

¹⁾ Smallest allowable imension for understanding the state of the stat

Drawings 1 to 4 2)

Drawings 6 to 7 2)

$d 380 \sim 500 \text{mm}$

Boundary dimensions						Basic lo	ad rating	Fatigue load	Bearing number	Drawing number 2)
						dynamic	static	limit	ilullibei	number 2)
,	n	n	mm	1)	1)		KN G	kN		
d	D	B_1	C_1	$r_{ m s~min}^{1)}$	$r_{1\mathrm{s}\mathrm{min}^{1)}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$		
200	540	400	400	4	4	5 500	14 400	-	E-4R7618	6M [⊕]
380	540	400	400	5	5	5 050	12 700	-	E-4R7613	2 ^{①③}
	560	400	400	5	5	4 700	11 800	-	E-4R8007	2
400	560	410	410	4	4	6 350	17 000	-	E-4R8010	6
	590	420	420	4	4	5 750	13 000	-	E-4R8011	1
	560	280	280	4	4	3 500	8 750	-	E-4R8403	1
420	580	230	230	4	4	2 700	6 250	_	E-4R8404	1
	600	440	440	6	2.5	7 050	18 100	-	E-4R8407	6 ^①
	620	400	400	5	5	5 550	13 400	_	E-4R8401	4 [®]
400	591	420	420	5	5	6 100	17 400		E-4R8605	6M ^①
430	591	420	420	Э	5	6 100	17 400	_	E-4H0003	OIVI GG
	600	450	450	1.5	5	6 700	17 900	_	E-4R8806	6R ^②
	600	450	450	1.5	5	7 050	19 100		E-4R8805	6R ^①
440	620	450	450	5	5	7 150	18 700	_	E-4R8803	6 ^①
	620	450	450	5	5	7 150	18 700	_	E-4R8801	6
	020	430	450	J	3	7 130	10 700		L-4110001	0
	620	400	400	4	4	5 900	16 700	_	E-4R9211	7S
	620	400	400	4	4	5 450	15 000	_	E-4R9209	1
460	620	460	460	4	4	6 600	19 100	_	E-4R9223	6M ^①
	650	470	470	5	5	7 900	20 600	_	E-4R9216	6 ^①
							20 000			
470	660	470	470	5	5	8 100	21 300	_	E-4R9403	6M ^①
	600	236	236	3	3	2 900	7 850	_	E-4R9610	1
400	650	420	420	5	5	6 350	17 200	_	E-4R9613	7 ^①
480	650	420	420	5	5	6 600	18 100	_	E-4R9607	7
	680	500	500	6	6	8 800	24 000	_	E-4R9604	6
	680	420	405	5	5	7 900	22 900	_	E-4R10010	
	680	420	405	5	5	7 000	18 800	-	E-4R10020	
	690	470	470	5	5	8 500	22 500	_	E-4R10016	
500	690	510	510	5	5	8 550	24 600	-	E-4R10006	
	700	515	515	5	5	8 750	24 100	-	E-4R10011	
	710	480	480	6	6	9 600	24 700	-	E-4R10008	
	720	530	530	5	5	9 150	25 000	_	E-4R1001	
	720	530	530	5	5	9 150	25 000	_	E-4R10024	4 6M ^①

_			
	r _a		Ī
ϕD_a		 	 ϕd a

Dimensions	Installation-related dimensions				Mass		
					kg		
$F_{ m w}$	d_{a}	$D_{\rm a}$	$r_{\rm as}$	r_{1as}	(approx.)		
422	396	524	3	3	309		
424	400	520	4	4	298		
446	420	540	4	4	303		
445	416	544	3	3	349		
450	416	574	3	3	399		
457	436	544	3	3	189		
466	436	564	3	3	181		
469.6	444	589	5	2	423		
478	440	600	4	4	410		
476	450	571	4	4	362		
480	448	580	1.5	4	392		
480	448	580	1.5	4	392		
487	460	600	4	4	450		
487	460	600	4	4	437		
502	476	604	3	3	383		
502	476	604	3	3	341		
502	476	604	3	3	417		
509	480	630	4	4	540		
517	490	640	4	4	529		
510	493	587	2.5	2.5	155		
523	500	630	4	4	423		
523	500	630	4	4	369		
532	504	656	5	5	640		
550	520	660	4	4	495		
550	520	660	4	4	451		
547	520	670	4	4	590		
552	520	670	4	4	640		
554	520	680	4	4	680		
556	524	686	5	5	675		
568	520	700	4	4	780		
568	520	700	4	4	745		

C-28 C-29

¹⁾ Smallest allowable dimension for chamfer dimension r or r_1 . 2) Boundary dimension parts are shown in the above drawing. Refer to **C-19** for the details of drawings.

Drawings 1²⁾

Drawings 6 to 7 2)

Dimensions	Installati	Installation-related dimensions						
Dilliciisiolis	mstanati	on-related	unnen	310113	Mass			
					kg			
$F_{ m w}$	d_{a}	$D_{\rm a}$	$r_{\rm as}$	r_{1as}	(approx.)			
554	530	650	4	4	335			
558	534	676	5	5	689			
564	544	676	5	5	658			
566	540	700	4	4	715			
574.5	540	715	4	4	740			
574	554	676	5	5	626			
590	554	736	5	5	800			
601	554	756	5	5	1 010			
595	562	756	6	5	978			
600	556.176	738.03	4	5	859			
622	574	776	5	5	965			
590	573	667	2.5	2.5	265			
626	581	776	2	5	849			
628	594	791	5	5	1 040			
660	632	788	6	6	941			
672	632	838	6	6	1 150			
672	632	838	6	6	1 330			
680	650	838	8	6	1 400			
702	641	898	2.5	5	1 430			
700	664	856	5	5	1 150			
723	682	904	6	3	1 500			
723	682	888	6	6	1 510			
723	682	888	6	6	1 550			
702	680	804	4	3	580			
803	704	996	5	5	1 970			
775	693	1 000	2.5	4	2 060			

¹⁾ Smallest allowable dimension for chamfer dimension r or r_1 .

²⁾ Boundary dimension parts are shown in the above drawing. Refer to C-19 for the details of drawings.

Drawings 6 2)

		Boundary	dimensio	ons		Basic lo	oad rating static	Fatigue load limit		Drawing number 2)
		n	nm				kN Static	kN		
d	D	B_1	C_1	$r_{ m s~min}^{1)}$	$r_{1 \text{s min}^{1)}}$	$C_{ m r}$	$C_{0\mathbf{r}}$	$C_{ m u}$		
600	980	715	715	7.5	7.5	18 700	54 500	_	E-4R13802	
690	980	750	750	7.5	7.5	18 300	53 000	_	E-4R13803	6M [®]
710	1 000	715	715	9.5	6	18 600	54 500	-	E-4R14205	6S [@]
725	1 000	700	700	6	6	17 700	53 500	-	E-4R14501	6 ^①
750	1 050	745	720	7.5	7.5	19 500	58 000	_	E-4R15001	6M ^②
750	1 090	745	720	7.5	7.5	21 200	60 500	-	E-4R15002	
755	1 070	750	750	7.5	7.5	20 800	58 500	-	E-4R15101	6 ①
	1 030	750	750	7.5	7.5	19 200	59 500	_	E-4R15204	6M ^①
760	1 080	805	790	6	6	20 700	61 000	_	E-4R15207	
	1 100	745	720	7.5	7.5	21 200	60 500	_	E-4R15203	6M ²
761.43	1 079.6	787.4	787.4	9.5	7.5	21 900	63 000	-	E-4R15201	6 ^①
000	1 080	700	700	7.5	7.5	18 300	55 000	_	E-4R16004	6 ^①
800	1 080	750	750	6	6	19 200	59 000	-	E-4R16005	
	1 130	800	800	7.5	7.5	21 800	66 500	_	E-4R16406	6M ^①
	1 130	800	800	7.5	7.5	23 900	72 000	_	E-4R16413	
820	1 130	800	800	7.5	7.5	21 800	66 500	-	E-4R16415	6 ^②
	1 130	825	800	7.5	7.5	21 800	66 500	_	E-4R16405	
	1 160	840	840	7.5	7.5	24 000	71 000	-	E-4R16403	6 [©]
830	1 080	710	710	6	6	18 000	59 500	-	E-4R16601	6 ^②
840	1 160	840	840	5	7.5	23 900	71 000	-	E-4R16801	6 ^①
	1 150	650	650	9.5	9.5	17 500	51 000	_	E-4R17001	6 ^①
	1 150	800	800	6	6	21 800	71 000	-	E-4R17003	6 ^①
850	1 150	840	840	6	6	24 400	77 500	-	E-4R17009	
000	1 180	650	650	7.5	7.5	18 200	51 500	-	E-4R17004	
	1 180	850	850	9.5	9.5	26 700	78 500	-	E-4R17002	
	1 180	850	850	7.5	7.5	24 100	72 000	-	E-4R17014	6 ²
860	1 140	750	750	7.5	7.5	19 100	61 000	_	E-4R17202	. 6 [©]

1)	Smallest allowable	dimension	for	chamfer	dimer	sion r or	r_1 .

Dimensions	Installati	Mass			
					kg
$F_{ m w}$	d_{a}	$D_{\rm a}$	$r_{\rm as}$	r_{1as}	(approx.)
767.5	722	948	6	6	1 850
766	722	948	6	6	1 900
787.5	750	976	8	5	1 900
796	749	976	5	5	1 730
830	782	1 018	6	6	2 180
845	782	1 058	6	6	2 530
837	787	1 038	6	6	2 260
828	792	998	6	6	2 000
845	784	1 056	5	5	2 550
855	792	1 068	6	6	2 560
846	801.425	1 047.6	8	6	2 420
870	832	1 048	6	6	1 950
880	824	1 056	5	5	2 090
903	852	1 098	6	6	2 450
903	852	1 098	6	6	2 530
903	852	1 098	6	6	2 530
903	852	1 098	6	6	2 520
910	852	1 128	6	6	2 930
896	854	1 056	5	5	1 780
920	860	1 128	4	6	2 840
941	890	1 110	8	8	1 980
930	874	1 126	5	5	2 430
928	874	1 126	5	5	2 640
945	882	1 148	6	6	2 270
928	890	1 140	8	8	2 970
940	882	1 148	6	6	2 980
938	892	1 108	6	6	2 200

Drawings 6 2)

d 860 ~ 1 030mm

		Boundary	dimensi	ons		Basic lo	ad rating	Fatigue load	Bearing number	Drawing number 2)	
		m	nm			dynamic	static «N	limit kN	number	number -	
d	D	B_1	C_1	$r_{\rm s min}^{1)}$	$r_{ m 1s\ min^{1)}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$			
860	1 160	735	710	6	6	19 700	62 500	_	E-4R17201	I 6 ^①	
900	1 230	895	870	7.5	7.5	27 400	88 000	-	E-4R18001	I 6M [®]	
920	1 280	865	850	7.5	7.5	29 100	88 500	-	E-4R18401	I 6	
1000	1 310 1 360	880 800	880 800	9.5 7.5	9.5 7.5	25 900 27 700	88 500 85 000	<u>-</u> -	E-4R20001 E-4R20002		
1030	1 380	850	850	7.5	7.5	27 100	89 000	-	E-4R20601	I 6 ^①	

Dimension	ns Install	Installation-related dimensions						
					kg			
$F_{ m w}$	d_{a}	$D_{\rm a}$	$r_{\rm as}$	$r_{\rm 1as}$	(approx.)			
940	884	1 136	5	5	2 310			
985	932	1 198	6	6	3 250			
1 015	952	1 248	6	6	3 560			
1 080 1 090	1 040 1 032	1 270 1 328	8 6	8 6	3 260 3 530			
1 124	1 062	1 348	6	6	3 800			

¹⁾ Smallest allowable dimension for chamfer dimension r or r_1 . 2) Boundary dimension parts are shown in the above drawing. Refer to **C-19** for the details of drawings.

Four-row tapered roller bearings

1. Features

- This type of bearing includes two double-row inner rings with rollers, one double-row outer ring, two single-row outer rings, and two outer ring spacers (Fig. 1 TYPE B). There is also a type with an inner ring spacer (Fig. 1 TYPE A). These bearings are manufactured so that the internal clearance values are fixed. Due to this, only parts with identical manufacturing numbers can be used, and they must be assembled according to their code numbers.
- 2) These bearings are mainly used in the roll necks of steel rolling mills and designed so that the load rating is maximized in the allowable space of the roll neck part.
- 3) Loose fitting is used to make the assembly and removal of the bearings easy. Carburizing steel is used to prevent inner ring cracks due to creeping and to improve shock resistance. There is also a bearing design with a helical groove in the inner ring bore to prevent wear.
- 4) The cage type includes a pressed steel cage and a pin type cage (that uses a hollow roller as shown in **Fig. 2**). The pin type cage maximizes the number of rollers in the bearing to provide increased load capacity.

Fig. 1

Fig. 2 Pin type cage

C-36 C-37

Inch series tapered roller bearings (four-row) index

Series	Bearing number Page of be	
number	CONE / CUP dimension	table
8500	T-8576D / 8520 / 8520D	C-42
9900	9974D / 9920 / 9920D	C-42
46700	T-46791D / 46720 / 46721D	C-40
48200	T-48290D / 48220 / 48220D	C-40
48300	T-48393D / 48320 / 48320D	C-40
48600	T-48680D / 48620 / 48620D	C-40
67700	67791D / 67720 / 67721D	C-40
67800	T-67885D / 67820 / 67820D	C-42
67900	T-67986D / 67920 / 67921D	C-42
81000	81576D / 81962 / 81963D	C-40
82600	82681D / 82620 / 82620D	C-40
126000	EE126096D / 126150 / 126151D	C-44
127000	EE127097D / 127137 / 127137D	C-42
132000	EE132082D / 132125 / 132126D	C-42
134000	EE134102D / 134143 / 134144D	C-44
135000	EE135111D / 135155 / 135156D	C-44
L163100	T-L163149D / L163110 / L163110D	C-48
170000	EE171000D / 171450 / 171451D	C-44
180000	EE181455D / 182350 / 182351D	C-48
220000	EE221027D / 221575 / 221576D	C-44
M224700	T-M224749D / M224710 / M224710D	C-40
M231600	T-M231649D / M231610 / M231610D	C-40
234000	T-EE234161D / 234215 / 234216D	C-50
M238800	T-M238849D / M238810 / M238810D	C-42
M240600	M240648D / M240611 / M240611D	C-42
M241500	T-M241538D / M241510 / M241510D	C-42
244000	EE244181D / 244235 / 244236D	C-52
M244200	T-M244249D / M244210 / M244210D	C-42
LM247700	LM247748D / LM247710 / LM247710DA	C-44
M249700	T-M249748D / M249710 / M249710D	C-44
HM252300	T-HM252349D / HM252310 / HM252310D	C-44
M252300	T-M252349D / M252310 / M252310D	C-44
M255400	M255449D / M255410 / M255410DA	C-46
HM256800	T-HM256849D / HM256810 / HM256810DG2	C-46
M257100	M257149D / M257110 / M257110D	C-46

Series number	Bearing number Page of be CONE / CUP dimension	
M257200	M257248D / M257210 / M257210D	C-46
LM258600	LM258649D / LM258610 / LM258610D	C-46
HM259000	T-HM259049D / HM259010 / HM259010D	C-46
HM261000	HM261049D / HM261010 / HM261010DA	C-48
M262400	M262449D / M262410 / M262410D	C-48
HM262700	T-HM262749D / HM262710 / HM262710DG2	C-48
LM263100	LM263149D / LM263110 / LM263110D	C-48
M263300	M263349D / M263310 / M263310D	C-48
HM265000	HM265049D / HM265010 / HM265010DG2	C-48
HM266400	T-HM266449D / HM266410 / HM266410DG2	C-50
M268700	T-M268749D / M268710 / M268710DG2	C-50
M270700	M270749D / M270710 / M270710DG2	C-50
LM272200	LM272249D / LM272210 / LM272210DG2	C-52
M274100	M274149D / M274110 / M274110DG2	C-52
LM274400	LM274449D / LM274410 / LM274410D	C-52
275000	EE275106D / 275155 / 275156D	C-44
275000	EE275109D / 275160 / 275161D	C-44
M275300	M275349D / M275310 / M275310DG2	C-52
M276400	M276449D / M276410 / M276410DG2	C-52
M278700	M278749D / M278710 / M278710DAG2	C-54
280000	EE280703D / 281200 / 281201D	C-40
M280000	M280049D / M280010 / M280010DG2	C-54
M280300	M280349D / M280310 / M280310DG2	C-54
L281100	L281149D / L281110 / L281110DG2	C-54
M283400	M283449D / M283410 / M283410DG2	C-54
LM283600	LM283649D / LM283610 / LM283610DG2	C-54
M284100	M284148D / M284111 / M284210DG2	C-56
M284200	M284249D / M284210 / M284210DG2	C-56
M285800	M285848D / M285810 / M288510DG2	C-56
LM286200	LM286249D / LM286210 / LM286210DG2	C-56
LM287600	LM287649D / LM287610 / LM287610DG2	C-56
290000	EE291202D / 291750 / 291751D	C-46
329000	EE329119D / 329172 / 329173D	C-46
LM377400	LM377449D / LM377410 / LM377410DG2	C-54
LM451300	T-LM451349D / LM451310 / LM451310D	C-44

Inch series tapered roller bearings (four-row) index

Series number	Bearing number Page of b CONE / CUP dimension	
526000	EE526131D / 526190 / 526191D	C-48
531000	EE531201D / 531300 / 531301XDG2	C-52
547000	EE547341D / 547480 / 547481DG2	C-56
640000	T-EE640193D / 640260 / 640261DG2	C-52
649000	EE649241D / 649310 / 649311DG2	C-54
LM654600	T-LM654644D / LM654610 / LM654610D	C-44
LM654600	T-LM654648D / LM654610 / LM654610D	C-44
655000	EE655271D / 655345 / 655346DG2	C-54
LM665900	LM665949D / LM665910 / LM665910D	C-50
M667900	M667947D / M667911 / M667911DG2	C-50
700000	EE700090D / 700167 / 700168D	C-42
722000	EE722111D / 722185 / 722186D	C-44
724000	EE724121D / 724195 / 724196D	C-46
736000	EE736173D / 736238 / 736239D	C-50
737000	EE737179D / 737260 / 737260D	C-52
LM742700	T-LM742749D / LM742714 / LM742714D	C-42
755000	EE755280D / 755360 / 755361DG2	C-54
M757400	M757448D / M757410 / M757410D	C-46
M757400	M757449D / M757410 / M757410D	C-46
LM761600	LM761648D / LM761610 / LM761610D	C-48
LM761600	LM761649D / LM761610 / LM761610D	C-48
LM763400	LM763449D / LM763410 / LM763410D	C-48
LM765100	LM765149D / LM765110 / LM765110D	C-48
LM767700	LM767745D / LM767710 / LM767710D	C-50
LM767700	LM767749D / LM767710 / LM767710D	C-50
LM769300	LM769349D / LM769310 / LM769310D	C-50
L770800	L770849D / L770810 / L770810DG2	C-52
LM772700	LM772749D / LM772710 / LM772710DA	C-52
LM778500	LM778549D / LM778510 / LM778510DG2	C-54
822000	EE822101D / 822175 / 822176D	C-44
833000	EE833161D / 833232 / 833233D	C-50
843000	EE843221D / 843290 / 843291D	C-54
LM869400	T-LM869449D / LM869410 / LM869410DG2	C-50
910000	EE911603D / 912400 / 912401D	C-50
920000	EE921150D / 921875 / 921876D	C-46

Series number	Bearing number CONE / CUP	Page of bea	
931000	EE931170D / 931250 / 931251XD)G2 (C-50
970000	EE971355D / 972100 / 972103D	(C-48

Special pplication Bearings

(TYPE B) Without inner ring spacer

d 120 ∼ 177.800mm

		Boundary dimensions					Basic load rating				Bearing number a) to d)
			mm				dynami				
d	!	D	B_2	C_2	$r_{\rm s min}$ ¹	$r_{ m 1s~min}$		C_{0r}	a) l	o) c)	(TYPE A) With inner ring spacer
		170	124	124	2	2.5	430	1 020		*	E-625924
		180	100	100	2	2.5	435	745			E-623024
120		200	132	132	2	2.5	710	1 220			E-623124
		210	174	174	2.5	2.5	950	1 710			E-CRO-2418
			.,,				000	1710			2 0110 2110
120.6	50	174.625	141.288	139.703	1.5	0.8	670	1 490	0	*	T-E-M224749D/M224710/M224710D
127		182.562	158.750	158.750	3.3	1.5	730	1 730		*	T-E-48290D/48220/48220D
130		184	134	134	2	2.5	535	1 190	:	*	E-625926
135		180	160	160	2	1	555	1 360		*	E-CRO-2701
136.5	25	190.500	161.925	161.925	3.3	1.5	770	1 900	0	*	T-E-48393D/48320/48320D
139.7	'00	200.025	157.165	160.340	3.3	0.8	780	1 950	0	*	T-E-48680D/48620/48620D
		198	144	144	2	2.5	640	1 460		*	E-625928
140		210	114	114	2	2.5	570	1 070		*	E-623028
		210	115	115	2	2.5	570	1 070		*	E-CRO-2817
146.0	50	244.475	192.088	187.325	3.3	1.5	1 060	1 980		*	E-81576D/81962/81963D
150		212	155	155	2.5	3	735	1 700		*	E-625930
152.4	100	222.250	174.625	174.625	1.5	1.5	1 030	2 350	0	*	T-E-M231649D/M231610/M231610D
		226	165	165	2.5	3	855	2 030		*	E-625932
160		265	173	173	2.5		1 220	2 270			E-CRO-3209
		200	173	173	2.5	2.5	1 220	2 210		*	L-0H0-3203
165.1	00	225.425	165.100	168.275	3.3	8.0	830	2 220	0	*	T-E-46791D/46720/46721D
		240	175	175	2.5	3	930	2 200		*	E-625934
170		260	144	144	2.5	3	930	1 730			E-623034
		280	185	185	2.5		1 380	2 540			E-623134
		247.650	192.088	192.088	3.3	1.5	1 110	2 760	0	*	E-67791D/67720/67721D
177.8	800		234.950		3.3	1.5	1 570	3 400	0	*	E-82681D/82620/82620D
			238.227		3.3	3.3	1 750	3 100	0	*	E-EE280703D/281200/281201D
1) Cm-	lloct :	llowable di	mancian for	chamfor d	imoncia	n or					

1) Smallest allowable dimension for chamfer dimension r or r_1 .

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load P_{0r} = F_r + Y_0F_a For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing number a) to d)		stallation-	related d	imensio	ns	Constant	Axial	load fac	ctors	Mass
		D	mm							kg
(TYPE B) Without inner ring spacer	$d_{ m a}$	$D_{\rm a}$	$S_{ m a}$ Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	e	Y_1	Y_2	Y_0	(approx.)
E 000 0454	405	454	_	•	•	0.00	0.00	0.00	4.00	0.07
E-CRO-2451	135 137	151 162.5	5 3.8	2	2	0.33 0.37	2.03 1.80	3.02 2.69	1.98 1.76	8.97 8.87
	143.6	176	4.1	2	2	0.37	1.80	2.69	1.76	16.7
	143	178	4.5	2	2	0.40	1.68	2.50	1.64	22.2
	129	162	3	1.5	0.8	0.33	2.03	3.02	1.98	11.5
	137	168	4.5	3.3	1.5	0.31	2.21	3.29	2.16	14.3
	144.3	164	5	2	2	0.33	2.03	3.02	1.98	11.3
	144.7	161.5	2	2	1	0.33	2.03	3.02	1.98	13.5
	144	177	4	3.3	1.5	0.32	2.10	3.13	2.06	14.8
	150	185	3	3.3	0.8	0.34	2.01	2.99	1.96	17.3
	155.8	178	5	2	2	0.33	2.03	3.02	1.98	14
	160.7	187	3.5	2	2	0.37	1.84	2.74	1.80	13.8
	159.1	187.5	3.4	2	2	0.37	1.84	2.74	1.80	13.9
	163	225	6.5	3.3	1.5	0.35	1.92	2.86	1.88	36.8
	167.5	190	5.5	2	2.5	0.33	2.03	3.02	1.98	16.9
	164.5	207	4	1.5	1.5	0.33	2.03	3.02	1.98	24.7
	177.5	202.5	5.5	2	2.5	0.33	2.03	3.02	1.98	20.2
E-CRO-3210	190	231	4.5	2	2	0.33	2.03	3.02	1.98	37
	175	209	3	3.3	0.8	0.38	1.76	2.62	1.72	20.7
	187.5	213	5.5	2	2.5	0.33	2.03	3.02	1.98	24.4
	194.8	232	3.8	2	2.5	0.37	1.80	2.69	1.76	27.5
	196.4	254	6.4	2	2.5	0.37	1.80	2.69	1.76	45.2
E-CRO-3664	192.2	217.5	5	3.3	1.5	0.44	1.54	2.29	1.50	29.4
	195	251	5	3.3	1.5	0.53	1.28	1.91	1.25	55.3
E-CRO-3663	206.2	274.5	7	3.3	3.3	0.36	1.87	2.79	1.83	69.9
a) Bearing numbers mark										

a) Bearing numbers marked "0" designate inch series bearings.
 b) When adopting bearings with bearing numbers marked with "*", please consult NTN Engineering.
 c) Bearing numbers marked "x" designate bearings with hollow rollers and pin type cages.
 d) Contact NTN Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

(TYPE B) Without inner ring spacer

d 180 ∼ 241.478mm

		- · · · · · ·								
	Bou	ndary dim	ensions			Basic lo	ad rating	g		Bearing number a) to d)
		mm					c static			
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m 1smin}$		cN $C_{0\mathrm{r}}$	a) b	o) c)) (TYPE A) With inner ring spacer
180	254	185	185	2.5	3	1 010	2 390		k	T-E-625936
100	20.	100	100	0	•	1010	2 000		-	1 2 02000
187.325	269.875	211.138	211.138	3.3	1.5	1 490	3 500	◎ :	k	T-E-M238849D/M238810/M238810D
	268	196	196	2.5	3	1 170	2 850		k	E-625938
190	270	190	190	2.5	0.6	1 350	3 050		k	E-CRO-3813
	292.100	225.425	225.425	3.3	1.5	1 740	4 150	◎ :	k	T-E-M241538D/M241510/M241510D
190.500	266.700	187.325	188.912	3.3	1.5	1 160	2 990	0:	k	T-E-67885D/67820/67820D
198.438	284.162	225.425	225.425	3.3	1.5	1 690	4 000	0		E-M240648D/M240611/M240611D
	282	206	206	2.5	3	1 330	3 300			E-625940
200	290	160	160	2.5	2.5	1 060	2 210			E-CRO-4013
	230	100	100	2.5	2.0	1 000	2210			L-0110-4010
203.200	317.500	215.900	209.550	3.3	3.3	1 400	2 820	0		E-EE132082D/132125/132126D
206.375	282.575	190.500	190.500	3.3	8.0	1 180	3 150	0		T-E-67986D/67920/67921D
215.900	288.925	177.800	177.800	3.3	0.8	1 240	3 250	0		T-E-LM742749D/LM742714/LM742714D
216.103	330.200	263.525	269.875	3.3	1.5	2 220	5 150	0		E-9974D/9920/9920D
	300	230	230	2.5	2.5	1 500	3 650			E-CRO-4412
000	310	226	226	3	4	1 530	3 800			E-625944
220	320	200	200	3	1	1 540	3 400			E-CRO-4411
	340	190	190	3	4	1 670	3 300			E-623044
220.662	314.325	239.712	239.712	3.3	1.5	2 040	4 900	0		T-E-M244249D/M244210/M244210D
	364 000	296.875	296.875	3.3	3.3	2 630	5 550			E-CRO-4606
228.600		349.250	361.950	6.4	3.5	3 850	8 250	0		E-EE700090D/700167/700168D
234.950	327.025	196.850	196.850	3.3	1.5	1 550	3 800	0		T-E-8576D/8520/8520D
240	338	248	248	3	4	2 080	4 950			E-625948A
241.478	350.838	228.600	228.600	3.3	1.5	1 790	4 000	0		E-EE127097D/127137/127137D

1) Smallest allowable dimension for chamfer dimension r or r_1 .

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load P_{0r} = F_r + Y_0F_a For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing number a) to d)		Installation-related dimensions					Axial	load fac	ctors	Mass
			mm							kg
(TYPE B) Without	d_{a}	$D_{\rm a}$	$S_{\rm a}$	$r_{\rm as}$	r_{1as}		Y_1	Y_2	Y_0	()
inner ring spacer			Min.	Max.	Max.	e	<i>I</i> 1	I 2	I ()	(approx.)
	200.5	227	5.5	2	2.5	0.33	2.03	3.02	1.98	28.9
	200	254	4	3.3	1.5	0.33	2.03	3.02	1.98	41.8
	211	238	6	2	2.5	0.33	2.03	3.02	1.98	34.7
	207.2	248.5	2	2	0.6	0.40	1.68	2.50	1.64	34.5
	222	271	5	3.3	1.5	0.33	2.03	3.02	1.98	59.6
E-CRO-3814	208	234	3	3.3	1.5	0.48	1.41	2.11	1.38	33.6
	212.1	263.9	5.5	3.3	1.5	0.33	2.03	3.02	1.98	46
	219.5	260.5	6	2	2.5	0.33	2.03	3.02	1.98	40.5
	224	267.5	5	2	2	0.37	1.80	2.69	1.76	35.1
	224	293.9	9.5	3.3	3.3	0.31	2.15	3.20	2.10	62.5
	223	260	5	3.3	0.8	0.51	1.33	1.97	1.30	35.4
	229.4	267	5	3.3	0.8	0.48	1.40	2.09	1.37	34.3
	235	300	6	3.3	1.5	0.55	1.23	1.82	1.20	82.1
	236.5	277.5	6.5	2	2	0.43	1.59	2.36	1.55	42.1
	242	284.5	6	2.5	3	0.33	2.03	3.02	1.98	53.5
	245	297	6.5	2.5	1	0.35	1.95	2.90	1.91	53
	250.5	315	5.5	2.5	3	0.37	1.80	2.69	1.76	63.2
E-CRO-4442	239.5	288.5	4	3.3	1.5	0.33	2.03	3.02	1.98	60.2
	262	334.5	6.5	3.3	3.3	0.32	2.12	3.15	2.07	117.9
	259	381	3	6.4	3.5	0.33	2.03	3.02	1.98	232
E-CRO-4704	256	301	5	3.3	1.5	0.41	1.66	2.47	1.62	53.6
E-CRO-4825	260.5	312	6	2.5	3	0.33	2.03	3.02	1.98	70
	258	325	6.5	3.3	1.5	0.35	1.91	2.85	1.87	76.4

a) Bearing numbers marked "©" designate inch series bearings. b) When adopting bearings with bearing numbers marked with "*", please consult **NTN** Engineering. c) Bearing numbers marked "3" designate bearings with hollow rollers and pin type cages. d) Contact **NTN** Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

(TYPE B) Without inner ring spacer

d 244.475 ∼ 285.750mm

	Boui	ndary dime	ensions			Basic lo	ad rating	Ţ.	Bearing number a) to d)
		mm				dynami	c static kN		
d	D	B_2	C_2	$r_{ m smin}$	$r_{1 m s} = 10^{10} r_{1 m s} = 10^{10} r_{1 m s}$			a) b) c)	(TYPE A) With inner ring spacer
244.475		193.675 304.800	193.675 304.800	3.3 4.8	1.5 3.3	1 580 2 470	4 100 5 750		E-LM247748D/LM247710/LM247710DA E-EE126096D/126150/126151D
245	380	255.5	254	6.4	1.5	2 280	4 750		E-CRO-4901
254	368.300	269.875 204.622 279.400		3.3 3.3 6.4	3.3 1.5 3.3	2 650 1 500 3 200	6 550 3 250 5 900	0	T-E-M249748D/M249710/M249710D E-EE171000D/171450/171451D E-EE822101D/822175/822176D
260	360 368 400 400	272 268 220 255	272 268 220 255	2.5 4 4 7.5	1 5 5 4	2 300 2 210 2 180 2 450	5 750 5 700 4 400 5 300		E-CRO-5218 E-625952 E-623052 E-CRO-5215
260.350	400.050	228.600 255.588 314.325		6.4 6.4 3.3	3.3 1.5 6.4	1 940 2 320 3 800	4 550 4 950 7 100	0	E-EE134102D/134143/134144D E-EE221027D/221575/221576D T-E-HM252349D/HM252310/HM252310D
266.700	355.600	230.188 230.188 269.878	228.600 228.600 269.878	3.3 3.3 6.4	1.5 1.5 3.3	2 040 1 580 2 340	5 350 4 350 6 000		T-E-LM451349D/LM451310/LM451310D E-CRO-5305 E-EE275106D/275155/275156D
269.875	381.000	282.575	282.575	3.3	3.3	2 890	6 850	0	T-E-M252349D/M252310/M252310D
270	410	222	222	4	4	2 120	4 550		E-CRO-5403
276.225	406.400	268.290	260.355	6.4	1.5	2 340	6 000	0	E-EE275109D/275160/275161D
279.400	393.700	269.875 269.875 346.075	269.875 269.875 349.250	3.3 6.4 3.3	1.5 1.5 6.4	2 490 2 150 3 850	6 450 5 350 8 700	0	E-CRO-5628 E-EE135111D/135155/135156D E-EE722111D/722185/722186D
279.578	380.898	244.475	244.475	3.3	1.5	2 160	6 200	0	T-E-LM654644D/LM654610/LM654610D
280	380 395	290 288	290 288	3.1 4	1.7 5	2 740 2 840	7 250 7 100		E-CRO-5650 E-625956
285.750	380.898	244.475	244.475	3.3	1.5	2 160	6 200	0	T-E-LM654648D/LM654610/LM654610D

1) Smallest allowable dimension for chamfer dimension r or r_1 .

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load P_{0r} = F_r + Y_0F_a For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing number a) to d)	ln	stallation-	related d	imensio	าร	Constant	Mass			
number a) wa)			mm							kg
(TYPE B) Without inner ring spacer	d_{a}	$D_{\rm a}$	S_{a} Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	e	Y_1	Y_2	Y_0	(approx.)
E-CRO-4905	265	306	5	3.3	1.5	0.32	2.09	3.11	2.04	46.1
L-0110-4303	269	343	6.5	4.8	3.3	0.52	1.31	1.95	1.28	132
	275.5	349	6.5	6.4	1.5	0.37	1.80	2.69	1.76	106.7
	272	335	5	3.3	3.3	0.33	2.03	3.02	1.98	85.6
	269	340	6	3.3	1.5	0.36	1.85	2.75	1.81	71.8
	281.9	404.9	8	6.4	3.3	0.34	1.98	2.94	1.93	185
	279	335	6.5	2.5	1	0.41	1.66	2.47	1.62	74.2
	290	338.5	6	3	3	0.33	2.03	3.02	1.98	90.3
	292	370	6.5	3	3	0.37	1.80	2.69	1.76	98.9
	293.5	360.5	8	6	3	0.39	1.71	2.54	1.67	106
	280	339	6.5	6.4	3.3	0.37	1.80	2.69	1.76	76.5
	292	366	8	6.4	1.5	0.39	1.71	2.54	1.67	117
	290	356	5.5	3.3	6.4	0.33	2.03	3.02	1.98	180
E-CRO-5307	285	331.5	6.5	3.3	1.5	0.36	1.87	2.79	1.83	62
	287	333	3.5	3.3	1.5	0.37	1.83	2.72	1.79	62.3
	290	366	5	6.4	3.3	0.40	1.68	2.50	1.64	116
E-CRO-5409	291.5	351	6	3.3	3.3	0.33	2.03	3.02	1.98	97.5
	308	375.5	6	3	3	0.27	2.49	3.71	2.43	91
	293.6	373	8	6.4	1.5	0.40	1.68	2.50	1.64	122
	298.5	355.5	5	3.3	1.5	0.37	1.80	2.69	1.76	79.6
	297	368	6.5	6.4	1.5	0.40	1.68	2.50	1.64	103
	314	430	5	3.3	6.4	0.38	1.78	2.65	1.74	258
E-CRO-5679	304.5	350.5	5	3.3	1.5	0.43	1.56	2.33	1.53	83.2
E-CRO-5676	301	353.5	6.5	2.5	1.5	0.33	2.03	3.02	1.98	105
E-CRO-5684	304.5	363.5	7	3	4	0.33	2.03	3.02	1.98	111
E-CRO-5710	304.5	350.5	5	3.3	1.5	0.43	1.56	2.33	1.53	82.5

a) Bearing numbers marked "©" designate inch series bearings. b) When adopting bearings with bearing numbers marked with "*", please consult **NTN** Engineering. c) Bearing numbers marked "3" designate bearings with hollow rollers and pin type cages. d) Contact **NTN** Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

Application Bearings

(TYPE B) Without inner ring spacer

d 288.925 ∼ 330mm

	Bou	ndary dim	ensions			Basic lo	oad rating	3	Bearing number a) to d)						
		mm				dynam	ic static								
d	D	B_2	C_2	$r_{\rm s min}^{1}$	$r_{1 \mathrm{s} \mathrm{min}}$		kN C_{0r}	a) b)) c) (TYPE A) With inner ring spacer						
288.925	406.400	298.450	298.450	298.450	298.450	298.450	298.450	298.450	298.450	3.3	3.3	3 300	8 300	0	E-M255449D/M255410/M255410DA
292.100	476.250	296.047	292.100	3.3	1.5	3 400	6 800	0	E-EE921150D/921875/921876D						
	424	310	310	4	5	2 850	7 450		E-625960						
	430	280	280	4	4	2 990	7 100		E-CRO-6019						
	430	300	300	4	4	2 990	7 100		E-CRO-6022						
300	460	360	360	4	4	4 500	10 100		E-CRO-6015						
000	470	270	270	4	4	3 500	7 250		☆ E-CRO-6012						
	470	292	292	4	4	3 900	8 300		☆ E-CRO-6012						
				-											
	500	332	332	5	6	4 000	8 100		E-623160						
300.038	422.275	311.150	311.150	3.3	3.3	3 700	9 600	0	☆ T-E-HM256849D/HM256810/HM256810DG2						
004.040	438.048	279.400	279.400	3.3	3.3	2 740	6 500	0	E-EE329119D/329172/329173D						
304.648	438.048	280.990	279.400	4.8	3.3	2 920	6 900	0	E-M757448D/M757410/M757410D						
	410 100	269.875	269.875	6.4	1.5	2 650	6 850		E-M257149D/M257110/M257110D						
304.800		247.650	241.300	1.5	8	2 050	4 600		E-EE291202D/291750/291751D						
304.000		342.900	349.250	6.4	3.3	4 050	9 400		E-EE724121D/724195/724196D						
	495.300	342.900	349.250	0.4	ა.ა	4 050	9 400	0	E-EE/24121D//24195//24196D						
304.902	412.648	266.700	266.700	3.3	3.3	2 860	7 450	0	E-M257248D/M257210/M257210D						
305.003	438.048	280.990	279.400	4.8	3.3	2 920	6 900	0	E-M757449D/M757410/M757410D						
	430	310	310	4	2.2	3 200	8 100		E-CRO-6213						
310				5.5	2.2	3 400	8 600								
	430	310	310	5.5	2.2	3 400	8 600		E-CRO-6204						
	422 275	269.875	269.875	3.3	1.5	2 510	7 050	0	E-LM258649D/LM258610/LM258610D						
317.500		327.025	327.025	3.3	3.3	3 800	9 550		T-E-HM259049D/HM259010/HM259010D						
	447.075	327.023	327.023	3.3	3.3	3 000	9 330	0	1-L-11W239049D/11W239010/11W239010D						
320	460	338	338	4	5	3 250	8 650		E-625964						
327	445	230	230	4	2	2 380	5 650		E-CRO-6501						
	470	340	340	2.5	2.5	3 500	10 200		E-CRO-6604						
330	-				6										
	510	340	340	6	О	4 300	9 650		E-CRO-6602						

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F_a}{F_1}$	->e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load $P_{0r}=F_r+Y_0F_a$ For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing number a) to d)	ln	stallation-	related d	limensio	ns	Constant	Axial	load fac	ctors	Mass
(TYPE B) Without	d_{a}	$D_{\rm a}$	$_{S_{\mathrm{a}}}^{mm}$	$r_{ m as}$	$r_{\rm las}$					kg
inner ring spacer			Min.	Max.	Max.	e	Y_1	Y_2	Y_0	(approx.)
E-CRO-5815	311	376	5	3.3	3.3	0.34	2.00	2.98	1.96	125
	314	442	7	3.3	1.5	0.29	2.30	3.42	2.25	208
	329	389.5	7	3	4	0.33	2.03	3.02	1.98	138
	325.5	394.5	8	3	3	0.47	1.45	2.16	1.42	132
	323	393.5	3	3	3	0.47	1.45	2.16	1.42	141
	333.5	421.5	10	3	3	0.31	2.21	3.29	2.16	180
	348	432.5	7	3	3	0.37	1.80	2.69	1.76	152
E-CRO-6033	347	430	7	3	3	0.37	1.80	2.69	1.76	164
	346.5	449	5	4	4	0.40	1.68	2.50	1.64	257
	322	394	6	3.3	3.3	0.34	2.00	2.99	1.96	143
	327	410	8	3.3	3.3	0.33	2.04	3.04	2.00	143
	328	407	7	4.8	3.3	0.47	1.43	2.12	1.40	140
E-CRO-6148	330.5	387	5	6.4	1.5	0.33	2.03	3.02	1.98	115
	328	416	9.5	1.5	8	0.38	1.78	2.65	1.74	127
	334	450	3	6.4	3.3	0.40	1.68	2.50	1.64	273
E-CRO-6144	328.5	385.5	5	3.3	3.3	0.32	2.12	3.15	2.07	107
	328	407	7	4.8	3.3	0.47	1.43	2.12	1.40	139
	333	396.5	8.5	3	2	0.40	1.68	2.50	1.64	133
	333.5	397	7.5	4	2	0.33	2.03	3.02	1.98	136
E-CRO-6431	342.5	393.5	7	3.3	1.5	0.32	2.10	3.13	2.06	110
	340	418	5	3.3	3.3	0.33	2.02	3.00	1.97	161
	355	420.5	7	3	4	0.33	2.03	3.02	1.98	183
	353.5	416	5.5	3	2	0.33	2.03	3.02	1.98	99.8
	370	431.5	5.5	2	2	0.33	2.02	3.00	1.97	141
	368	462	5	5	5	0.40	1.68	2.50	1.64	221

a) Bearing numbers marked "0" designate inch series bearings. b) When adopting bearings with bearing numbers marked with "*", please consult **NTN** Engineering. c) Bearing numbers marked "½" designate bearings with hollow rollers and pin type cages. d) Contact **NTN** Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

(TYPE B) Without inner ring spacer

d 330 200 \sim 380mm

	a 330.20	$10 \sim 380$								
		Bou	ndary dime	ensions			Basic le	oad rating	3	Bearing number a) to d)
			mm				dynam	ic static		
			111111					kN		
	d	D	B_2	C_2	$r_{\rm s min^1}$	$r_{ m 1s~min}^{ m 1}$	$C_{ m r}$	$C_{0\mathrm{r}}$	a) b) c) (TYPE A) With inner ring spacer
		400.000		044.450			0.400	-		
	330.200	482.600 533.400		311.150 254	3.3 6	1.5 6	3 100 3 550	7 900 6 750	0	E-EE526131D/526190/526191D E-CRO-6606
ı		333.400	204	234	U	U	3 330	0 750		E-CHO-0000
	333.375	469.900	342.900	0 342.900 3		3.3	4 400	11 000	\bigcirc	E-HM261049D/HM261010/HM261010DA
		480	350	350	5	6	3 800	10 400		E-625968
	340	520	278	278	5	6	3 600	7 500		E-623068
ł										
	341.312	457.098	254.000	254.000	3.3	1.5	2 630	6 900	0	E-LM761648D/LM761610/LM761610D
	342.900	533.400	307.985	301.625	3.3	3.3	3 500	6 900	0	E-EE971355D/972100/972103D
ł										
	343.052		254.000	254.000	3.3	1.5	2 640	6 900	0	E-LM761649D/LM761610/LM761610D
	040.002	457.098	254.000	254.000	3.3	1.5	2 700	6 750		E-CRO-6910
	346.075	6.075 488.950 358.775		358.775	3.3	3.3	4 850	12 800	0	☆ T-E-HM262749D/HM262710/HM262710DG2
ŀ		100.000	0000	000	0.0	0.0	. 000		•	
	347.662	469.900	292.100	292.100	3.3	3.3	3 550	9 100	\bigcirc	E-M262449D/M262410/M262410D
		444 E00	241.300	241.300	3.3	1.5	2 020	6 450		T-E-L163149D/L163110/L163110D
			252.412	252.412	3.3	1.5	2 730	7 850		E-LM263149D/LM263110/LM263110D
	355.600		265.112	269.875	3.3	1.5	3 100	7 650		E-LM763449D/LM763410/LM763410D
			317.500	317.500	3.3	1.5	3 850	10 000		E-M263349D/M263310/M263310D
ı		+00.000	017.500	017.500	0.0	1.0	0 000	10 000	•	E-M200043D/M200010/M200010D
		508	370	370	5	6	4 100	11 200		E-625972
		520	370	370	5.5	3.5	4 950	12 300		E-CRO-7220
	360	520	410	410	5	5	5 700	14 700		☆ E-CRO-7217
		540	340	340	5	3	4 850	11 100		E-CRO-7211
		600	396	396	5	6	6 100	13 000		E-623172
ı		E00 07E	000 500	000 500	C 4	0.0	4.050	10 100		A E LIMOCTO 40 D // IMOCTO 40 // IMOCTO 40 D CO
	368.300	523.875	382.588 342.900	382.588 342.900	6.4 6.4	3.3 6.4	4 950 4 750	13 100 10 600		☆ E-HM265049D/HM265010/HM265010DG2 E-EE181455D/182350/182351D
ı		390.900	342.900	342.900	0.4	0.4	4 / 30	10 600	0	E-EE161455D/162550/162551D
	374.650	501.650	250.825	260.350	3.3	1.5	3 000	6 250	0	E-LM765149D/LM765110/LM765110D
	380	536	390	390	5	6	5 450	14 100		E-625976
	300	560	282	282	5	6	3 950	8 700		E-623076
		560	285	285	5	5	3 600	7 700		E-CRO-7612

C-48

1) Smallest allowable dimension for chamfer dimension r or r_1 .

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load $P_{0r}=F_r+Y_0F_a$ For values of e, Y_1 , Y_2 and Y_0 see the table below.

$D_{\rm a}$ $M_{\rm Sa}$ $M_{\rm in}$. $M_{\rm sa}$ $M_{\rm in}$. $M_{\rm sa}$ $M_{\rm in}$. $M_{\rm sa}$ $M_{\rm sa}$ $M_{\rm in}$. $M_{\rm sa}$ $M_$	r _{as} Max. 3.3 5 3.3	r _{1as} Max. 1.5 5	e 0.39 0.37	Y ₁ 1.72 1.80	Y ₂ 2.56 2.69	Y ₀ 1.68 1.76	kg (approx.) 197
Da Sa Min. 49 3 88 88 6.5 34 5 40.5 7 78 6.5	3.3 5 3.3	Max. 1.5 5	0.39 0.37	1.72	2.56	1.68	(approx.)
49 3 88 6.5 34 5 40.5 7 78 6.5	3.3 5 3.3	1.5 5	0.39 0.37	1.72	2.56	1.68	
88 6.5 34 5 40.5 7 78 6.5	5 3.3 4	5	0.37				197
88 6.5 34 5 40.5 7 78 6.5	5 3.3 4	5	0.37				
40.5 7 78 6.5	4	3.3	U 33			1.70	221
78 6.5			0.55	2.02	3.00	1.97	187
78 6.5		5	0.33	2.03	3.02	1.98	200
32 5	4	4	0.37	1.80	2.69	1.76	213
_	3.3	1.5	0.47	1.43	2.12	1.40	125
01 11	3.3	3.3	0.33	2.03	3.02	1.98	252
24.5 5	3.3	1.5	0.47	1.43	2.12	1.40	117
26 5	3.3	1.5	0.47	1.43	2.12	1.40	105
56 6	3.3	3.3	0.33	2.02	3.00	1.97	227
44 8	3.3	3.3	0.33	2.03	3.02	1.98	148
22 6.5	3.3	1.5	0.31	2.20	3.27	2.15	89.5
34 6	3.3	1.5	0.32	2.12	3.15	2.07	106
							145
59 5	3.3	1.5	0.33	2.03	3.02	1.98	173
66.5 7	4	5	0.33	2.03	3.02	1.98	236
		3				1.98	260
							297
							270
41.5 8	4	5	0.40	1.68	2.50	1.64	447
81.5 6	6.4	3.3	0.33	2.03	3.02	1.98	280
52 7.5	6.4	6.4	0.42	1.62	2.42	1.59	373
72 2	3.3	1.5	0.47	1.43	2.12	1.40	145
	4	5	0.33	2.03	3.02	1 00	277
94 8	4				3.02	1.90	211
94 8 18.5 6.5	-	4	0.37	1.80	2.69	1.76	240
	34 6 49 3 59 5 66.5 7 78 5 78 8.5 96 5 41.5 8 81.5 6 52 7.5 72 2	34 6 3.3 49 3 3.3 59 5 3.3 66.5 7 4 78 5 4.5 78 8.5 4 96 5 4 41.5 8 4 81.5 6 6.4 52 7.5 6.4 72 2 3.3	34 6 3.3 1.5 49 3 3.3 1.5 59 5 3.3 1.5 66.5 7 4 5 78 5 4.5 3 78 8.5 4 4 96 5 4 2.5 41.5 8 4 5 81.5 6 6.4 3.3 52 7.5 6.4 6.4 72 2 3.3 1.5	34 6 3.3 1.5 0.32 49 3 3.3 1.5 0.47 59 5 3.3 1.5 0.33 66.5 7 4 5 0.33 78 5 4.5 3 0.33 78 8.5 4 4 0.33 96 5 4 2.5 0.33 41.5 8 4 5 0.40 81.5 6 6.4 3.3 0.33 52 7.5 6.4 6.4 0.42 72 2 3.3 1.5 0.47	34 6 3.3 1.5 0.32 2.12 49 3 3.3 1.5 0.47 1.43 59 5 3.3 1.5 0.33 2.03 66.5 7 4 5 0.33 2.03 78 5 4.5 3 0.33 2.03 78 8.5 4 4 0.33 2.03 96 5 4 2.5 0.33 2.03 41.5 8 4 5 0.40 1.68 81.5 6 6.4 3.3 0.33 2.03 52 7.5 6.4 6.4 0.42 1.62 72 2 3.3 1.5 0.47 1.43	34 6 3.3 1.5 0.32 2.12 3.15 49 3 3.3 1.5 0.47 1.43 2.14 59 5 3.3 1.5 0.33 2.03 3.02 66.5 7 4 5 0.33 2.03 3.02 78 5 4.5 3 0.33 2.03 3.02 78 8.5 4 4 0.33 2.03 3.02 96 5 4 2.5 0.33 2.03 3.02 41.5 8 4 5 0.40 1.68 2.50 81.5 6 6.4 3.3 0.33 2.03 3.02 52 7.5 6.4 6.4 0.42 1.62 2.42 72 2 3.3 1.5 0.47 1.43 2.12	34 6 3.3 1.5 0.32 2.12 3.15 2.07 49 3 3.3 1.5 0.47 1.43 2.14 1.40 59 5 3.3 1.5 0.33 2.03 3.02 1.98 66.5 7 4 5 0.33 2.03 3.02 1.98 78 5 4.5 3 0.33 2.03 3.02 1.98 78 8.5 4 4 0.33 2.03 3.02 1.98 96 5 4 2.5 0.33 2.03 3.02 1.98 41.5 8 4 5 0.40 1.68 2.50 1.64 81.5 6 6.4 3.3 0.33 2.03 3.02 1.98 52 7.5 6.4 6.4 0.42 1.62 2.42 1.59 72 2 3.3 1.5 0.47 1.43 2.12 1.40

a) Bearing numbers marked "©" designate inch series bearings. b) When adopting bearings with bearing numbers marked with "*", please consult NTN Engineering. c) Bearing numbers marked "½" designate bearings with hollow rollers and pin type cages. d) Contact NTN Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

(TYPE A) With inner ring spacer

(TYPE B) Without inner ring spacer

d 380 ∼ 447.675mm

	Bou	ndary dime	ensions			Basic le	oad rating	5	Bearing number a) to d)
		mm					ic static		
d	D	B_2	C_2	$r_{ m s min}$	$r_{1 m s} = 10^{10} r_{1 m s}$		kN $C_{0\mathrm{r}}$	a) b) c	(TYPE A) With inner ring spacer
380	560	360	360	6	1.5	5 150	12 100		E-CRO-7622
300	560	360	360	5	1.5	5 600	13 500	☆	E-CRO-7621
384.175	546.100	400.050	400.050	6.4	3.3	6 000	16 100	© ☆	T-E-HM266449D/HM266410/HM266410DG2
385.762	514.350	317.500	317.500	3.3	3.3	4 000	11 100	0	E-LM665949D/LM665910/LM665910D
390	510	350	350	3.5	1.5	4 100	11 800		E-CRO-7801
393.700	546.100	288.925	288.925	6.4	1.5	3 550	10 200	0	E-LM767745D/LM767710/LM767710D
400	564 635	412 470	412 470	5 5	6 2.5	5 400 8 000	14 700 18 000		E-625980 E-CRO-8010
	000	470	470	3	2.5	0 000	10 000		L-CHO-8010
		268.288 288.925	288.925 288.925	6.4 6.4	1.5 1.5	2 740 3 550	7 000 10 200	_	T-E-EE234161D/234215/234216D E-LM767749D/LM767710/LM767710D
406.400		381.000	381.000	6.4	3.3	5 300	14 100	0	E-CRO-8103
		400.050	400.050	6.4	3.3	5 350	13 600	0	E-EE833161D/833232/833233D
	609.600	309.562	317.500	6.4	3.5	4 100	9 600	0	E-EE911603D/912400/912401D
409.575	546.100	334.962	334.962	6.4	1.5	4 400	12 700	© ☆	E-M667947D/M667911/M667911DG2
415.925	590.550	434.975	434.975	6.4	3.3	6 950	18 900	© ☆	T-E-M268749D/M268710/M268710DG2
420	592	432	432	5	6	5 950	16 300		E-625984
	571.500	279.400	279.400	3.3	1.5	3 550	9 850	0	T-E-LM869449D/LM869410/LM869410D
431.800		336.550	336.550	6.4	1.5	4 100	11 800	_	E-LM769349D/LM769310/LM769310D
	635.000	355.600	355.600	6.4	6.4	6 300	15 000	○ ☆	E-EE931170D/931250/931251XDG2
432.003	609.524	317.500	317.500	6.4	3.5	4 850	11 500	0	E-EE736173D/736238/736239D
	620	454	454	6	6	7 200	19 900		E-625988
440	635	470	470	6.4	3.3	7 900	22 100	☆	E-CRO-8808
	650	355	355	7.5	4	5 950	13 400	☆	E-CRO-8807
447.675	635.000	463.550	463.550	6.4	3.3	7 900	22 100		E-M270749D/M270710/M270710DG2

1) Smallest allowable dimension for chamfer dimension r or r_1 .

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load $P_{0r}=F_r+Y_0F_a$ For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing number a) to d)		stallation-	related d	limensio	ns	Constant	Axial	load fac	tors	Mass
(TYPE B) Without		$D_{\mathbf{a}}$	$_{S_{\mathrm{a}}}^{mm}$	20	00-					kg
inner ring spacer	$u_{\rm a}$	$D_{\rm a}$	Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	e	Y_1	Y_2	Y_0	(approx.)
	416.5	514	7	5	1.5	0.40	1.68	2.50	1.64	302
	423	514.5	6.5	4	1.5	0.40	1.68	2.50	1.64	312
	411	507	6.5	6.4	3.3	0.33	2.03	3.02	1.98	312
	409	482	7	3.3	3.3	0.42	1.61	2.40	1.58	240
	411.5	478	7	3	1.5	0.33	2.03	3.02	1.98	186
	418	510	6.5	6.4	1.5	0.48	1.42	2.11	1.38	219
	434	518	7	4	5	0.33	2.03	3.02	1.98	324
	447	579.5	6.5	4	2	0.33	2.03	3.02	1.98	564
	425	504	1.5	6.4	1.5	0.48	1.42	2.11	1.39	190
	427	510	6.5	6.4	1.5	0.48	1.42	2.11	1.38	201
	441	524.5	6.5	6.4	3.3	0.35	1.95	2.90	1.91	310
	435	549	6.5	6.4	3.3	0.33	2.07	3.09	2.03	395
	437	567	1.5	6.4	3.5	0.38	1.76	2.62	1.72	332
	431	510	5.5	6.4	1.5	0.42	1.61	2.40	1.58	226
	444	548.9	9	6.4	3.3	0.33	2.03	3.02	1.98	421
E-CRO-8414	457	545	7	4	5	0.33	2.03	3.02	1.98	374
	453	537	8	3.3	1.5	0.55	1.24	1.84	1.21	193
	453	534	6.5	6.4	1.5	0.44	1.52	2.26	1.49	232
	468.1	591.1	6.6	6.4	6.4	0.32	2.12	3.15	2.07	402
	459	570	6.5	6.4	3.5	0.35	1.95	2.90	1.91	297
E-CRO-8839	479	572.5	8	5	5	0.33	2.03	3.02	1.98	430
	494	585	9	6.4	3.3	0.33	2.03	3.02	1.98	498
	498	601	9	6	3	0.33	2.03	3.02	1.98	400
	478	591	8	6.4	3.3	0.33	2.03	3.02	1.98	509

a) Bearing numbers marked "©" designate inch series bearings. b) When adopting bearings with bearing numbers marked with "*", please consult **NTN** Engineering. c) Bearing numbers marked "3" designate bearings with hollow rollers and pin type cages. d) Contact **NTN** Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

(TYPE B) Without inner ring spacer

d 457.200 ∼ 555.625mm

	Bou	ndary dim	ensions			Basic le	oad rating	3	Bearing number a) to d)
		mm					ic static		
d	D	B_2	C_2	$r_{\rm s min}$	$r_{1 m s~min}$		kN $C_{0\mathrm{r}}$	a) b)	c) (TYPE A) With inner ring spacer
	596.900	276.225	279.400	3.3	1.5	3 200	9 150	0	E-L770849D/L770810/L770810D
457.200	596.900	276.225	276.225	3.3	1.6	3 200	9 400	0	E-EE244181D/244235/244236D
	660.400	323.850	323.847	6.4	3.3	4 600	11 200	0	E-EE737179D/737260/737260D
460	650	474	474	6	6	7 200	19 900		E-625992A
475	660	450	450	5	3	7 250	20 400		E-CRO-9501
480	678	494	494	6	6	6 950	19 600		E-625996
400	678	494	494	6	6	6 950	19 600		E-CRO-9612
482.600	615.950	330.200	330.200	6.4	3.3	4 400	13 400	0	☆ E-LM272249D/LM272210/LM272210DG2
488.950	660.400	365.125	361.950	6.4	8	5 950	16 100	0	☆ T-E-EE640193D/640260/640261DG2
489.026	634.873	320.675	320.675	3.3	3.3	4 750	12 000	0	E-LM772749D/LM772710/LM772710DA
	670	515	515	5	1.5	7 450	24 600		E-CRO-10008
500	705 730	515 420	515 420	6	6	9 350 8 250	27 100 19 900		☆ E-6259/500 ☆ E-CRO-10023
			-	-					
501.650	711.200	520.700	520.700	6.4	3.3	9 600	27 300	0	☆ E-M274149D/M274110/M274110DG2
508.000	762.000	463.550	463.550	6.4	6.4	8 600	21 400	0	☆ E-EE531201D/531300/531301XDG2
509.948	654.924	377.000	379.000	6.4	1.5	5 650	17 600	,	☆ E-CRO-10208
514.350	673.100	422.275	422.275	6.4	3.3	6 600	20 500	0	E-LM274449D/LM274410/LM274410D
519.112	736.600	536.575	536.575	6.4	3.3	10 100	28 700	0	☆ E-M275349D/M275310/M275310DG2
520	735	535	535	5	7	10 100	28 700		☆ E-CRO-10402
533.400	965.200	495.300	495.300	7.5	7.5	12 300	28 700		☆ E-CRO-10702
536.575	761.873	558.800	558.800	6.4	3.3	11 200	30 500	0	☆ E-M276449D/M276410/M276410DG2
555.625	698.500	349.250	349.250	6.4	3.2	4 850	14 300		E-CRO-11101

1) Smallest allowable dimension for chamfer dimension r or r_1 .

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load P_{0r} = F_r + Y_0F_a For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing number a) to d)	Ins	stallation-	related d	limensio	ns	Constant	Axial	Mass		
		_	mm							kg
(TYPE B) Without	d_{a}	$D_{\rm a}$	Sa	r _{as}	$r_{\rm las}$	0	Y_1	Y_2	Y_0	_
inner ring spacer			Min.	Max.	Max.	e	<i>I</i> 1	12	I ()	(approx.)
	478	567	5.5	3.3	1.5	0.47	1.43	2.12	1.40	201
	478	567	5.5	3.3	1.6	0.40	1.67	2.49	1.63	207
	489	614.9	6.5	6.4	3.3	0.37	1.80	2.69	1.76	379
	499	598.5	7	5	5	0.33	2.03	3.02	1.98	493
E-CRO-9508	510.5	611.5	10	4	2.5	0.34	1.98	2.94	1.93	465
	525.5	623	7	5	5	0.33	2.03	3.02	1.98	563
	525	622.5	2	5	5	0.33	2.03	3.02	1.98	554
	504	585	6.5	6.4	3.3	0.33	2.03	3.02	1.98	250
	516	624	9	6.4	8	0.31	2.20	3.27	2.15	364
	516	600	6.5	3.3	3.3	0.47	1.43	2.12	1.40	268
	526.5	619	8	4	1.5	0.40	1.68	2.50	1.64	598
	553	649.5	7.5	5	5	0.33	2.03	3.02	1.98	632
	554	675	7.5	5	5	0.40	1.68	2.50	1.64	606
	534	663	9.5	6.4	3.3	0.33	2.03	3.02	1.98	726
	550.7	710.9	9.5	6.4	6.4	0.38	1.77	2.64	1.73	740
E-CRO-10214	540	611.5	5	6.4	1.5	0.41	1.65	2.46	1.61	320
	540	636	8	6.4	3.3	0.33	2.03	3.02	1.98	390
E-CRO-10408	569	677	9.5	6.4	3.3	0.33	2.03	3.02	1.98	761
	569	676.5	11	4	6	0.33	2.03	3.02	1.98	750
	680	854.5	7.5	6	6	0.32	2.12	3.15	2.07	1 662
	564	711	9.5	6.4	3.3	0.33	2.03	3.02	1.98	890
E-CRO-11103	581	659	6.5	6.4	3.3	0.33	2.03	3.02	1.98	298

a) Bearing numbers marked "©" designate inch series bearings. b) When adopting bearings with bearing numbers marked with "*", please consult **NTN** Engineering. c) Bearing numbers marked "3" designate bearings with hollow rollers and pin type cages. d) Contact **NTN** Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

tion ngs

(TYPE B) Without inner ring spacer

d 558.800 ∼ 749.300mm

		Bou	ndary dim	ensions			Basic l	oad rating	3	Bearing number a) to d)
			mm					ic static		
	d	D	B_2	C_2	$r_{ m smin}$	$^{1)}r_{ m ls\ m}$		kN C_{0r}	a) b)	c) (TYPE A) With inner ring spacer
		726 600	322.265	322.268	6.4	3.3	4 750	13 500	0	E-EE843221D/843290/843291D
	558.800		409.575	409.575	6.4	3.3	6 750	20 500		E-LM377449D/LM377410/LM377410DG2
	570	780	515	515	6	6	10 200	31 000	7	≿ E-CRO-11402
	571.500	812.800	593.725	593.725	6.4	3.3	13 200	36 500	0 7	E-M278749D/M278710/M278710DAG2
	584.200	762.000	396.875	401.638	6.4	3.3	7 300	22 300	0 7	E-LM778549D/LM778510/LM778510DG2
	585.788	771.525	479.425	479.425	6.4	3.3	8 150	25 700	7	≿ E-CRO-11701
	595.312		615.950	615.950	6.4		13 600	39 000		≿ E-CRO-11913
	000.012	844.550	615.950	615.950	6.4	3.3	14 000	40 500	0 7	≿ E-M280049D/M280010/M280010DG2
	609.600		361.950 660.400	361.950 660.400	6.4 6.4	3.3 3.3	7 150 15 000	20 300 42 000		E-EE649241D/649310/649311DG2 E-M280349D/M280310/M280310DG2
	611.500	832.800	593.725	593.725	6.4	3.3	12 700	37 500	7	≿ E-CRO-12202
	630	920	600	600	7.5	7.8	14 600	39 000	7	≿ E-CRO-12604
	650	1 030	560	560	7.5	12	15 000	35 000	7	⊱ E-CRO-13001
	660	1 070	642	642	7.5	7.5	17 000	43 500	7	≿ E-CRO-13202
	660.400	812.800	365.125	365.125	6.4	3.3	6 900	23 200	0 7	≿ E-L281149D/L281110/L281110DG2
		960	700	700	7.5	7.5	18 500	51 500	7	≿ E-CRO-13401
	670	1 090 1 090	710 710	710 710	7.5 7.5		21 200 19 300	50 000 47 500		≿ E-CRO-13404 ≿ E-CRO-13402
	005 000									
_	685.800	876.300	352.425	355.600	6.4	3.3	6 700	21 800	© 7	
	711.200	914.400	317.500	317.500	6.4	16	5 900	17 900	0 7	E-EE755280D/755360/755361DG2
	730.250	1 035.050	755.650	755.650	6.4	3.3	20 100	59 500	0 7	E-M283449D/M283410/M283410DG2
	749.300	990.600	605.000	605.000	6.4	3.3	14 000	45 500	0 7	≿ E-LM283649D/LM283610/LM283610DG2

1) Smallest allowable dimension for chamfer dimension r or r_1 .

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≦ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load P_{0r} = F_r + Y_0F_a For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing		Installation-	related d	limensio	ns	Constant	Axial	load fac	tors	Mass
number a) to d)			mm							kg
(TYPE B) Without inner ring spacer	$d_{\rm a}$	$D_{\rm a}$	$S_{ m a}$ Min.	$r_{ m as}$ Max.	$r_{ m las}$ Max.	e	Y_1	Y_2	Y_0	(approx.)
E-CRO-11216	585 602	699 688	8.5 8	6.4 6.4	3.3	0.34 0.35	1.98 1.95	2.94 2.90	1.93	388 502
L-0110-11210	002	000	U	0.4	0.0	0.55	1.90	2.90	1.01	302
	622	723	7.5	5	5	0.33	2.03	3.02	1.98	625
	609	756	11	6.4	3.3	0.33	2.03	3.02	1.98	1 080
	615	717	7	6.4	3.3	0.47	1.43	2.14	1.40	511
	628	717.5	9.5	6.4	3.3	0.35	1.95	2.90	1.91	610
	654	781	7	6.4	3.3	0.33	2.03	3.02	1.98	1 135
	633	786	11	6.4	3.3	0.33	2.03	3.02	1.98	1 160
	636	747	9.5	6.4	3.3	0.33	2.03	3.02	1.98	458
	648	807	13.5	6.4	3.3	0.33	2.03	3.02	1.98	1 250
	660	776	11.5	6.4	3.3	0.33	2.03	3.02	1.98	960
	702	848.5	7.5	6	6	0.33	2.03	3.02	1.98	1 390
	765	947.5	8.5	6	10	0.32	2.12	3.15	2.07	1 760
	778	964	9	6	6	0.32	2.12	3.15	2.07	1 950
E-CRO-13211	695	770.5	9	6.4	3.3	0.37	1.80	2.69	1.76	448
	740	888.5	8	6	6	0.33	2.03	3.02	1.98	1 600
	782	996.5	13.5	6	6	0.29	2.32	3.45	2.26	2 690
	799	995.5	13.5	6	6	0.32	2.12	3.15	2.07	2 600
E-CRO-13708	738	824	8	6.4	3.3	0.42	1.61	2.40	1.58	539
	762	873	8	6.4	16	0.38	1.77	2.64	1.73	527
E-CRO-14601	804	961	13	6.4	3.3	0.33	2.03	3.02	1.98	2 210
	786	936	10.5	6.4	3.3	0.33	2.03	3.02	1.98	1 250
	1.00			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		141.1				

a) Bearing numbers marked "©" designate inch series bearings. b) When adopting bearings with bearing numbers marked with "*", please consult **NTN** Engineering. c) Bearing numbers marked "3" designate bearings with hollow rollers and pin type cages. d) Contact **NTN** Engineering for bearing numbers (TYPE B) without an inner ring spacer that are not listed.

C-54

(TYPE B)
Without inner ring spacer

d 762 ∼ 938.212mm

	Bou	ndary dime	ensions			Basic l	oad rating	3	Bearing number a) to d)
		mm				dynam	ic static kN		
d	D	B_2	C_2	$r_{ m smin}$	$r_{ m 1smi}$	$^{\mathrm{n}^{\mathrm{1}}\mathrm{)}}$ C_{r}	C_{0r}	a) b) d	c) (TYPE A) With inner ring spacer
762.000	1 066.800 1 079.500	723.900 787.400	736.600 787.400			19 500 21 100	58 500 65 000	- ,,	E-M284148D/M284111/M284210DG2 E-M284249D/M284210/M284210DG2
825.500	1 168.400	844.550	844.550	12.7	4.8	24 700	76 500	0 4	E-M285848D/M285810/M285810DG2
840	1 170	840	840	6	6	24 300	76 500	*	E-CRO-16803
863.600	1 130.300 1 219.200	669.925 876.300	669.925 889.000		4.8 4.8	17 500 26 700	59 500 83 000	- ,,	E-LM286249D/LM286210/LM286210DG2 E-EE547341D/547480/547481DG2
938.212	1 270.000	825.500	825.500	12.7	4.8	25 000	80 000	0 4	E-LM287649D/LM287610/LM287610DG2

Special pplication Searings

Four-Row Tapered Roller Bearings

Dynamic equivalent radial load $P_r = XF_r + YF_a$

$\frac{F_{\rm a}}{F_{\rm r}}$	≤ e	$\frac{F_a}{F_1}$:>e
X	Y	X	Y
1	Y_1	0.67	Y_2

Static equivalent radial load $P_{0r}=F_r+Y_0F_a$ For values of e, Y_1 , Y_2 and Y_0 see the table below.

Bearing number a) to o	4)	Installation-	related o	limensio	ns	Constant	Mass			
(TYPE B) Withou		$D_{\rm a}$	$_{S_{\mathrm{a}}}^{mm}$	$r_{\rm as}$	r_{las}					kg
inner ring space		- a	Min.	Max.	Max.	e	Y_1	Y_2	Y_0	(approx.)
	819	978	3.5	12.7	4.3	0.33	2.03	3.02	1.98	2 220
	810	1 005	13	12.7	4.8	0.33	2.03	3.02	1.98	2 480
	879	1 085	13	12.7	4.8	0.33	2.03	3.02	1.98	3 010
	918	1 081	12	5	5	0.33	2.03	3.02	1.98	3 970
E-CRO-17302	928	1 056	11	12.7	4.8	0.33	2.03	3.02	1.98	1 950
E-CRO-17301	946	1 123.5	6.5	12.7	4.8	0.33	2.03	3.02	1.98	3 640
E-CRO-18802	1 015	1 183	10	12.7	4.8	0.33	2.03	3.02	1.98	4 100

NTN

The **NTN** ultra-thin section type ball bearings are bearings with an extremely thin design. There are three ultra-thin ball bearing types: radial, four-point contact, and angular. Bearing seals are available for all types.

Each bearing type has different characteristics to best support a wide range of applications.

1. Types and features

Table 1 shows the types and features of ultrathin section type ball bearings, corresponding dimension series code, bearing cross section dimension, and inner diameter dimension range.

The dimension table (from C-62 to C-65) shows dimension series codes S and A, and H and J for bearings with seal.

Table 1 Types and features

Ī			Types			Bearing cross section	Inner diameter dimension
Ī		Radial type	4-point contact type	Angular type	code	dimension mm	range mm
_					Dimension series code		ϕd ϕD
				1 1		$\frac{D-d}{2} \times B$	d
	A deep groove is present in both the inner and outer rings of the bearing, allowing them to		When inner and outer rings are loaded in the	Angular contact ball bearings have a straight line that runs through the point	S	4.762 × 4.762	25.4 ~ 38.1
		of the bearing,	radial direction, the ball comes into	Α	6.35 × 6.35	50.8 ~ 304.8	
	S	support radial and	contact with the inner and outer rings at four	В	7.938 × 7.938	50.8 ~ 508	
	axial loads in either points. The bearings are generally suitable the complex loads for two contact points		are generally suitable	load or a complex load of radial load and axial load. The ability to include an increased number of balls increases the	С	9.525 × 9.525	101.6 ~ 762
	щ Щ	the complex loads which result from the combination of the combination of the combination of the complex that the complex the complex the complex that the complex the complex that the complex		load capacity of the bearing. These bearings are normally used in	D	12.7 × 12.7	101.6 ~ 762
		these forces. Deep groove ball bearings	load with a large axial load.	pairs for applications where it is necessary to control the axial movement	F	19.05 × 19.05	101.6 ~ 1 016
		are used in the most applications.		via axial internal clearance or preload.	G	25.4 × 25.4	101.6 ~ 1 016
	With seal	With single-seal		With single-seal	Н	9.525 × 11.1	101.6 ~ 304.8
	With	With double-seal	With double-seal			9.525 × 12.7	101.6 ~ 304.8

2. Part number

Bearing

010

015 020

025

030 035 040

090 100

110

120

140 160

180

200 250

300 350

400

Mean bore diameter diamete deviation Δ_{dmp}

3. Accuracy and radial internal clearance

Tables 2 and **3** show the accuracy and radial internal clearance of ultra-thin section type ball bearings.

Table 2 Accuracy and radial internal clearance of radial type ball bearings

Table 3 Accuracy and radial internal clearance of four-point contact ball bearings/angular

orrac	пат суре	e Dali De	earings	•	unit: μm			ball bea		Jan Dec	ii ii igs/d	unit: μm
Т	olerance a	and tolera					Т	olerance a	and tolera			Radial
Mean bore diameter	Mean outside diameter	Dimensional tolerance of inner ring	Radial run	out (Max.)	internal	Bearing bore diameter	Mean bore diameter	Mean outside diameter	Dimensional tolerance of inner ring	Radial run	out (Max.)	internal clearance (4-point
	deviation Δ_{Dmp}	and outer ring widths	Inner ring Kia Sia	Outer ring Kea Sea	clearance	No.	Δ_{dmp}		and outer ring widths $\Delta_{Bs} \Delta_{Cs}$	Inner ring Kia Sia	Outer ring K_{ea} S_{ea}	contact type)
0 -10			13	20	25~ 41	010	0 -10			7.5	10	25~ 38
0 -13	0		15	20	30~ 46	015	0 -13	0		10	10	30~ 43
0 -15	-13		20	25	30~ 61	020 025	0 -15	-13		13	13	30~ 56
0	0 -15			30		030 035 040	0	0 -15		15	15	
-20	0 -20		25	36	41~ 71	042 045	-20	0		20	20	41~ 66
		0 -125		30		047 050		-20	0 -125	20	20	
0 -25	0 -25		30	41	51~ 86	055 060 065 070	0 -25	0 -25		25	25	51~ 76
0 -30	0 -30		41	46	61~107	070 075 080 090	0 -30	0 -30		30	30	61~ 86
0 -36	0 -36		46		71~122	100 110 120	0 -36	0 -36		36	36	71~ 97
0 -41	0 -41				81~132	140						
0 -46	0 -46			51	91~142	160 180	0 -41	0 -41		41	41	81~107
0 -51 0 -76	0 -51 0 -76	0 -250	51		102~152 152~203	200 250 300	0 -46	0 -46	0 -250	46	46	91~117
0 -102	0 -102				203~254	350 400	0 -51	0 -51		51	51	102~127

C-58 C-59

4. Dimensional tolerance of shaft and housing bores

Table 4 shows the recommended tolerance of shaft and housing bores when using ultra-thin section type ball bearings.

Table 4 Dimensional tolerance of shafts and housings

unit: μm

Bearing bore	For	r radial typ	e ball beari	ngs		four-point gular type		
diameter	Inner ring	g rotation	Outer rin	g rotation	Inner ring	g rotation	Outer rin	g rotation
No.	Shaft	Housing	Shaft	Housing	Shaft	Housing	Shaft	Housing
010	+10	+13	-10 -20	-13	+10		-10 -20	
015	+13 0	0	-13 -25	-25	+13 0	+13	-13 -25	-13
020	+15		-15		+15	0	-15	-25
025	0	+15	-30	-15	0		-30	
030 035		. 0		-30		+15		-15
035						0		-30
040	+20 0		-20 -40		+20 0		-20 -40	
042	U	1.20	-40	20	U	+20	-40	-20
047		+20 0		-20 -40		0		-20 -40
050		_						
055	+25		-25		+25		-25	
060	0	+25 0	-50	-25 -50	0	+25 0	-50	-25 -50
065				30				30
070								
075	+30	+30	-30	-30 -60	+30	+30	-30	-30
080	0	0	-60	-60	0	0	-60	-60
090								
100 110	+35	+35	-35	-35	+35	+35	-35	-35
120	0	0	-70	-70	+35 0	1 735	-35 -70	-35 -70
140	+40	+40	-40 -80	-40 -80				
160	+45	+45	-45	-45	+40	+40	-40	-40
180	0	0	-90	-90	0	0	-80	-80
200	+50 0	+50 0	-50 -100	-50 -100	+45	+45	-45	-45
250	+75	+75	-75	-75	0	0	-90	-90
300	0	0	-150	-150				
350	+100	+100	-100	-100	+100 0	+100 0	-50 -100	-50 -100
400	0	0	-200	-200	U	U	-100	-100

5. Installation-related dimensions of shafts and housings

Table 5 shows the installation-related dimensions of shafts and housings when using ultra-thin section type ball bearings.

Table 5 Installation-related dimensions of shafts and housings

	14 110451	1163			unit: mm
Dimension series code	$da \frac{d+1}{d+1}$	f (Max.) e (Min.)		h (Max.) g (Min.)	$r_{ m as}$ (Max.)
series code	e	f	g	h	
S	3.4	5.3	4.2	6.1	0.2
Α	4.6	7.3	5.4	8.2	0.4
В	5.7	9.3	6.6	10.2	0.8
С	6.9	11.3	7.7	12.2	0.8
D	9.2	15.3	10.1	16.2	1.3
F	13.9	23.3	14.8	24.2	1.8
G	18.7	31.3	19.5	32.1	1.8
J,H ¹⁾ 6.9		11.3	7.7	12.2	0.2
43 50 1					

C-61

¹⁾ Bearings with seal

Radial type

d 25.4 ∼ 304.8mm

Boundary dimensions		Basic Ic dynamic	kN	pe Fatigue load limit	dynamic	ad rating static	dynamic kN	ad ráting static		Basic lo dynamic	ad rating	igular ty Basic lo a dynamic kN	static	Fatigue load limit
d	D	$C_{ m r}$	dial $C_{0\mathrm{r}}$	$C_{ m u}$	$C_{\rm r}$	dial $C_{0{ m r}}$	C_{a}	kial $C_{0\mathrm{a}}$	$C_{ m u}$	Ra Cr	dial $C_{0{ m r}}$	$C_{ m a}^{ m Ax}$	ial $C_{0\mathrm{a}}$	$C_{ m u}$
25.4	34.925	2.75	1.94	0.084	2.40	1.66	3.15	5.05	0.181	2.91	2.21	3.80	6.70	0.147
38.1	47.625	3.10	2.60	0.112	2.71	2.23	3.55	6.75	0.243	3.35	3.10	4.40	9.35	0.205
50.8	63.5	5.00	4.30	0.186	4.35	3.70	5.70	11.2	0.400	5.25	4.95	6.90	14.9	0.325
63.5	76.2	5.40	5.20	0.224	4.70	4.45	6.15	13.5	0.485	5.65	5.95	7.45	18.1	0.395
76.2	88.9	5.75	6.10	0.263	5.00	5.25	6.55	15.9	0.570	6.05	7.00	7.95	21.2	0.465
88.9	101.6	6.05	7.00	0.300	5.25	6.00	6.90	18.2	0.655	6.35	8.00	8.35	24.3	0.530
101.6	114.3	6.35	7.85	0.325	5.50	6.80	7.25	20.6	0.710	6.65	9.05	8.75	27.4	0.580
107.95	120.65	6.50	8.30	0.335	5.60	7.15	7.40	21.7	0.730	6.80	9.55	8.95	29.0	0.595
114.3	127	6.60	8.75	0.345	5.75	7.55	7.55	22.9	0.750	6.95	10.1	9.15	30.5	0.610
120.65	133.35	6.75	9.20	0.350	5.85	7.95	7.70	24.1	0.765	7.10	10.6	9.30	32.0	0.625
127	139.7	6.85	9.65	0.360	5.95	8.35	7.85	25.2	0.785	7.20	11.1	9.50	33.5	0.640
139.7	152.4	7.10	10.5	0.375	6.15	9.10	8.10	27.6	0.820	7.45	12.1	9.80	37.0	0.665
152.4	165.1	7.35	11.4	0.390	6.35	9.85	8.35	29.9	0.855	7.70	13.2	10.1	40.0	0.695
165.1	177.8	7.55	12.3	0.405	6.55	10.6	8.60	32.0	0.885	7.90	14.2	10.4	43.0	0.720
177.8	190.5	7.75	13.2	0.420	6.70	11.4	8.80	34.5	0.915	8.10	15.2	10.7	46.0	0.745
190.5	203.2	7.95	14.1	0.435	6.85	12.2	9.05	37.0	0.945	8.30	16.2	10.9	49.0	0.770
203.2	215.9	8.10	15.0	0.445	7.05	13.0	9.25	38.0	0.975	8.50	17.3	11.2	52.5	0.790
228.6	241.3	8.45	16.8	0.470	7.35	14.5	9.65	44.0	1.03	8.90	19.3	11.7	58.5	0.835
254	266.7	8.80	18.6	0.495	7.60	16.0	10.0	48.5	1.08	9.20	21.4	12.1	65.0	0.880
279.4	292.1	8.10	20.3	0.520	7.90	17.6	10.4	53.5	1.13	9.55	23.4	12.6	71.0	0.920
304.8	317.5	9.40	22.1	0.540	8.15	19.1	10.7	58.0	1.18	9.85	25.5	13.0	77.5	0.960

4-point contact type

Angular type

Bea	aring numb	er	Арр	rox. dime	nsion	Ma	
Radial type	4-point contact type	Angular type	J	mm K	M	Radial type 4-point contact type (app	Angular type
KRS010	KXS	KYS	29	31.4	32.6	0.012	0.011
KRS015	KXS	KYS	41.7	44.1	45.2	0.018	0.017
KRA020	KXA	KYA	55.5	58.8	60.3	0.048	0.045
KRA025	KXA	KYA	68.2	71.5	73	0.059	0.054
KRA030	KXA	KYA	80.9	84.2	85.7	0.068	0.064
KRA035	KXA	KYA	93.6	96.9	98.4	0.082	0.077
KRA040	KXA	KYA	106.3	109.6	111	0.09	0.086
KRA042	KXA	KYA	112.7	115.9	117.4	0.095	0.091
KRA045	KXA	KYA	119	122.3	123.7	0.1	0.095
KRA047	KXA	KYA	125.4	128.6	130.1	0.104	0.1
KRA050	KXA	KYA	131.7	135	136.4	0.109	0.104
KRA055	KXA	KYA	144.4	147.7	149.1	0.118	0.113
KRA060	KXA	KYA	157.1	160.4	161.8	0.13	0.127
KRA065	KXA	KYA	169.8	173.1	174.5	0.14	0.136
KRA070	KXA	KYA	182.5	185.8	187.1	0.15	0.145
KRA075	KXA	KYA	195.2	198.5	199.8	0.16	0.154
KRA080	KXA	KYA	207.9	211.2	212.5	0.172	0.163
KRA090	KXA	KYA	233.3	236.6	237.9	0.2	0.186
KRA100	KXA	KYA	258.7	262	263.2	0.227	0.204
KRA110	KXA	KYA	284.1	287.4	288.6	0.236	0.227
KRA120	KXA	KYA	309.5	312.8	314	0.254	0.245

Radial type (with double-seal)

d 101.6 ∼ 304.8mm

		ndary nsions	Basic lo	Radial ty	Fatigue		d rating	t contac Basic loa	d rating	Fatigue	Basic loa	d rating		ad rating	
	n	nm	dynami	kN	load limit	dynamic	static	dynamic kN	static	load limit	dynamic	static	dynamic kN	static	load limit
				adial		Rac	lial	Axi	ial		Rac	lial		ial	
	d	D	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm a}$	$C_{0\mathrm{a}}$	$C_{ m u}$	$C_{\rm r}$	$C_{0\mathbf{r}}$	C_{a}	C_{0a}	$C_{ m u}$
	101.6	120.65	11.4	12.4	0.505	9.90	10.6	13.1	32.0	1.10	12.4	14.9	16.3	45.0	0.935
	107.95	127	11.7	13.0	0.520	10.1	11.2	13.3	34.0	1.13	12.7	15.8	16.7	48.0	0.965
	114.3	133.35	11.9	13.7	0.530	10.3	11.8	13.6	35.5	1.15	13.0	16.6	17.1	50.5	0.990
-															
	120.65	139.7	12.1	14.4	0.545	10.5	12.4	13.9	37.5	1.18	13.3	17.5	17.5	53.0	1.02
	127	146.05	12.4	15.0	0.555	10.7	12.9	14.1	39.0	1.21	13.5	18.4	17.8	55.5	1.04
	139.7	158.75	12.8	16.4	0.580	11.1	14.1	14.6	42.5	1.26	13.9	19.8	18.3	60.0	1.08
	152.4	171.45	13.2	17.7	0.600	11.4	15.3	15.0	46.5	1.31	14.4	21.5	18.9	65.5	1.12
	165.1	184.15	13.6	19.1	0.620	11.7	16.4	15.5	50.0	1.35	14.8	23.3	19.5	70.5	1.17
	177.8	196.85	13.9	20.4	0.640	12.1	17.6	15.9	53.5	1.40	15.1	24.7	19.9	75.0	1.20
		100.00	10.0		0.010		17.0	10.0	00.0		10.1		10.0	70.0	1.20
	190.5	209.55	14.3	21.7	0.660	12.3	18.7	16.2	57.0	1.44	15.5	26.5	20.5	80.0	1.24
	203.2	222.25	14.6	23.1	0.680	12.6	19.9	16.7	60.5	1.48	15.9	28.2	21.0	85.5	1.28
	228.6	247.65	15.2	25.7	0.720	13.2	22.2	17.3	67.5	1.57	16.6	31.5	21.8	95.0	1.35
	220.0	247.03	13.2	25.7	0.720	13.2	22.2	17.5	07.5	1.57	10.0	31.3	21.0	95.0	1.55
	254	273.05	15.8	28.4	0.755	13.7	24.5	18.0	74.5	1.64	17.3	35.0	22.7	106	1.43
	279.4	298.45	16.3	31.0	0.790	14.1	26.8	18.6	81.5	1.72	17.8	38.0	23.5	115	1.49
	304.8	323.85	16.8	34.0	0.730	14.6	29.2	19.2	88.5	1.72	18.4	41.0	24.2	125	1.54
	304.0	323.03	10.6	34.0	0.020	14.0	29.2	19.2	00.5	1.79	10.4	41.0	24.2	123	1.54

4-point contact type (with double-seal)

Angular type (with single-seal)

C0.4

Ros	ring numbe	or		Approx. o	limonsion		Mass		
Dea	ining numbe	51		Approx. c	111111111111111111111111111111111111111	ļ	kg		
Radial type	4-point contact type	Angular type	N	P	mm S	K	Radial type of 4-point contact type (app	Angular type	
KRJ040LL KRJ042LL KRJ045LL	KXJ KXJ KXJ	KYH KYH KYH	105.5 111.8 118.2	115.9 122.2 128.6	106.2 112.6 119.1	113.6 120 126.3	0.249 0.263 0.277	0.222 0.236 0.254	
KRJ047LL KRJ050LL KRJ055LL	KXJ KXJ	KYH KYH KYH	124.6 130.9 143.6	135 141.3 154	125.3 131.7 144.4	132.7 139 151.7	0.295 0.308 0.336	0.268 0.281 0.304	
KRJ060LL KRJ065LL KRJ070LL	KXJ KXJ	KYH KYH KYH	156.3 169 181.7	166.7 179.4 192.1	157.1 169.8 182.4	164.4 177.1 189.8	0.367 0.395 0.422	0.331 0.354 0.381	
KRJ075LL KRJ080LL KRJ090LL	KXJ KXJ	KYH KYH KYH	194.4 207.1 232.5	204.8 217.5 242.9	195.2 207.9 233.4	202.5 215.2 240.6	0.45 0.481 0.535	0.404 0.431 0.5	
KRJ100LL KRJ110LL KRJ120LL	KXJ KXJ	KYH KYH KYH	257.9 283.3 308.7	268.3 293.7 319.1	258.8 284.2 309.7	266 291.4 316.8	0.594 0.648 0.708	0.531 0.581 0.63	

special pplication Bearings

Floating side SL type cylindrical roller bearing (open type)

SL type cylindrical roller bearing for sheaves (sealed type)

1. Types, design features, and characteristics

SL type cylindrical roller bearings are doublerow full complement cylindrical roller bearings that have a thin cross-section and can withstand extremely large radial loads and impact loads. These bearings are suitable for a wide range of slow-moderate speed, heavily loaded applications such as construction machinery, vehicles, steel machinery, and lifting machinery.

These bearings can be produced both with and without seals. **Table 1** shows the characteristics of this bearing type.

Table 1 SL type cylindrical roller bearing types and characteristics

	Туре	Features
Onen type	SL01 type SL02 type	 The SL01 type is used for fixed side bearings and the SL02 is used for float side bearings. The outer ring is divided in the circumferential direction by a special method and reconnected after rollers are embedded. The bearing side surface needs to be firmly fixed in the axial direction by the shoulders of shafts and housings. The outer ring has oil grooves and oil holes. The SL01 type can receive an axial load in both directions. Dimensions Da and da are applied for the shoulder dimension of shafts and housings. However, when a moment load or a large axial load is to be used, dimensions J and K are recommended. The dimension table (from C-68 to C-71) shows dimension series codes da, Da, J and K.
Sealed tyne	SL04 type	 The SL04 type is only designed as the fixed side bearing. The inner ring is divided in the circumferential direction by a special method and reconnected after rollers are embedded. The bearing side surface needs to be firmly fixed in the axial direction by the shoulders of shafts and housings. The inner ring has oil grooves and oil holes. A radial load and an axial load in both directions can be applied to the bearing. The bearings are shielded, filled with grease, and have snap rings in the outer ring. These bearings are allow easy design into the application. The bearings are mainly used for sheaves. Surface coating treatment is applied to prevent rust.

Note: For SL type cylindrical roller bearings, three-row, four-row, and five-row bearings are also available besides the double-row. Please contact **NTN** Engineering.

2. Dimensional and rotational accuracy

SL type cylindrical roller bearings are made according to JIS class 0 (refer to **Table 6.4** (A-58 to A-59) in section "6. Bearing tolerances"). The outer ring accuracy of the SL01 type and the SL02 type is before division. Regarding the SL04 type, the inner ring accuracy is before surface treatment and division, and the outer ring accuracy is before surface treatment.

3. Radial internal clearance

Table 2 shows the radial internal clearance

Table 2 Radial internal clearance

Nominal bore dia d		CN (n	ormal)	C	:3	C4		
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	
30	50	20	75	40	95	55	110	
50	80	30	90	55	115	75	135	
80	120	35	105	80	150	105	175	
120	180	60	150	110	200	150	240	
180	250	90	190	155	255	205	305	
250	315	110	225	195	310	255	370	
315	400	140	265	245	370	320	445	
400	500	180	320	300	440	395	535	

values. It should be noted that the values differ from standard cylindrical roller bearings.

4. Selection of recommended fits and radial internal clearance

Table 3 shows the recommended fits when the bearings are used in outer ring rotating applications such as sheaves and wheels. **Table 4** shows the relationship between the fits and the radial internal clearance.

It is necessary to equally apply load on the entire surface of the raceway end on the bearing side face at the time of assembly and removal.

Table 3 Recommended fits

С	ondition	Shaft tolerance class	Housing tolerance class
	Heavy load with thin wall housing		P7
Outer ring rotational load	Ordinary or heavy load	g6 or h6	N7 ¹⁾
1000	Light or fluctuating load		M7

1) N7 must be used for sheaves (to prevent snap ring from coming off).

Refer to **Table 7.2** (A-80) in section "7. Bearing fits" for the inner ring rotational load.

Table 4 Relationship between fits and radial internal clearance

unit: //m

							Н	ousing f	its					
		G 7	Н6	J 6	J 7	K 6	K 7	g 6	M 6	M 7	N 6	N 7	P 6	Р7
	g 6													
	h 6													
	j 5													
	j 6			 N(norn	22)					_	3 —			
fits	k 5										ა — 			
Housing fits	k 6													
予	m 5													
	m 6													
	n 5				3 —						С	4		
	n 6				3 — 									
	р6				С	4								

Note: Use CN (normal) clearance when the shaft fit is g6, the housing fit is N7 (N6), and the speed is low (for sheaves, etc.)

C-66

(fixed side)

SL02-48 type SL02-49 type (floating side)

 $d 50 \sim 220 \text{mm}$

Bou	ndary	dime	nsions	Basic loa dynamic	ad rating	Allowab	le speed	Bearing	number		Dimens	ions	
	m	nm			static N		n-1				mm	1	
d	D	B	$r_{ m s min}^{ m 1)}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grease lubrication	Oil lubrication	Fixed side	Floating side	J	K	M	$e^{2)}$
50	72	22	0.6	49.5	83.0	2 000	4 000	SL01-4910	SL02-4910	58	63	64	1
60	85	25	1	73.0	136	1 700	3 300	SL01-4912	SL02-4912	69.5	74.5	75.5	1
70	100	30	1	105	193	1 400	2 900	SL01-4914	SL02-4914	81.5	88	89.5	1
80	110	30	1	111	215	1 300	2 500	SL01-4916	SL02-4916	90	97	98.5	1
90	125	35	1.1	150	300	1 100	2 200	SL01-4918	SL02-4918	103	111	112.5	1.5
100	140	40	1.1	194	400	1 000	2 000	SL01-4920	SL02-4920	116	125	126.5	2
110	150	40	1.1	202	430	910	1 800	SL01-4922	SL02-4922	125	134	135.5	2
120	165	45	1.1	226	480	830	1 700	SL01-4924	SL02-4924	138.5	148.5	150.5	3
130	180	50	1.5	262	555	770	1 500	SL01-4926	SL02-4926	149	160	162	4
140	190	50	1.5	272	595	710	1 400	SL01-4928	SL02-4928	159.5	170	172.5	4
150	190 210	40 60	1.1 2	235 410	575 865	670 670	1 300 1 300	SL01-4830 SL01-4930	SL02-4830 SL02-4930	165.5 171.5	173.5 186	175.5 189.5	2 4
160	200 220	40 60	1.1 2	241 425	605 935	630 630	1 300 1 300	SL01-4832 SL01-4932	SL02-4832 SL02-4932	173.5 185	182.5 199	184 203	2 4
170	215 230	45 60	1.1 2	265 435	650 980	590 590	1 200 1 200	SL01-4834 SL01-4934	SL02-4834 SL02-4934	186.5 194	196.5 208	198 211.5	3 4
180	225 250	45 69	1.1 2	275 550	695 1 230	560 560	1 100 1 100	SL01-4836 SL01-4936	SL02-4836 SL02-4936	199 206	209 222	211 225.5	3 4
190	240 260	50 69	1.5 2	315 565	785 1 290	530 530	1 100 1 100	SL01-4838 SL01-4938	SL02-4838 SL02-4938	208.5 216.5	219.5 232.5	221.5 235.5	4 4
200	250 280	50 80	1.5 2.1	320 665	825 1 500	500 500	1 000 1 000	SL01-4840 SL01-4940	SL02-4840 SL02-4940	219 232	230 250	232 253.5	4 5
220	270	50	1.5	340	905	450	910	SL01-4844	SL02-4844	240	251	253	4

Fixed side

Floating side

	lation-re mension		Ma (appi	
$d_{a^{(3)}}$	$D_{\mathrm{a}^{\mathrm{3}\mathrm{)}}}$	0.0	kį	
Min.	Max.	$r_{ m as}$ Max.	Fixed side	Floating side
54	68	0.6	0.3	0.29
65	80	1	0.46	0.44
75	95	1	0.78	0.75
85	105	1	0.88	0.85
96.5	118.5	1	1.35	1.3
106.5	133.5	1	1.95	1.9
116.5	143.5	1	2.15	2.1
126.5	158.5	1	2.95	2.85
138	172	1.5	3.95	3.8
148	182	1.5	4.2	4.1
156.5 159	183.5 201	1 2	2.9 6.65	2.8 6.45
159	201	2	6.65	6.45
166.5	193.5	1	3.05	2.9
169	211	2	7	6.8
176.5	208.5	1	4.1	3.95
179	221	2	7.35	7.1
186.5	218.5	1	4.3	4.15
189	241	2	10.7	10.5
198	232	1.5	5.65	5.45
199	251	2	11.2	10.9
208	242	1.5	5.9	5.7
211	269	2	15.7	15.3
228	262	1.5	6.4	6.2

³⁾ If the bearing on the fixed side supports an eccentric axial load or a large axial load, shoulder dimension *J* and dimension *K* are recommended.

(fixed side)

SL02-48 type SL02-49 type (floating side)

d 220 ~ 440mm

Bou	ndary	dime	nsions	dynami	oad rating c static	Allowab	le speed	Bearing	number		Dimens	ions	
	n	nm			kN	mi					mm	1	
d	D	B	$r_{\mathrm{s}\mathrm{min}^{\mathrm{1}}}$	$C_{\rm r}$	C_{0r}	Grease lubrication	Oil lubrication	Fixed side	Floating side	J	K	M	e ²⁾
220	300	80	2.1	695	1 620	450	910	SL01-4944	SL02-4944	249.5	267.5	271	5
240	300 320	60 80	2 2.1	510 730	1 330 1 770	420 420	830 830	SL01-4848 SL01-4948	SL02-4848 SL02-4948	261 272.5	275 290.5	276.5 294	4 5
260	320 360	60 100	2 2.1	535 1 070	1 450 2 520	380 380	770 770	SL01-4852 SL01-4952	SL02-4852 SL02-4952	283 297	297 320	300 324.5	4
280	350 380	69 100	2 2.1	685 1 110	1 860 2 710	360 360	710 710	SL01-4856 SL01-4956	SL02-4856 SL02-4956	308 319	324 342	327 346	4 6
300	380 420	80 118	2.1 3	805 1 580	2 160 3 800	330 330	670 670	SL01-4860 SL01-4960	SL02-4860 SL02-4960	330 344	348 371	351 377	6 6
320	400 440	80 118	2.1 3	835 1 650	2 310 4 100	310 310	630 630	SL01-4864 SL01-4964	SL02-4864 SL02-4964	353 371	371 398	374 404	6 6
340	420 460	80 118	2.1 3	855 1 690	2 430 4 300	290 290	590 590	SL01-4868 SL01-4968	SL02-4868 SL02-4968	370 388	388 416	391 421	6 6
360	440 480	80 118	2.1 3	885 1 730	2 580 4 500	280 280	560 560	SL01-4872 SL01-4972	SL02-4872 SL02-4972	393 406	411 434	414 439	6 6
380	480 520	100 140	2.1 4	1 290 2 300	3 600 5 900	260 260	530 530	SL01-4876 SL01-4976	SL02-4876 SL02-4976	422 437	444 469	449 475	6 7
400	540	140	4	2 410	6 200	250	500	SL01-4980	SL02-4980	450	484	490	7
420	560	140	4	2 470	6 500	240	480	SL01-4984	SL02-4984	472	505	512	7
440	600	160	4	3 000	7 850	230	450	SL01-4988	SL02-4988	503	540	546	7

Fixed side

Floating side

	llation-re imension mm	Mass (approx.) kg			
$d_{ m a^{3)}}$ Min.	$D_{\mathrm{a}^{\mathrm{3}\mathrm{)}}}$ Max.	$r_{\rm as}$	Fixed side	Ŭ	
IVIIN.	wax.	Max.	Fixed side	Floating side	
231	289	2	17.1	16.6	
249	291	2	10.2	9.9	
251	309	2	18.4	17.9	
269	311	2	11	10.6	
271	349	2	32	31.2	
289	341	2	16	15.6	
291	369	2	33.9	33.1	
311	369	2	23	22.2	
313	407	2.5	53	51.9	
331	389	2	24.3	23.5	
333	427	2.5	56	54.9	
351	409	2	25.6	24.8	
353	447	2.5	59	57.8	
371	429	2	27	26	
373	467	2.5	62	60.8	
391	469	2	45.3	44	
396	504	3	92.3	90.5	
416	524	3	96.4	94.6	
436	544	3	101	98.6	
456	584	3	139	137	

SL Type Cylindrical Roller Bearings for Sheaves

OSL Type Cylindrical Roller Bearings for Sheaves

d	40	\sim	1	7	0	n	n	m	١	
---	----	--------	---	---	---	---	---	---	---	--

d 40	~ 1	/0mi	n											
	Bour	ndary	dimens	sions		Basic loa	d rating	Allowable	Bearing number		Dimen	sions		
		m	m			dynamic		speed min ⁻¹	number		_ mi	m		
d	D	В	C	t	$r_{ m smin}$	$C_{ m r}$ kN	C_{0r}	Grease lubrication		J	E (approx.)	f	Cf	S
40	68	38	37	0.8	0.6	79.5	116	2 500	SL04-5008NR	51	71.8	2	28	4.5
45	75	40	39	0.8	0.6	95.5	144	2 200	SL04-5009NR	56.6	79	2	30	4.5
50	80	40	39	0.8	0.6	100	158	2 000	SL04-5010NR	61	83.8	2	30	4.5
55	90	46	45	1	0.6	118	193	1 800	SL04-5011NR	67.9	95	2.5	34	5.5
60	95	46	45	1	0.6	123	208	1 700	SL04-5012NR	73.4	100	2.5	34	5.5
65	100	46	45	1	0.6	128	224	1 500	SL04-5013NR	78	105	2.5	34	5.5
70	110	54	53	1	0.6	171	285	1 400	SL04-5014NR	84.5	114.5	2.5	42	5.5
75	115	54	53	1	0.6	197	325	1 300	SL04-5015NR	90	119.7	2.5	42	5.5
80	125	60	59	1	0.6	205	350	1 300	SL04-5016NR	96.5	129.7	2.5	48	5.5
85	130	60	59	1	0.6	214	380	1 200	SL04-5017NR	103.7	134.5	2.5	48	5.5
90	140	67	66	1.5	0.6	305	540	1 100	SL04-5018NR	110	146.3	2.5	54	6
95	145	67	66	1.5	0.6	310	560	1 100	SL04-5019NR	114.4	151.3	2.5	54	6
100	150	67	66	1.5	0.6	330	580	1 000	SL04-5020NR	118.5	156.3	2.5	54	6
110	170	80	79	1.8	1	385	695	910	SL04-5022NR	131.5	176.4	2.5	65	7
120	180	80	79	1.8	1	400	750	830	SL04-5024NR	141.5	188.4	3	65	7
130	200	95	94	1.8	1	535	1 000	770	SL04-5026NR	158	208.4	3	77	8.5
140	210	95	94	1.8	1	600	1 120	710	SL04-5028NR	167	218.5	3	77	8.5
150	225	100	99	2	1	690	1 290	670	SL04-5030NR	178.3	233.5	3	81	9
160	240	109	108	2	1.1	720	1 390	630	SL04-5032NR	191	248.5	3	89	9.5
170	260	122	121	2	1.1	925	1 790	590	SL04-5034NR	202.7	270.5	4	99	11

3. The bearings are non-contact shielded ty	pe bearings, but contact sealed ty	ype bearings are also available base	d on your request.
9	' C 72	,, ,	, ,
	C-72		

Install di	elated	Mass	
$d_{\rm a}$	mm		kg
(Min.)	E_1	$Cf_1^{1)}$	(approx.)
43.5	82	28	0.552
48.5	88	30	0.688
53.5	94	30	0.752
60	106	34	1.12
65	112	34	1.2
70	116	34	1.27
75	130	42	1.87
80	135	42	1.97
85	145	48	2.66
90	155	48	2.79
96	165	54	3.71
101	175	54	3.87
106	180	54	4.03
116.5	200	65	7
126.5	210	65	7.5
136.5	230	77	11.4
146.5	245	77	12.1
157	260	81	14.6
167	275	89	18.2
177	300	99	24.6

1) Tolerance of dimension Cf_1 SL04-5

SL04-5008NR \sim SL04-5034NR : -0.1 \sim -0.5mm SL04-5036NR \sim SL04-5040NR : -0.1 \sim -0.7mm C-73

d 18	30 ~	440n	nm												
	Bour	•	dimens	ions		Basic load rating Allowable speed			Bearing number		Dimer		S		
		m	ım			dynamic static min-1 kN Grease				E mm					
d	D	B	C	t	$r_{\rm smin}$	$C_{ m r}$	C_{0r}	lubrication		J	(approx.)	f	Cf	S	
180	280	136	135	2	1.1	1 090	2 140	560	SL04-5036NR	220	290.5	4	110	12.5	
190	290	136	135	2	1.1	1 120	2 230	530	SL04-5038NR	226	300.5	4	110	12.5	
200	310	150	149	2	1.1	1 310	2 650	500	SL04-5040NR	245.5	320.5	4	120	14.5	
220	340	160	159	2.5	1.1	1 640	3 300	450	SL04-5044NR	260	357	6	130	14.5	
240	360	160	159	2.5	1.1	1 710	3 550	420	SL04-5048NR	280.5	377	6	130	14.5	
260	400	190	189	3	1.5	1 950	4 200	380	SL04-5052NR	310	417	7	154	17.5	
280	420	190	189	3	1.5	2 170	4 700	360	SL04-5056NR	325	437	7	154	17.5	
300	460	218	216	3	1.5	2 670	5 850	330	SL04-5060NR	363	481	8	176	20	
320	480	218	216	3	1.5	2 720	6 100	310	SL04-5064NR	376	501	8	176	20	
340	520	243	241	3.5	2	3 650	8 000	290	SL04-5068NR	406	545	8	194	23.5	
360	540	243	241	3.5	2	3 750	8 300	280	SL04-5072NR	421	565	10	194	23.5	
380	560	243	241	3.5	2	3 800	8 750	260	SL04-5076NR	442	585	10	194	23.5	
400	600	272	270	3.5	2	4 250	9 950	250	SL04-5080NR	470	627	12	210	30	
420	620	272	270	3.5	2	4 350	10 300	240	SL04-5084NR	486	647	12	210	30	
440	650	280	278	4.5	3	4 500	11 000	230	SL04-5088NR	518	677	12	210	34	

1	-
ϕE_1	$\phi d_{\rm a}$
	_

	Installation-related dimensions							
d_a	mm		kg					
(Min.)	E_1	$Cf_{1}^{1)}$	(approx.)					
187	320	110	32.3					
197	330	110	33.7					
207	350	120	43.5					
228.5	380	130	55.5					
248.5	400	130	59.5					
270	445	154	90.7					
290	465	154	96.2					
310	510	176	137					
330	530	176	144					
352	580	194	194					
372	600	194	203					
392	620	194	212					
412	675	210	281					
432	695	210	292					
456	725	210	331					

For angular contact ball bearings for machine tools with a contact angle of 15° and bearing tolerance of JIS class 5 or higher, cylindrical roller bearings having bearing tolerance of JIS class 5 or higher, tapered roller bearings having bearing tolerance of JIS class 5 or higher, and bearings for supporting ball screws, see the special catalog "Precision rolling bearings (CAT. No. 2260/E)".

Bearings for Special Environments

Bearings for special environments are bearings that can be used for clean environments and high vacuum environments, where conventional bearings would not be acceptable. Bearings for special environments can also be used for the development of space equipment, vacuum equipment, and semiconductor manufacturing equipment. For details, see the special catalog "Ultra final series bearings for clean environment (CAT. No. 3028/E)."

Rubber Molded Bearings

Rubber molded bearings are rubber rollers made by baking and bonding urethane rubber directly to the outer diameter of small deep groove ball bearings. Rubber molded bearings are suitable for low vibration and low noise applications, and feed mechanisms that require accuracy. For details, see the special catalog "Rubber molded bearings (CAT. No. 3021/J)."

Bearings used for electric equipment such as motors and generators may cause electrolytic corrosion due to leakage current, which shortens the bearing life. MEGAOHMTM series insulated bearings are the bearings developed to prevent this electrolytic corrosion. The series includes ceramic and resin type bearings. For details, see the special catalog "MEGAOHMTM series insulated bearings (CAT. No. 3030/E)."

Clutches/Torque Limiters

1) One-way clutch

The driving force is transmitted only in one direction. In the opposite direction, the driving and idling can be switched by a clutch with a mechanism for idling. **NTN** provides a variety of one-way clutches to meet various needs.

For the clutch models, handling precautions, and other details, see the special catalog "Clutches (CAT. No. 2900/E)."

2) Torque limiter units

The **NTN** torque limiter unit (NTS type) is a unit composed of an inner ring, a coil spring, an external resin part, and a lid. When the torque acting between the inner ring and the external resin part is low, the inner ring and the outer resin part are rotated simultaneously. Under high torque conditions, the inner ring and the outer resin part are relatively rotated while keeping a constant torque.

For the torque limiter models, handling precautions, and other details, see the special catalog "Torque limiter units (CAT. No. 6404/J)."

C-76 C-77

Rolling Bearing Accessories Contents

Locknuts [)-	2
Nuts [) -	8
Lockwashers ····· [D-1	2
Locking clips ····· [D-1	5
Snap rings and grooves for rolling bearings $\cdots $	D-1	6
Balls [D- 2	C
Noodla rallara	2	1

Rolling Bearing Accessories

(For adapter sleeve, withdrawal sleeve and shaft) Series AN

Number				Dimer m						Mass kg	(ap Bore	prox.) Lockwasher
	Thread no.										liameter r	10. no. ³⁾
	$G^{_{1)}}$	d_2	d_1	a	b	h	d_6	В	<i>r</i> ₁		f adapter	2)
	G-7	a_2	a_1	g	U	n	a_6	D	IVIdX.	(approx.)		
AN00	M10 × 0 75	10	10.5	14	2	0	10 F	4	0.4	0.005		AW00
AN00 AN01	M10 × 0.75 M12 × 1	18 22	13.5 17	18	3	2	10.5 12.5	4	0.4	0.005	_	AW01
AN02	M15 × 1	25	21	21	4	2	15.5	5	0.4	0.007		AW01
ANO3	M17 × 1	28	24	24	4	2	17.5	5	0.4	0.013	_	AW02
AN04	M20 × 1	32	26	28	4	2	20.5	6	0.4	0.019	04	AW04
AN/22	M22 × 1	34	28	30	4	2	22.5	6	0.4	0.023	_	AW/22
AN05	$M25 \times 1.5$	38	32	34	5	2	25.8	7	0.4	0.025	05	AW05
AN/28	$M28 \times 1.5$	42	36	38	5	2	28.8	7	0.4	0.040	_	AW/28
AN06	$M30 \times 1.5$	45	38	41	5	2	30.8	7	0.4	0.043	06	AW06
AN/32	$M32 \times 1.5$	48	40	44	5	2	32.8	8	0.4	0.058	_	AW/32
AN07	$M35 \times 1.5$	52	44	48	5	2	35.8	8	0.4	0.053	07	AW07
AN08	$M40 \times 1.5$	58	50	53	6	2.5	40.8	9	0.5	0.085	08	AW08
AN09	$M45 \times 1.5$	65	56	60	6	2.5	45.8	10	0.5	0.119	09	AW09
AN10	M50 × 1.5	70	61	65	6	2.5	50.8	11	0.5	0.148	10	AW10
AN11 AN12	M55 × 2	75 80	67 73	69 74	7 7	3	56 61	11	0.5	0.158	11 12	AW11 AW12
AN12 AN13	M60 × 2 M65 × 2	85	73 79	74 79	7	3	66	11 12	0.5 0.5	0.174 0.203	13	AW12 AW13
AN13	M70 × 2	92	85	85	8	3.5	71	12	0.5	0.242	14	AW13
AN15	M75 × 2	98	90	91	8	3.5	76	13	0.5	0.242	15	AW15
AN16	M80 × 2	105	95	98	8	3.5	81	15	0.6	0.397	16	AW16
AN17	M85 × 2	110	102	103	8	3.5	86	16	0.6	0.451	17	AW17
AN18	M90 × 2	120	108	112	10	4	91	16	0.6	0.556	18	AW18
AN19	M95 × 2	125	113	117	10	4	96	17	0.6	0.658	19	AW19
AN20	$M100 \times 2$	130	120	122	10	4	101	18	0.6	0.698	20	AW20
AN21	$M105 \times 2$	140	126	130	12	5	106	18	0.7	0.845	21	AW21
AN22	$M110 \times 2$	145	133	135	12	5	111	19	0.7	0.965	22	AW22
AN23	M115 × 2	150	137	140	12	5	116	19	0.7	1.01	_	AW23
AN24	M120 × 2	155	138	145	12	5	121	20	0.7	1.08	24	AW24
AN25	M125 × 2	160	148	150	12	5	126	21	0.7	1.19	_	AW25
AN26 AN27	M130 × 2 M135 × 2	165 175	149 160	155 163	12 14	5 6	131 136	21 22	0.7 0.7	1.25 1.55	26 —	AW26 AW27
AN27 AN28	M140 × 2	180	160	168	14	6	141	22	0.7	1.56	28	AW28
AN29	M145 × 2	190	171	178	14	6	146	24	0.7	2.00	_	AW29
AN30	M150 X 2	195	171	183	14	6	151	24	0.7	2.03	30	AW30
AN31	M155 × 3	200	182	186	16	7	156.5	25	0.7	2.21	_	AW31
AN32	M160 × 3	210	182	196	16	7	161.5	25	0.7	2.59	32	AW32
AN33	M165 × 3	210	193	196	16	7	166.5	26	0.7	2.43	_	AW33
AN34	$M170 \times 3$	220	193	206	16	7	171.5	26	0.7	2.80	34	AW34
AN36	$M180 \times 3$	230	203	214	18	8	181.5	27	0.7	3.07	36	AW36
AN38	$M190 \times 3$	240	214	224	18	8	191.5	28	0.7	3.39	38	AW38
AN40	$M200 \times 3$	250	226	234	18	8	201.5	29	0.7	3.69	40	AW40

			(app ı Withdrawal	rox.) I sleeve no.				Shaft dia.
AH30	AH240	AH31	AH241	AH2	AH32	AH3	AH23	mm (for shaft)
								(101 011011)
_	_	_	_	_	_	_	_	10
_	_	_	_	_	_	_	_	12
_	_	_	_	_	_	_	_	15 17
								20
_	_	_	_	_	_	_	_	22
_	_	_	_	_	_	_	_	25
_	_	_	_	_	_	_	_	28
_	_	_	_	_	_	_	_	30
_	_	_	_	_	_	_	_	32
_								35 40
				AH208		AH 308	AH2308	45
_	_	_	_	AH209	_	AH 309	AH2309	50
_	_	_	_	AH210	_	AHX310	AHX2310	55
_	_	_	_	AH211	_	AHX311	AHX2311	60
_	_	_	_	AH212	_	AHX312	AHX2312	
_	_	_	_		_	_	_	70
_			_	AH213 AH214		AH 313 AH 314	AH2313 AHX2314	75 80
				AH215		AH 314	AHX2314	
_	_	_	_	AH216	_	AH 316	AHX2316	
_	_	_	_	AH217	_	AHX317	AHX2317	95
_	_	_	_	AH218	AHX3218	AHX318	AHX2318	
_	_	_	_	AH219		AHX319	AHX2319	
_	_	_	AH24122	AH220 AH221	AHX3220	AHX320 AHX321	AHX2320	
		AHX3122	AH24122	AH221 AH222		AHX321 AHX322		115 120
_	AH24024	— AIIA3122	_	—	AHX3222	— AIIA322	AHX2322	
AHX3024		AHX3124	AH24124	AH224	_	AHX324	_	130
_	AH24026	_	_	_	AHX3224	_	AHX2324	
AHX3026		AHX3126	AH24126	AH226		AHX326		140
	AH24028				AHX3226		AHX2326	
AHX3028	AH24030	AHX3128	AH24128	AH228	 AHX3228	AHX328	AHX2328	150 155
AHX3030	AПZ4U3U —		AH24130	AH230	АПЛ3220 —		ΑΠΛ 2 320	160
_	_	AHX3130	_	A11200	AHX3230	AHX330	AHX2330	
AH 3032	AH24032	_	AH24132	AH232	_	_	_	170
AH 3034	AH24034	AH3132	AH24134	AH234	AH3232	AH332	AH2332	180
AH 3036	AH24036	AH3134	AH24136	AH236	AH3234	AH334	AH2334	190
_	AH24038	AH 3136	AH24138	_	AH3236	_	AH2336	200

AN40 M200 × 3 250 226 234 18 8 201.5 29 0.7 3.69

1) Thread shapes and dimensions are as per JIS B 0205-1 and JIS B 0205-4 (general metric threads).

2) Used for adapter series H31, H2, H3, and H23.

3) Washers with straight inner tabs that have code "X" after the number can also be used.

D-2

Locknuts

(For adapter sleeve and shaft) Series AN

Number							ensions nm						Mass kg
	Thread no.								r_1		Screw hole for lockplates		8
	$G^{\scriptscriptstyle (1)}$	d_2	d_1	g	b	h	d_6	B	Max.	l	s ²⁾	$d_{ m P}$	(approx.)
AN44	Tr220 × 4	280	250	260	20	10	222	32	0.8	15	M8	238	5.20
AN48	$Tr240 \times 4$	300	270	280	20	10	242	34	0.8	15	M8	258	5.95
AN52	$Tr260 \times 4$	330	300	306	24	12	262	36	8.0	18	M10	281	8.05
AN56	Tr280 × 4	350	320	326	24	12	282	38	0.8	18	M10	301	9.05
AN60	Tr300 \times 4	380	340	356	24	12	302	40	8.0	18	M10	326	11.8
AN64	$Tr320 \times 5$	400	360	376	24	12	322.5	42	8.0	18	M10	345	13.1
AN68	Tr340 \times 5	440	400	410	28	15	342.5	55	1	21	M12	372	23.1
AN72	Tr360 × 5	460	420	430	28	15	362.5	58	1	21	M12	392	25.1
AN76	Tr380 \times 5	490	450	454	32	18	382.5	60	1	21	M12	414	30.9
AN80	$Tr400 \times 5$	520	470	484	32	18	402.5	62	1	27	M16	439	36.9
AN84	$Tr420 \times 5$	540	490	504	32	18	422.5	70	1	27	M16	459	43.5
AN88	Tr440 × 5	560	510	520	36	20	442.5	70	1	27	M16	477	45.3
AN92	Tr460 × 5	580	540	540	36	20	462.5	75	1	27	M16	497	50.4
AN96	Tr480 × 5	620	560	580	36	20	482.5	75	1	27	M16	527	62.2
AN100	$Tr500 \times 5$	630	580	584	40	23	502.5	80	1	27	M16	539	63.3

	approx.) Lockplate no.	Shaft dia. mm (for shaft)
44 48 52 56 60 64 68 72 76 80 84	AL44 AL44 AL52 AL52 AL60 AL64 AL68 AL76 AL80 AL80 AL88	220 240 260 280 300 320 340 360 380 400 420 440
92 96	AL88 AL96	460 480
/500	AL100	500

¹⁾ Thread shapes and dimensions are as per JIS B 0216 (metric trapezoidal screw threads).
2) Thread shapes and dimensions of screw holes are as per JIS B 0205-1 and JIS B 0205-4 (general metric threads).
3) Used for adapter series H31, H32, and H23.

D-4

(For adapter sleeve and shaft) Series ANL

Number	Thread no. $G^{\scriptscriptstyle (1)}$	d_2	d_1	Dimer mi		h	d_6	В	r_1 Max.	Mass kg	Bore diameter no. of adapter 2)	(approx.) Lockwasher no.3)	Shaft dia. mm (for shaft)
	ŭ	ω <u>ν</u>	α_1	9	U	70	α0	D	WIGA.	(upprox.,	,		(ioi silait)
ANL24	M120 × 2	145	133	135	12	5	121	20	0.7	0.78	24	AWL24	1 120
ANL26	$M130 \times 2$	155	143	145	12	5	131	21	0.7	0.88	26	AWL26	130
ANL28	$M140 \times 2$	165	151	153	14	6	141	22	0.7	0.99	28	AWL28	3 140
ANL30	$M150 \times 2$	180	164	168	14	6	151	24	0.7	1.38	30	AWL30	150
ANL32	$M160 \times 3$	190	174	176	16	7	161.5	25	0.7	1.56	32	AWL32	2 160
ANL34	$M170 \times 3$	200	184	186	16	7	171.5	26	0.7	1.72	34	AWL34	170
ANL36	$M180 \times 3$	210	192	194	18	8	181.5	27	0.7	1.95	36	AWL36	180
ANL38	$M190 \times 3$	220	202	204	18	8	191.5	28	0.7	2.08	38	AWL38	3 190
ANL40	$M200 \times 3$	240	218	224	18	8	201.5	29	0.7	2.98	40	AWL40	200

Number							ensions mm						Mass
	Thread no.						111111		r_1		Screw hole for lockplates		kg
	$G^{\scriptscriptstyle 1)}$	d_2	d_1	g	b	h	d_6	B	Max.	l	$S^{2)}$	$d_{ m p}$	(approx.)
ANL44	Tr220 × 4	260	242	242	20	9	222	30	8.0	12	M6	229	3.09
ANL48	Tr240 × 4	290	270	270	20	10	242	34	0.8	15	M8	253	5.16
ANL52	Tr260 × 4	310	290	290	20	10	262	34	8.0	15	M8	273	5.67
ANL56	Tr280 × 4	330	310	310	24	10	282	38	0.8	15	M8	293	6.78
ANL60	Tr300 × 4	360	336	336	24	12	302	42	8.0	15	M8	316	9.62
ANL64	Tr320 × 5	380	356	356	24	12	322.5	42	0.8	15	M8	335	9.94
ANL68	Tr340 × 5	400	376	376	24	12	342.5	45	1	15	M8	355	11.7
ANL72	Tr360 × 5	420	394	394	28	13	362.5	45	1	15	M8	374	12.0
ANL76	Tr380 × 5	450	422	422	28	14	382.5	48	1	18	M10	398	14.9
ANL80	Tr400 × 5	470	442	442	28	14	402.5	52	1	18	M10	418	16.9
ANL84	Tr420 × 5	490	462	462	32	14	422.5	52	1	18	M10	438	17.4
ANL88	Tr440 × 5	520	490	490	32	15	442.5	60	1	21	M12	462	26.2
ANL92	Tr460 × 5	540	510	510	32	15	462.5	60	1	21	M12	482	29.6
ANL96	Tr480 × 5	560	530	530	36	15	482.5	60	1	21	M12	502	28.3
ANL100	Tr500 × 5	580	550	550	36	15	502.5	68	1	21	M12	522	33.6

- 1) Thread shapes and dimensions are as per JIS B 0216 (metric trapezoidal screw threads).
 2) Thread shapes and dimensions of screw holes are as per JIS B 0205-1 and JIS B 0205-4 (general metric threads).
 3) Applied to adapter series H30.

Numbe	Shaft dia. mm (for shaft)	(approx.) Lockplate no.	Bore diameter no. of adapter ³⁾
ANL44	220	ALL44	44
ANL48	240	ALL48	48
ANL52	260	ALL48	52
ANL56	280	ALL56	56
ANL60	300	ALL60	60
ANL64	320	ALL64	64
ANL68	340	ALL64	68
ANL72	360	ALL72	72
ANL76	380	ALL76	76
ANL80	400	ALL76	80
ANL84	420	ALL84	84
ANL88	440	ALL88	88
ANL92	460	ALL88	92
ANL96	480	ALL96	96
ANL10	500	ALL96	/500

Thread shapes and dimensions are as per JIS B 0205-1 and JIS B 0205-4 (general metric threads).
 Applied to adapter series H30.
 Washers with straight inner tabs that have code "X" after the number can also be used.

(For withdrawal sleeve) Series HN

Number			-	imens	.:					Mass		(annuay)	
Nullibei				mm						kg		(approx.)	
	Thread no.									1,8	With	ndrawal sleev	e no.
									r_1		AH240	AH31	AH241
	$G^{\scriptscriptstyle (1)}$	d_2	d_1	g	b	h	d_6	B	Max.	(approx.)			
HN42	$Tr210 \times 4$	270	238	250	20	10	212	30	0.8	4.75	AH24040	AH 3138	AH24140H
HN44	Tr220 × 4	280	250	260	20	10	222	32	0.8	5.35	_	AH 3140	_
HN46	Tr230 \times 4	290	260	270	20	10	232	34	0.8	5.80	AH24044H	_	AH24144H
HN48	Tr240 × 4	300	270	280	20	10	242	34	0.8	6.20	_	AH 3144	_
HN50	Tr250 \times 4	320	290	300	20	10	252	36	8.0	7.00	AH24048H	_	_
HN52	$Tr260 \times 4$	330	300	306	24	12	262	36	0.8	8.55	_	AH 3148	AH24148H
HN54	$Tr270 \times 4$	340	310	316	24	12	272	38	8.0	9.20	AH24052H	_	_
HN56	Tr280 × 4	350	320	326	24	12	282	38	8.0	10.0	_	_	AH24152H
HN58	Tr290 \times 4	370	330	346	24	12	292	40	0.8	11.8	AH24056H	AH 3152	_
HN60	Tr300 \times 4	380	340	356	24	12	302	40	0.8	12.0	_	_	AH24156H
HN62	Tr310 \times 5	390	350	366	24	12	312.5	42	0.8	13.4	AH24060H	AH 3156	_
HN64	Tr320 × 5	400	360	376	24	12	322.5	42	0.8	13.5	_	_	AH24160H
HN66	Tr330 × 5	420	380	390	28	15	332.5	52	1	20.4	AH24064H	AH 3160	_
HN68	Tr340 × 5	440	400	410	28	15	342.5	55	1	24.5	_	_	AH24164H
HN70	Tr350 \times 5	450	410	420	28	15	352.5	55	1	25.2	_	AH 3164	_
HN72	Tr360 × 5	460	420	430	28	15	362.5	58	1	27.5	_	_	AH24168H
HN74	Tr370 × 5	470	430	440	28	15	372.5	58	1	28.2	_	AH 3168	
HN76	Tr380 × 5	490	450	454	32	18	382.5	60	1	33.5	_		AH24172H
HN80	$Tr400 \times 5$	520	470	484	32	18	402.5	62	1	40.0	_	AH 3172	AH24176H
HN84	Tr420 × 5	540	490	504	32	18	422.5	70	1	46.9	_	AH 3176	AH24180H
HN88	Tr440 × 5	560	510	520	36	20	442.5	70	1	48.5	_	AH 3180	AH24184H
HN92	Tr460 × 5	580	540	540	36	20	462.5	75	1	55.0	_	AH 3184	AH24188H
HN96	Tr480 × 5	620	560	580	36	20	482.5	75	1	67.0	_	AHX3188	AH24192H
HN100	Tr500 × 5	630	580	584	40	23	502.5	80	1	69.0	_		_
HN102	Tr510 × 6	650	590	604	40	23	513	80	1	75.0	_	AHX3192	_
HN106	Tr530 × 6	670	610	624	40	23	533	80	1	78.0	_	AHX3196	_
HN110	Tr550 \times 6	700	640	654	40	23	553	80	1	92.5	_	_	_

AH2240 AH 3240 AH2340 AH2244 — AH2344 — AH2248 — AH2348 — — — — — — — — — — — — — — — — — — —		(approx.)	
AH2238 AH 3238 AH2338 AH2240 AH 3240 AH2340 AH2244 — AH2344 — — — — — — — — — — — — — — — — — — —	With		
AH2240 AH 3240 AH2340 AH2244 — AH2344 — AH2248 — AH2348 — — — — — — — — — — — — — — — — — — —	AH22	AH32	AH23
AH2240 AH 3240 AH2340 AH2244 — AH2344 AH2248 — AH2348 — — — — — — — — — — — — — — — — — — —			
AH2244 — AH2344 AH2248 — AH2348 — — — — — — — — — — — — — — — — — — —	AH2238	AH 3238	AH2338
AH2248 — AH2348 — — — — — — — — — — — — — — — — — — —	AH2240	AH 3240	AH2340
AH2248 — AH2348 — — — — — — — — — — — — — — — — — — —	_		
AH2252 — AH2356 — — — — — — — — — — — — — — — — — — —	AH2244	_	AH2344
AH2252 — AH2356 — — — — — — — — — — — — — — — — — — —	VH3348		VH3348
AH2256 — AH2356 AH2260 AH 3260 — AH2264 AH 3264 — — AH 3268 — — AH 3272 — — AH 3276 — — AH 3280 — — AH 3284 — — AH 3284 — — AHX3288 — — AHX3292 —	—	_	—
AH2256 — AH2356 AH2260 AH 3260 — AH2264 AH 3264 — — AH 3268 — — AH 3272 — — AH 3276 — — AH 3280 — — AH 3284 — — AH 3284 — — AHX3288 — — AHX3292 —	_	_	_
AH2260 AH 3260 — AH2264 AH 3264 — — AH 3268 — — AH 3272 — — AH 3276 — — AH 3280 — AH 3284 — AHX3288 — — AHX3288 — — AHX3292 —	AH2252	_	AH2352
AH2260 AH 3260 — AH2264 AH 3264 — — AH 3268 — — AH 3272 — — AH 3276 — — AH 3280 — AH 3284 — AHX3288 — — AHX3288 — — AHX3292 —	_	_	_
AH2264 AH 3264 — — AH 3268 — — AH 3272 — — AH 3276 — — AH 3280 — — AH 3284 — — AHX3288 — — AHX3292 —	AH2256	_	AH2356
AH2264 AH 3264 — — AH 3268 — — AH 3272 — — AH 3276 — — AH 3280 — — AH 3284 — — AHX3288 — — AHX3292 —	VH3360	VH 3360	
— AH 3268 — — — — — — — — — — — — — — — — — — —	—	—	_
— AH 3272 — — AH 3276 — — AH 3280 — — AH 3284 — — AHX3288 — — — — — AHX3292 —	AH2264	AH 3264	_
— AH 3272 — — AH 3276 — — AH 3280 — — AH 3284 — — AHX3288 — — — — — AHX3292 —	_	-	_
— AH 3276 — — AH 3280 — — AH 3284 — — AHX3288 — — — — — — AHX3292 —	_	AH 3268	_
— AH 3276 — — AH 3280 — — AH 3284 — — AHX3288 — — — — — — AHX3292 —	_	_	_
— AH 3280 — — AH 3284 — — AHX3288 — — — — — — AHX3292 —			
— AH 3284 — — AHX3288 — — — — — — AHX3292 —	_		_
	_		_
	_	AHX3288	_
	_	_	_
	_		_
— АНХЗ296 —	_	AHX3296	_

D-9

¹⁾ Thread shapes and dimensions are as per JIS B 0216 (metric trapezoidal screw threads). Note: Number HN54 indicates dimensions that are not indicated in JIS B 1554.

(For withdrawal sleeve) Series HNL

Number				Dimens						Mass		(approx.)	
	Thread no.			mn	1					kg	\ \ /i+	hdrawal sleeve	no
	mead no.								r_1		AH30	AH240	AH2
	$G^{\scriptscriptstyle (1)}$	d_2	d_1	g	b	h	d_6	B		(approx.)	7	7.11.2.10	7
HNL41	Tr205 × 4	250	232	234	18	8	207	30	0.8	3.43	AH 3038	_	AH238
HNL43	Tr215 × 4		242	242	20	9	217	30	0.8	3.72	AH 3040	_	AH240
HNL47	Tr235 × 4		262	262	20	9	237	34	0.8	4.60	AH 3044	_	AH244
HNL52	Tr260 × 4	310	290	290	20	10	262	34	0.8	5.80	AH 3048	_	AH248
HNL56	Tr280 × 4	330	310	310	24	10	282	38	0.8	6.72	AH 3052	_	AH252
HNL60	Tr300 × 4	360	336	336	24	12	302	42	0.8	9.60	AH 3056	_	AH256
HNL64	Tr320 × 5	380	356	356	24	12	322.5	42	1	10.3	AH 3060	_	_
HNL69	Tr345 × 5	410	384	384	28	13	347.5	45	1	11.5	AH 3064	_	_
HNL72	Tr360 × 5	420	394	394	28	13	362.5	45	1	12.1		AH24068H	_
HNL73	Tr365 × 5	430	404	404	28	13	367.5	48	1	14.2	AH 3068	_	_
HNL76	Tr380 × 5	450	422	422	28	14	382.5	48	1	16.0	_	AH24072H	_
HNL77	Tr385 × 5	450	422	422	28	14	387.5	48	1	15.0	AH 3072	_	_
HNL80	Tr400 × 5	470	442	442	28	14	402.5	52	1	18.5	_	AH24076H	_
HNL82	Tr410 × 5	480	452	452	32	14	412.5	52	1	19.0	AH 3076	_	_
HNL84	Tr420 × 5	490	462	462	32	14	422.5	52	1	19.4	_	AH24080H	_
HNL86	Tr430 × 5	500	472	472	32	14	432.5	52	1	19.8	AH 3080	_	_
HNL88	Tr440 × 5	520	490	490	32	15	442.5	60	1	27.0	_	AH24084H	_
HNL90	Tr450 × 5	520	490	490	32	15	452.5	60	1	23.8	AH 3084	_	_
HNL92	$Tr460 \times 5$	540	510	510	32	15	462.5	60	1	28.0	_	AH24088H	_
HNL94	Tr470 × 5	540	510	510	32	15	472.5	60	1	25.0	AHX3088	_	_
HNL96	Tr480 × 5	560	530	530	36	15	482.5	60	1	29.5	_	_	_
HNL98	Tr490 × 5	580	550	550	36	15	492.5	60	1	34.0	AHX3092	_	_
HNL100	$Tr500 \times 5$	580	550	550	36	15	502.5	68	1	35.0	_	_	_
HNL104	Tr520 × 6	600	570	570	36	15	523	68	1	37.0	AHX3096	_	_
HNL106	Tr530 × 6	630	590	590	40	20	533	68	1	47.0	_	_	_
HNL108	Tr540 \times 6	630	590	590	40	20	543	68	1	43.5	_	_	_

D-10 D-11

¹⁾ Thread shapes and dimensions are as per JIS B 0216 (metric trapezoidal screw threads).

Series AW

Bent inner Straight inner tab type tab type

					_							
N	umber				ט	imens mm					No.of tal	os Mass kg
Bent inne	r Straight inner					111111			Rent inne	er tab typ	۵	Νg
tab type	tab type								50	5. tub typ	_	100 pieces
,,	7.	d_3	M	f_1	B_7	f	d_4	d_5	r_2	B_2		(approx.)
AW00	AW00X	10	8.5	3	1	3	13.5	21	0.5	3	9	0.131
AW01	AW01X	12	10.5	3	i	3	17	25	0.5	3	11	0.192
AW02	AW01X AW02X	15	13.5	4	1	4	21	28	1	3.5	13	0.152
AW03	AW03X	17	15.5	4	i	4	24	32	i	3.5	13	0.313
AW04	AW04X	20	18.5	4	i	4	26	36	1	3.5	13	0.350
AW/22		22	20.5	4	i	4	28	38	1	3.5	13	0.394
AW05	AW05X	25	23	5	1.25	5	32	42	i	3.75	13	0.640
AW/28		28	26	5	1.25	5	36	46	1	3.75	13	0.723
AW06	AW06X	30	27.5	5	1.25	5	38	49	1	3.75	13	0.780
AW/32	AW/32X	32	29.5	5	1.25	5	40	52	1	3.75	13	0.839
AW07	AW07X	35	32.5	6	1.25	5	44	57	1	3.75	15	1.04
AW08	X80WA	40	37.5	6	1.25	6	50	62	1	3.75	15	1.23
AW09	AW09X	45	42.5	6	1.25	6	56	69	1	3.75	17	1.52
AW10	AW10X	50	47.5	6	1.25	6	61	74	1	3.75	17	1.60
AW11	AW11X	55	52.5	8	1.5	7	67	81	1	5.5	17	1.96
AW12	AW12X	60	57.5	8	1.5	7	73	86	1.2	5.5	17	2.53
AW13	AW13X	65	62.5	8	1.5	7	79	92	1.2	5.5	19	2.90
AW14	AW14X	70	66.5	8	1.5	8	85	98	1.2	5.5	19	3.34
AW15	AW15X	75	71.5	8	1.5	8	90	104	1.2	5.5	19	3.56
AW16	AW16X	80	76.5	10	1.8	8	95	112	1.2	5.8	19	4.64
AW17	AW17X	85	81.5	10	1.8	8	102	119	1.2	5.8	19	5.24
AW18	AW18X	90	86.5	10	1.8	10	108	126	1.2	5.8	19	6.23
AW19	AW19X	95	91.5	10	1.8	10	113	133	1.2	5.8	19	6.70
AW20	AW20X	100	96.5	12	1.8	10	120	142	1.2	7.8	19	7.65
AW21	AW21X	105	100.5	12	1.8	12	126	145	1.2	7.8	19	8.26
AW22 AW23	AW22X AW23X	110 115	105.5 110.5	12 12	1.8 2	12 12	133 137	154 159	1.2 1.5	7.8	19 19	9.40 10.8
AW23	AW24X	120	115	14	2	12	138	164	1.5	8 8	19	10.5
AW25	AW25X	125	120	14	2	12	148	170	1.5	8	19	11.8
AW26	AW26X	130	125	14	2	12	149	175	1.5	8	19	11.3
AW27	AW27X	135	130	14	2	14	160	185	1.5	8	19	14.4
AW28	AW28X	140	135	16	2	14	160	192	1.5	10	19	14.2
AW29	AW29X	145	140	16	2	14	171	202	1.5	10	19	16.8
AW30	AW30X	150	145	16	2	14	171	205	1.5	10	19	15.5
AW31	AW31X	155	147.5	16	2.5	16	182	212	1.5	10.5	19	20.9
AW32	AW32X	160	154	18	2.5	16	182	217	1.5	10.5	19	22.2
AW33	AW33X	165	157.5	18	2.5	16	193	222	1.5	10.5	19	24.1
AW34	AW34X	170	164	18	2.5	16	193	232	1.5	10.5	19	24.7
AW36	AW36X	180	174	20	2.5	18	203	242	1.5	10.5	19	26.8
AW38	AW38X	190	184	20	2.5	18	214	252	1.5	10.5	19	27.8
AW40	AW40X	200	194	20	2.5	18	226	262	1.5	10.5	19	29.3

_	(approx.)	
Bore	Nut no.	Shaft
diameter no.		dia.
of adapter 1)		mm
		(for shaft)
_	AN00	10
_	AN01	12
_	AN02	15
_	AN03	17
04	AN04	20
_	AN/22	22
05	AN05	25
_	AN/28	28
06	AN06	30
_	AN/32	32
07	AN07	35
80	AN08	40
09	AN09	45
10	AN10	50
11	AN11	55
12	AN12	60
13	AN13	65
14	AN14	70
15	AN15	75
16	AN16	80
17	AN17	85
18	AN18	90
19	AN19	95
20	AN20	100
21	AN21	105
22	AN22	110
	AN23	115
24	AN24	120
_	AN25	125
26	AN26	130
	AN27	135
28	AN28	140
_	AN29	145
30	AN30	150
_	AN31	155
32	AN32	160
_	AN33	165
34	AN34	170
36	AN36	180
38	AN38	190
40	AN40	200

	lockwasher	distance lockwas	tolerance of between sher tab meter face	Dimensional tolerance of lockwasher tab width				
	m	Δ <i>i</i>	M_{S}	Δf_{iS}				
Over	Incl.	Upper Lower		Upper	Lower			
10 ¹⁾	50	+0.3	0	0	-0.4			
50	80	+0.3	0	0	-1			
80	120	+0.5	0	0	-1.4			
120	200	+0.5	0	0	-2			

1) 10 mm is included in this dimensional division.

Note: The dimensional tolerance in the table also applies to the **AWL** series bent inner tab type.

1) Used for adapter series H31, H2, H32, H3, and H23. Note: Numbers AW00 and AW01 (bent inner tab type) indicate dimensions that are not indicated in JIS B 1554.

Locking Clip

Series AL, ALL

NTN

Series AWL

Nur	mber				Din	nensi mm	ons				No.of	Mass kg	(a Bore	pprox.)	Shaft
Bent inner tab type	Straight inner tab type	d_3	M	f_1	B_7	f	d_4	d_5		inner type B_2		Ŭ	diameter no. of adapter 1)		dia. mm (for shaft)
AWL24	AWL24X	120	115	14	2	12	133	155	1.5	8	19	7.70	24	ANL24	120
AWL26	AWL26X	130	125	14	2	12	143	165	1.5	8	19	8.70	26	ANL26	130
AWL28	AWL28X	140	135	16	2	14	151	175	1.5	10	19	10.9	28	ANL28	140
AWL30	AWL30X	150	145	16	2	14	164	190	1.5	10	19	11.3	30	ANL30	150
AWL32	AWL32X	160	154	18	2.5	16	174	200	1.5	10.5	19	16.2	32	ANL32	160
AWL34	AWL34X	170	164	18	2.5	16	184	210	1.5	10.5	19	19.0	34	ANL34	170
AWL36	AWL36X	180	174	20	2.5	18	192	220	1.5	10.5	19	18.0	36	ANL36	180
AWL38	AWL38X	190	184	20	2.5	18	202	230	1.5	10.5	19	20.5	38	ANL38	190
AWL40	AWL40X	200	194	20	2.5	18	218	250	1.5	10.5	19	21.4	40	ANL40	200

Number				nsions nm		Mass (approx.) kg		
	B_3	B_4	L_2	d_7	L_1	L_3	100 pieces (approx.)	Nut no.
AL44	4	20	12	9	22.5	30.5	2.60	AN44, AN48
AL52	4	24	12	12	25.5	33.5	3.39	AN52, AN56
AL60	4	24	12	12	30.5	38.5	3.79	AN60
AL64	5	24	15	12	31	41	5.35	AN64
AL68	5	28	15	14	38	48	6.65	AN68, AN72
AL76	5	32	15	14	40	50	7.96	AN76
AL80	5	32	15	18	45	55	8.20	AN80, AN84
AL88	5	36	15	18	43	53	9.00	AN88, AN92
AL96	5	36	15	18	53	63	10.4	AN96
AL100	5	40	15	18	45	55	10.5	AN100

Note: This series uses series H31, H32, and H23 adapters.

Number				nsions nm			Mass kg	(approx.)
	B_3	B_4	L_2	d_7	L_1	L_3	100 pieces (approx.)	Nut no.
ALL44	4	20	12	7	13.5	21.5	2.12	ANL44
ALL48	4	20	12	9	17.5	25.5	2.29	ANL48, ANL52
ALL56 ALL60	4	24 24	12 12	9	17.5 20.5	25.5 28.5	2.92 3.16	ANL56 ANL60
ALL64	5	24	15	9	21	31	4.56	ANL64, ANL68
ALL72	5	28	15	9	20	30	5.03	ANL72
ALL76	5	28	15	12	24	34	5.28	ANL76, ANL80
ALL84	5	32	15	12	24	34	6.11	ANL84
ALL88	5	32	15	14	28	38	6.45	ANL88, ANL92
ALL96	5	36	15	14	28	38	7.29	ANL96, ANL100

Note: This series uses H30 adapters.

¹⁾ Used for adapter series H31, H32, and H23. Note: For wide slit type adapter sleeves that have no suffix "X" after the adapter number, either straight or bent inner tab washers can be used.

Snap rings

For dimension series 18 and 19 bearings

									,								
															Un	nit: mn	r
Number	Bearing outside diameter D	Bore	r ο Δ	ngs erance of D_3 and D_{3S} er Lower	e Max.		Max.	f Min.	Snap ring inside go Snap ring out D_2 Max.	roove 1)		$r_{ m i}$ Min.	$r_{ m e}$ Min.	rox.) Thickness variation V_{f} Max.	Bearing diamete 18		
NR1022	22	20.5	0	-0.3	2.00	1.85	0.7	0.6	24.8	2	1	0.2	0.1	0.06	_	10	
1104004	- 4		_			4 0=	^ =		~~ ~	_							

NR1024 24 22.5 0 -0.3 2.00 1.85 0.6 26.8 2 0.2 0.1 0.06 0.7 30.8 NR1028 28 26.4 0 -0.3 2.05 1.90 0.85 0.75 3 2 0.25 0.15 0.06 15 NR1030 30 28.3 0 -0.3 2.05 1.90 0.85 0.75 32.8 3 2 0.25 0.15 0.06 17 NR1032 32 30.3 0 -0.3 2.05 1.90 0.85 0.75 34.8 3 0.25 0.15 2 0.06 NR1034 32.3 0 -0.3 2.05 1.90 0.85 0.75 36.8 3 2 0.25 0.15 0.06 22 NR1037 37 35.3 0 -0.3 2.05 1.90 0.85 0.75 39.8 3 2 0.25 0.15 25 0.06 NR1039 39 37.3 0 -0.3 2.05 1.90 0.85 0.75 41.8 2 0.25 0.15 22 3 0.06 NR1040 40 38.3 0 -0.3 2.05 1.90 0.75 42.8 0.25 0.85 3 0.15 0.06 NR1042 42 40.3 0 -0.4 2.05 1.90 0.85 0.75 44.8 2 0.25 0.15 30 25 3 0.06 NR1044 44 42.3 0 -0.4 2.05 1.90 0.85 0.75 46.8 2.5 0.25 0.15 0.06 32 NR1045 45 43.3 0 -0.4 2.05 1.90 0.85 0.75 47.8 2.5 0.25 0.15 0.06 28 NR1047 47 45.3 0 -0.4 2.05 1.90 0.85 0.75 49.8 2.5 0.25 0.15 0.06 35 30 NR1052 52 50.3 0 -0.4 2.05 1.90 0.75 54.8 2.5 0.25 40 0.85 0.15 0.06 32 NR1055 55 53.3 0 -0.4 2.05 1.90 0.75 57.8 2.5 0.25 0.85 0.15 0.06 35 NR1058 2.05 1.90 58 56.3 0 -0.6 0.85 0.75 60.8 4 2.5 0.25 0.15 0.06 45

0 -0.6 0.75 64.8 NR1062 62 60.2 2.05 1.90 0.85 2.5 0.25 0.15 0.06 NR1065 65 63.2 0 -0.6 2.05 1.90 0.85 0.75 67.8 2.5 0.25 0.15 0.06 50 4 0 -0.6 70.8 45 NR1068 68 66.2 2.05 1.90 0.85 0.75 5 3 0.25 0.15 0.06 NR1072 72 70.2 0 -0.6 2.05 1.90 0.85 0.75 74.8 5 3 0.25 0.15 0.06 55 50 NR1078 78 75.7 0 -0.6 3.25 3.10 1.12 1.02 82.7 5 3 0.4 0.3 0.06 60 1.02 NR1080 77.4 0 -0.6 3.25 3.10 1.12 84.4 5 3 0.4 0.3 0.06 55 NR1085 82.4 0 -0.6 3.25 3.10 1.12 1.02 89.4 3 0.4 0.3 0.06 65 60 85 5 NR1090 87.4 0 -0.6 3.25 3.10 1.12 1.02 94.4 3 0.4 0.3 0.06 70 65 5 NR1095 95 92.4 0 -0.6 3.25 3.10 1.12 1.02 99.4 3 0.4 0.3 0.06 75 5 NR1100 100 97.4 0 -0.6 3.25 3.10 1.12 1.02 104.4 3 0.4 0.3 80 70 5 0.06 NR1105 105 101.9 0 -0.8 4.04 3.89 1.12 1.02 110.7 5 3 0.4 0.3 0.06 75 NR1110 110 106.9 0 -0.8 4.04 3.89 1.12 1.02 115.7 5 3 0.4 0.3 0.06 85 80 **NR1115** 115 111.9 0 -0.8 4.04 3.89 1.12 1.02 120.7 5 3 0.4 0.3 0.06 90 1.02 125.7 **NR1120** 120 116.9 0 -0.8 4.04 3.89 1.12 4 0.4 0.3 0.06 95 NR1125 125 121.8 0 -0.8 1.02 130.7 7 0.4 0.3 4.04 3.89 1.12 0.06 100 90 **NR1130** 130 126.8 0 -0.8 4.04 3.89 1.12 1.02 135.7 4 0.4 0.3 0.06 105 95 NR1140 140 136.8 0 -1.0 1.6 145.7 7 0.6 0.5 0.06 110 100 4.04 3.89 1.7 4 NR1145 145 141.8 0 -1.0 4.04 3.89 1.6 150.7 7 4 0.6 0.5 0.06 **—** 105 1.7

0.6

0.6

0.6

0.6

0.5

0.5

0.5

0.5

0.5

0.5

0.06 120 110

0.06 130 120

0.06 150 140

130

0.06 140

0.06 160

0.06

Groove

Unit: mm

Bearing outside diameter	diar	oove neter	1	.8	on series 1 position	.9	wic	ove dth	Fillet radius of groove bottom
D	1	\mathcal{D}_1		(\dot{a}		ł)	$r_{ m o}$
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
22	20.8	20.5	_	_	1.05	0.90	1.05	0.8	0.2
24	22.8	22.5	_	_	1.05	0.90	1.05	0.8	0.2
28	26.7	26.4	_	_	1.30	1.15	1.20	0.95	0.25
30	28.7	28.4	_	_	1.30	1.15	1.20	0.95	0.25
32	30.7	30.4	1.30	1.15	_	_	1.20	0.95	0.25
34	32.7	32.4	1.30	1.15	_	_	1.20	0.95	0.25
37	35.7	35.4	1.30	1.15	1.70	1.55	1.20	0.95	0.25
39	37.7	37.4	_	_	1.70	1.55	1.20	0.95	0.25
40	38.7	38.4	1.30	1.15	_	_	1.20	0.95	0.25
42	40.7	40.4	1.30	1.15	1.70	1.55	1.20	0.95	0.25
44	42.7	42.4	1.30	1.15	_	_	1.20	0.95	0.25
45	43.7	43.4	_	_	1.70	1.55	1.20	0.95	0.25
47	45.7	45.4	1.30	1.15	1.70	1.55	1.20	0.95	0.25
52	50.7	50.4	1.30	1.15	1.70	1.55	1.20	0.95	0.25
55	53.7	53.4	_	_	1.70	1.55	1.20	0.95	0.25
58	56.7	56.4	1.30	1.15	_	_	1.20	0.95	0.25
62	60.7	60.3	_	_	1.70	1.55	1.20	0.95	0.25
65	63.7	63.3	1.30	1.15	_	_	1.20	0.95	0.25
68	66.7	66.3	_	_	1.70	1.55	1.20	0.95	0.25
72	70.7	70.3	1.70	1.55	1.70	1.55	1.20	0.95	0.25
78	76.2	75.8	1.70	1.55	_	_	1.6	1.3	0.4
80	77.9	77.5	_	_	2.1	1.9	1.6	1.3	0.4
85	82.9	82.5	1.70	1.55	2.1	1.9	1.6	1.3	0.4
90	87.9	87.5	1.70	1.55	2.1	1.9	1.6	1.3	0.4
95	92.9	92.5	1.70	1.55	_	_	1.6	1.3	0.4
100	97.9	97.5	1.70	1.55	2.5	2.3	1.6	1.3	0.4
105	102.6	102.1	_	_	2.5	2.3	1.6	1.3	0.4
110	107.6	107.1	2.1	1.9	2.5	2.3	1.6	1.3	0.4
115	112.6	112.1	2.1	1.9	_	_	1.6	1.3	0.4
120	117.6	117.1	2.1	1.9	3.3	3.1	1.6	1.3	0.4
125	122.6	122.1	2.1	1.9	3.3	3.1	1.6	1.3	0.4
130	127.6	127.1	2.1	1.9	3.3	3.1	1.6	1.3	0.4
140	137.6	137.1	2.5	2.3	3.3	3.1	2.2	1.9	0.6
145	142.6	142.1	_	_	3.3	3.1	2.2	1.9	0.6
150	147.6	147.1	2.5	2.3	3.3	3.1	2.2	1.9	0.6
165	161.8	161.3	3.3	3.1	3.7	3.5	2.2	1.9	0.6
175	171.8	171.3	3.3	3.1	_	_	2.2	1.9	0.6
180	176.8	176.3	_	_	3.7	3.5	2.2	1.9	0.6
190	186.8	186.3	3.3	3.1	3.7	3.5	2.2	1.9	0.6
200	196.8	196.3	3.3	3.1	_	_	2.2	1.9	0.6

4.04 3.89

4.85 4.70

4.85 4.70

4.85 4.70

4.85 4.70

0 -1.2

0 -1.2

0 -1.2

0 -1.2

0 -1.4

0 –1.4

NR1150 150 146.8

NR1165 165 161

NR1175 175 171

NR1180 180 176

NR1190 190 186

NR1200 200 196

1.7

1.7

1.7

1.7

1.7

1.7

1.6

1.6

1.6

1.6

1.6

1.6

155.7

171.5

181.5

186.5 10

196.5 10

206.5 10

7 4

7 4 0.6

10

6

6 0.6

6

6

^{4.85 4.70} 1) The snap ring must be fitted inside the groove in the radius direction free from looseness.

Snap Rings and Grooves for Rolling Bearings

Snap Rings and Grooves for Rolling Bearings

Snap rings

For diameter series 0, 2, 3 and 4 bearings

															Uni	it: mm
Number	Bearing Sna outside Bore	p rings Tolerance					Snap ring inside gr				((appro		ing ho	ra diar	matar
	diameter diameter	of D_3					Snap ring oute					variation		mensi		
	$D = D_3$	Δ_{D3S}	ϵ	?	.j	f	D_2	g	g_0	$r_{\rm i}$	$r_{ m e}$	$V_{ m f}$	0	2	3	4
		Upper Lower	Max.	Min.	Max.	Min.	Max.	Approx.		Min.	Min.	Max.		C	l	
NR30	30 27.9	0 -0.4	3.25	3.10	1.12	1.02	34.7	3	2	0.4	0.3	0.06	_	10	9	8
NR32	32 29.9	0 -0.4	3.25	3.10	1.12	1.02	36.7	3	2	0.4	0.3	0.06	15	12	_	9
NR35	35 32.9	0 -0.4	3.25	3.10	1.12	1.02	39.7	3	2	0.4	0.3	0.06	17	15	10	_
NR37	37 34.5	0 -0.4	3.25	3.10	1.12	1.02	41.3	3	2	0.4	0.3	0.06	_	_	12	10
NR40	40 37.8	0 -0.4	3.25	3.10	1.12	1.02	44.6	3	2	0.4	0.3	0.06	_	17	_	_
NR42	42 39.5	0 -0.5	3.25	3.10	1.12	1.02	46.3	3	2	0.4	0.3	0.06	20	_	15	12
NR44	44 41.5	0 -0.5	3.25	3.10	1.12	1.02	48.3	3	2	0.4	0.3	0.06	22	_	_	_
NR47	47 44.3	0 -0.5	4.04	3.89	1.12	1.02	52.7	4	2.5	0.4	0.3	0.06	25	20	17	_
NR50	50 47.3 52 49.4	0 -0.5	4.04	3.89	1.12	1.02	55.7	4	2.5	0.4	0.3	0.06	_	22	_	-
NR52 NR55	55 52.3	0 -0.5 0 -0.5	4.04	3.89	1.12	1.02	57.9 60.7	4	2.5	0.4	0.3	0.06	28	25	20	15
NR56	56 53.2	0 -0.5	4.04	3.89	1.12	1.02	61.7	4	2.5	0.4	0.3	0.06	_		22	_
NR58	58 55.2	0 -0.6	4.04	3.89	1.12	1.02	63.7	4	2.5	0.4	0.3	0.06	32	28		_
NR62	62 59.0	0 -0.6	4.04	3.89	1.7	1.6	67.7	4	2.5	0.6	0.5	0.06	35	30	25	17
NR65	65 62.0	0 -0.6	4.04	3.89	1.7	1.6	70.7	4	2.5	0.6	0.5	0.06	_	32	_	
NR68	68 64.2	0 -0.6	4.85	4.70	1.7	1.6	74.6	5	3	0.6	0.5	0.06	40	_	28	_
NR72	72 68.2	0 -0.6	4.85	4.70	1.7	1.6	78.6	5	3	0.6	0.5	0.06	_	35	30	20
NR75	75 71.2	0 -0.6	4.85	4.70	1.7	1.6	81.6	5	3	0.6	0.5	0.06	45	_	32	_
NR80	80 76.2	0 -0.6	4.85	4.70	1.7	1.6	86.6	5	3	0.6	0.5	0.06	50	40	35	25
NR85	85 81.2	0 -0.6	4.85	4.70	1.7	1.6	91.6	5	3	0.6	0.5	0.06	_	45	_	_
NR90	90 86.2	0 -0.6	4.85	4.70	2.46	2.36	96.5	5	3	0.6	0.5	0.06	55	50	40	30
NR95	95 91.2	0 -0.6	4.85	4.70	2.46	2.36	101.6	5	3	0.6	0.5	0.06	60	_	_	_
NR100	100 96.2	0 -0.8	4.85	4.70	2.46	2.36	106.5	5	3	0.6	0.5	0.06	65	55	45	35
NR110	110 106.2	0 -0.8	4.85	4.70	2.46	2.36	116.6	5	3	0.6	0.5	0.06	70	60	50	40
NR115	115 111.2	0 -0.8	4.85	4.70	2.46	2.36	121.6	5	3	0.6	0.5	0.06	75 —	_	_	45
NR120 NR125	120 114.6 125 119.6	0 -0.8 0 -0.8	7.21 7.21	7.06 7.06	2.82	2.72	129.7 134.7	7 7	4	0.6	0.5	0.06	80	65 70	55	45
NR130	130 124.6	0 -0.8	7.21	7.06	2.82	2.72	139.7	7	4	0.6	0.5	0.06	85	75	60	50
NR140	140 134.6	0 -0.0	7.21	7.06	2.82	2.72	149.7	7	4	0.6	0.5	0.06	90	80	65	55
NR145	145 139.6	0 -1.2	7.21	7.06	2.82	2.72	154.7	7	4	0.6	0.5	0.06	95	_	_	_
NR150	150 144.5	0 -1.2	7.21	7.06	2.82	2.72	159.7	7	4	0.6	0.5		100	85	70	60
NR160	160 154.5	0 -1.2	7.21	7.06	2.82	2.72	169.7	7	4	0.6	0.5		105	90	75	65
NR170	170 162.9	0 -1.2	9.60	9.45	3.1	3.0	182.9	10	6	0.6	0.5	0.06	110	95	80	_
NR180	180 172.8	0 -1.2	9.60	9.45	3.1	3.0	192.9	10	6	0.6	0.5	0.06	120	100	85	70
NR190	190 182.8	0 -1.4	9.60	9.45	3.1	3.0	202.9	10	6	0.6	0.5	0.06		105	90	75
NR200	200 192.8	0 -1.4	9.60	9.45	3.1	3.0	212.9	10	6	0.6	0.5	0.06	130	110	95	80

Groove

Unit: mm

Bearing outside diameter	Gro diam	neter		0 Groove	position	3, 4	Gro wid	dth	Fillet radius of groove bottom
D	L				ι		l		$r_{ m o}$
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
30	28.17	27.91	_	_	2.06	1.90	1.65	1.35	0.4
32	30.15	29.90	2.06	1.90	2.06	1.90	1.65	1.35	0.4
35	33.17	32.92	2.06	1.90	2.06	1.90	1.65	1.35	0.4
37	34.77	34.52	_	_	2.06	1.90	1.65	1.35	0.4
40	38.10	37.85	_	_	2.06	1.90	1.65	1.35	0.4
42	39.75	39.50	2.06	1.90	2.06	1.90	1.65	1.35	0.4
44	41.75	41.50	2.06	1.90	_	_	1.65	1.35	0.4
47	44.60	44.35	2.06	1.90	2.46	2.31	1.65	1.35	0.4
50	47.60	47.35	_	_	2.46	2.31	1.65	1.35	0.4
52	49.73	49.48	2.06	1.90	2.46	2.31	1.65	1.35	0.4
55	52.60	52.35	2.08	1.88	_	_	1.65	1.35	0.4
56	53.60	53.35	_	_	2.46	2.31	1.65	1.35	0.4
58	55.60	55.35	2.08	1.88	2.46	2.31	1.65	1.35	0.4
62	59.61	59.11	2.08	1.88	3.28	3.07	2.2	1.9	0.6
65	62.60	62.10	_	_	3.28	3.07	2.2	1.9	0.6
68	64.82	64.31	2.49	2.29	3.28	3.07	2.2	1.9	0.6
72	68.81	68.30	_	_	3.28	3.07	2.2	1.9	0.6
75	71.83	71.32	2.49	2.29	3.28	3.07	2.2	1.9	0.6
80	76.81	76.30	2.49	2.29	3.28	3.07	2.2	1.9	0.6
85	81.81	81.31			3.28	3.07	2.2	1.9	0.6
90	86.79	86.28	2.87	2.67	3.28	3.07	3.0	2.7	0.6
95	91.82	91.31	2.87	2.67			3.0	2.7	0.6
100	96.80	96.29	2.87	2.67	3.28	3.07	3.0	2.7	0.6
	106.81	106.30	2.87	2.67	3.28	3.07	3.0	2.7	0.6
	111.81	111.30	2.87	2.67		_	3.0	2.7	0.6
	115.21	114.71			4.06	3.86	3.4	3.1	0.6
	120.22	119.71	2.87	2.67	4.06	3.86	3.4	3.1	0.6
	125.22	124.71	2.87	2.67	4.06	3.86	3.4	3.1	0.6
	135.23	134.72	3.71	3.45	4.90	4.65	3.4	3.1	0.6
	140.23	139.73	3.71	3.45	_	_	3.4	3.1	0.6
	145.24	144.73	3.71	3.45	4.90	4.65	3.4	3.1	0.6
	155.22	154.71	3.71	3.45	4.90	4.65	3.4	3.1	0.6
	163.65	163.14	3.71	3.45	5.69	5.44	3.8	3.5	0.6
	173.66	173.15	3.71	3.45	5.69	5.44	3.8	3.5	0.6
	183.64	183.13	E 60	_ E 44	5.69	5.44	3.8	3.5	0.6
200	193.65	193.14	5.69	5.44	5.69	5.44	3.8	3.5	0.6

D-18 D-19

¹⁾ The snap ring must be fitted inside the groove in the radius direction free from looseness.

The ${\bf NTN}$ steel balls conform to JIS B 1501 (steel ball for ball bearings). Contact ${\bf NTN}$ Engineering for any request.

High-carbon chromium bearing steel is generally used for the material. Some special types use stainless steel and heat-resistant steel.

The accuracy conforms to the JIS (JIS B 1501). Please consult **NTN** Engineering for details.

1. Ball dimensions

II Dan ann	1011310113						
Nominal	dimension	Nominal diameter	Mass kg	Nominal	dimension	Nominal diameter	Mass kg
Metric	Inch	$D_{\mathbf{W}}$ mm	(approx.) 10 000 pieces	Metric	Inch	$D_{\mathbf{W}}$ mm	(approx.) 1 000 pieces
0.3mm		0.300 00	0.0011		3/8	9.525 00	3.543
0.4mm		0.400 00	0.0026	10mm		10.000 00	4.100
0.5mm		0.500 00	0.0051		13/32	10.318 75	4.504
0.6mm		0.600 00	0.0089	11mm		11.000 00	5.457
	0.025	0.635 00	0.0105		7/16	11.112 50	5.626
0.7mm		0.700 00	0.0141	11.5mm		11.500 00	6.235
	1/32	0.793 75	0.0205		15/32	11.906 25	6.920
0.8mm		0.800 00	0.0210	12mm		12.000 00	7.084
1mm		1.000 00	0.0410		1/2	12.700 00	8.398
	3/64	1.190 62	0.0692	13mm		13.000 00	9.007
1.2mm		1.200 00	0.0708		17/32	13.493 75	10.07
1.5mm		1.500 00	0.1384	14mm		14.000 00	11.25
	1/16	1.587 50	0.1640		9/16	14.287 50	11.96
	5/64	1.984 38	0.3204	15mm		15.000 00	13.84
2mm		2.000 00	0.3280		19/32	15.081 25	14.06
	3/32	2.381 25	0.5536		5/8	15.875 00	16.40
2.5mm		2.500 00	0.6406	16mm		16.000 00	16.79
	7/64	2.778 12	0.8790		21/32	16.668 75	18.99
2.8mm		2.800 00	0.9000	17mm		17.000 00	20.14
3mm		3.000 00	1.107		11/16	17.462 50	21.83
	1/8	3.175 00	1.312	18mm		18.000 00	23.91
3.5mm		3.500 00	1.758		23/32	18.256 25	24.95
	9/64	3.571 88	1.868	19mm		19.000 00	28.12
	5/32	3.968 75	2.563		3/4	19.050 00	28.34
4mm		4.000 00	2.624		25/32	19.843 75	32.04
4.5mm		4.500 00	3.736	20mm		20.000 00	32.80
	3/16	4.762 50	4.429		13/16	20.637 50	36.04
5mm		5.000 00	5.125	21mm		21.000 00	37.97
5.5mm		5.500 00	6.821		27/32	21.431 25	40.36
	7/32	5.556 25	7.032	22mm		22.000 00	43.65
•	15/64	5.953 12	8.650	0.0	7/8	22.225 00	45.01
6mm	474	6.000 00	8.856	23mm	00/00	23.000 00	49.88
0.5	1/4	6.350 00	10.50		29/32	23.018 75	50.00
6.5mm	17/04	6.500 00	11.26	0.4	15/16	23.812 50	55.36
-	17/64	6.746 88	12.59	24mm	04/00	24.000 00	56.68
7m	0/00	7.000 00	14.06	05	31/32	24.606 25	61.08
7.5	9/32	7.143 75	14.95	25mm	_	25.000 00	64.06
7.5mm	E/4.0	7.500 00	17.30	00	1	25.400 00	67.18
Omm	5/16	7.937 50	20.50	26mm	1 1/16	26.000 00	72.06
8mm		8.000 00	20.99	00	1 1/16	26.987 50	80.58
8.5mm	11/20	8.500 00	25.18	28mm	1 1/0	28.000 00	90.00
Omm	11/32	8.731 25	27.29		1 1/8	28.575 00	95.66
9mm		9.000 00	29.89				

Nominal	dimension	Nominal diameter	Mass kg
		$D_{\mathbf{W}}$	(approx.)
Metric	Inch	mm	10 pieces
30mm		30.000 00	1.107
	1 3/16	30.162 50	1.125
	1 1/4	31.750 00	1.312
32mm		32.000 00	1.343
	1 5/16	33.337 50	1.519
34mm		34.000 00	1.611
	1 3/8	34.925 00	1.747
35mm		35.000 00	1.758
36mm		36.000 00	1.913
	1 7/16	36.512 50	1.996
38mm		38.000 00	2.250
	1 1/2	38.100 00	2.267
	1 9/16	39.687 50	2.563
40mm		40.000 00	2.624
	1 5/8	41.275 00	2.883
	1 11/16	42.862 50	3.228
	1 3/4	44.450 00	3.601
45mm		45.000 00	3.736
	1 13/16	46.037 50	4.000
	1 7/8	47.625 00	4.429
	1 15/16	49.212 50	4.886
50mm		50.000 00	5.125
	2	50.800 00	5.375
	2 1/8	53.975 00	6.447
55mm		55.000 00	6.821
	2 1/4	57.150 00	7.653
60mm		60.000 00	8.856
	2 3/8	60.325 00	9.000
	2 1/2	63.500 00	10.50
65mm		65.000 00	11.26
	2 5/8	66.675 00	12.15
	2 3/4	69.850 00	13.97
	2 7/8	73.025 00	15.97
	3	76.200 00	18.14
	3 1/4	82.550 00	23.06
	3 1/2	88.900 00	28.80
	3 3/4	95.250 00	35.43
	4	101.600 00	43.00
	4 1/4	107.950 00	51.57
	4 1/2	114.300 00	61.22

2. Applicable range of class, accuracy of shapes and surface roughness, accuracy and gauges of classification

ım

	, ,											Onit: µm
		uracy and su thness of sha			Α	ccuracy	and gaug	ges of cla	ssificatio	on		
Class	Diameter variation (Max.)	Sphericity (Max.)	Surface roughness Ra (Max.)	Mutual tolerance of lot diameter (Max.)	Gauge interval				Gauge			
G3	0.08	0.08	0.010	0.13	0.5	-5,	,	-0.5,	0,	+0.5,	,	+5
G5	0.13	0.13	0.014	0.25	1	-5,	,	-1,	0,	+1,	,	+5
G10	0.25	0.25	0.020	0.5	1	-9,	,	-1,	0,	+1,	,	+9
G16	0.4	0.4	0.025	0.8	2	-10,	,	-2,	0,	+2,	,	+10
G20	0.5	0.5	0.032	1	2	-10,	,	-2,	0,	+2,	,	+10
G24	0.6	0.6	0.040	1.2	2	-12,	,	-2,	0,	+2,	,	+12
G28	0.7	0.7	0.050	1.4	2	-12,	,	-2,	0,	+2,	,	+12
G40	1	1	0.060	2	4	-16,	,	-4,	0,	+4,	,	+16
G60	1.5	1.5	0.080	3	6	-18,	,	-6,	0,	+6,	,	+18
G100	2.5	2.5	0.100	5	10	-40,	,	-10,	0,	+10,	,	+40
G200	5 5 0.150 10 15 -60,, -15, 0, +15,, +60											
1) Magazira	the diseaseis	a avaludianth	a flaura basa	+ h.a al	la natinaarn	arata flav	o on the c	rfa.aa				

¹⁾ Measure the dimension excluding the flaws because the values do not incorporate flaws on the surface.

3. Hardness

Nominal	Hard	lness
dimension	HV	HRC
0.3mm to 3mm 1/8 to 30mm	772 to 900 —	(63 to 67) ²⁾ 62 to 67
1 3/16 to 4	_	61 to 67

²⁾ The value in () is shown by reference to the converted value.

D-22

hardness is 60 to 65 HRC.

Needle rollers are provided as rolling elements or pins for operation directly on the shaft.

1. Shape of needle rollers

The standard shape of needle rollers has a flat surface on its end face (referred to as F type). Crowned contact surfaces are also available (suffix code: E) and can reduce the edge load on the rollers. Excessive edge load on rollers can result in premature failure. Contact NTN Engineering for more information.

Table 1 End face shape

Туре	Designation	Shape
F	Flat surface	

2. Needle roller part number composition

The needle roller part number is composed of a model code (end face type), a dimension code [diameter (D_W) x length (L_W)], and a suffix code (Refer to Fig. 1).

Fig. 1

1) For HL, contact **NTN** Engineering.

3. Accuracy of needle rollers

The dimensional accuracy of needle rollers is maintained in accordance with JIS B 1506 (Rolling bearings—Rollers). (Refer to Table 2)

Table 2 Accuracy of needle rollers

Characteristics	Tolerance and tolerance values
Tolerance of average value of diameter $D_{\rm W}$	0 to −10
Mutual tolerance of lot diameter D_W (max.)	2
Roundness of diameter $D_{\rm W}$, diameter variation in flat surface	1.0 (<i>L</i> _W / <i>D</i> _W ≤6) 1.5 (<i>L</i> _W / <i>D</i> _W >6)
Tolerance of length $L_{\rm W}$	h13
Accuracy class	Class 2

Needle rollers are separated into groupings of $2\mu m$ ranges based on the diameter of the roller and are separately packaged to maintain consistency between supplied rollers. Depending on the tolerance range, the needle rollers are classified by label colors such as red, black, and blue, and then delivered.

Bearing rollers in packages having different label colors must not be mixed.

Table 3 Diameter dimensional tolerance and classification of needle rollers

Label color	Tolerance range (µm)	Classification
Red	0 to −2	
Navy	−1 to −3	
Blue	−2 to −4	Standard
Black	−3 to −5	
White	−4 to −6	
Gray	−5 to −7	
Green	−6 to −8	Sub standard
Brown	−7 to −9	Sub standard
Yellow	−8 to −10	

4. Application of needle rollers

Needle Rollers

When a full compliment needle roller bearing is made with a standard needle roller, the shaft diameter (d), the housing bore diameter (D), the circumferential clearance (Δ_C), and the radial internal clearance (Δr) are calculated from the needle roller diameter (D_{W}) and the number of rollers (Z) (see Fig. 2).

The minimum value of the circumferential clearance (Δ_C) is calculated by Equation (1). The radial internal clearance (Δr) is selected based on the shaft diameter and the usage conditions using section "E. Needle roller bearings 2.4 Solid type needle roller bearings Table 9 (E-7)" as guidance. Full complement needle roller bearings generally require a larger radial inner clearance than a needle roller bearing with cage.

$$\Delta_C = (0.005 \sim 0.020) \times Z \text{ mm}$$
(minimum value)(1)

The minimum value of the housing bore diameter (D) and the maximum value of the shaft diameter (d) are calculated from Equations (2) and (3).

In order to retain the needle rollers in the housing using the keystone method, the maximum value of the housing bore diameter (D) is calculated from the minimum value of the roller diameter (Dw min) and the number of rollers (Z) using Equation (4) (see Fig. 3). Factor K is shown in Table 4.

 $D = K \cdot D_{\text{w min}} \text{ mm (maximum value)} \cdots (4)$

Fig. 2

Fig. 3

Table 4 Values of factor K

Z	K	Z	K
8	3.6763333	17	6.4536463
9	3.9709394	18	6.7689303
10	4.2727719	19	7.0846088
11	4.5789545	20	7.4006100
12	4.8879667	21	7.7168786
13	5.1989251	22	8.0333713
14	5.5112799	23	8.3500534
15	5.8246707	24	8.6668970
16	6.1388508	25	8.9838796

F type

d 1.5 \sim 4.5mm

<i>u</i> 1	$.5 \sim 4.5 \mathrm{m}$	1111	
Boundary dimensions mm		Number	Mass kg (approx.) 1 000
D_{w}	$L_{\rm w}$	Flat type	pieces
- w	2 w	5) [-	p
	5.8 6.8	F1.5 × 5.8 F1.5 × 6.8	0.080 0.090
	7.8	F1.5 × 7.8	0.104
1.5	9.8	F1.5 × 9.8	0.131
	11.8	F1.5 × 11.8	0.159
	13.8	F1.5 × 13.8	0.186
	6.8	F2 × 6.8	0.158
	7.8	F2 × 7.8	0.183
	9.8	F2 × 9.8	0.232
2	11.8	F2 × 11.8	0.281
_	13.8	F2 × 13.8	0.330
	15.8	F2 X 15.8	0.379
	17.8	F2 × 17.8	0.428
	19.8	F2 × 19.8	0.477
	7.8	F2.5 × 7.8	0.284
	9.8	$F2.5 \times 9.8$	0.351
	11.8	F2.5 × 11.8	0.438
	13.8	F2.5 × 13.8	0.514
2.5	15.8	F2.5 × 15.8	0.591
	17.8	F2.5 × 17.8	0.668
	19.8	F2.5 × 19.8	0.745
	21.8	F2.5 × 21.8	0.821
	23.8	F2.5 × 23.8	0.898
	9.8	F3 × 9.8	0.556
	11.8	F3 × 11.8	0.671
	13.8	F3 × 13.8	0.784
	15.8	F3 × 15.8	0.897
3	17.8	F3 × 17.8	1.01
	19.8	F3 × 19.8	1.12
	21.8	F3 × 21.8	1.23 1.34
	23.8 25.8	F3 × 23.8 F3 × 25.8	1.45
	25.6	F3 X 25.6 F3 X 27.8	1.45
	21.0	F3 ∧ 21.0	1.50

	undary ensions mm	Number	Mass kg (approx.) 1 000
D_{w}	$L_{\rm w}$	Flat type	pieces
	11.8	F3.5 × 11.8	0.849
	13.8	F3.5 × 13.8	1.00
	15.8	F3.5 × 15.8	1.15
	17.8	F3.5 × 17.8	1.30
	19.8	F3.5 × 19.8	1.45
3.5	21.8	F3.5 × 21.8	1.60
	23.8	F3.5 × 23.8	1.75
	25.8	F3.5 × 25.8	1.90
	29.8 31.8	F3.5 × 29.8 F3.5 × 31.8	2.20 2.35
	34.8	F3.5 × 31.8 F3.5 × 34.8	2.35
	34.0	F3.5 ∧ 34.0	2.36
	13.8	F4 × 13.8	1.27
	15.8	F4 × 15.8	1.50
	17.8	F4 × 17.8	1.70
	19.8	$F4 \times 19.8$	1.89
	21.8	F4 × 21.8	2.09
_	23.8	F4 × 23.8	2.26
4	25.8	F4 × 25.8	2.48
	27.8	F4 × 27.8	2.68
	29.8	F4 × 29.8	2.87
	31.8	F4 × 31.8	3.07
	34.8	F4 × 34.8	3.31
	37.8	F4 × 37.8	3.62
	39.8	F4 × 39.8	3.82
	17.8	F4.5 × 17.8	2.11
	19.8	F4.5 × 19.8	2.36
	21.8	$F4.5 \times 21.8$	2.61
	23.8	F4.5 × 23.8	2.86
4.5	25.8	$F4.5 \times 25.8$	3.11
4.5	29.8	F4.5 × 29.8	3.62
	31.8	F4.5 × 31.8	3.87
	34.8	F4.5 × 34.8	4.25
	37.8	F4.5 × 37.8	4.63
	39.8	F4.5 × 39.8	4.88
	44.8	F4.5 × 44.8	5.51

<u>d</u> 5mm

dim	undary ensions mm	Number	Mass kg (approx.)
D_{w}	$L_{\rm w}$	Flat type	1 000 pieces
	40.0	F5 \/ 10 0	0.00
	19.8	F5 × 19.8	2.89
	21.8	F5 × 21.8	3.20
	23.8	F5 × 23.8	3.52
	25.8	F5 × 25.8	3.82
_	29.8	F5 × 29.8	4.45
5	31.8	F5 × 31.8	4.74
	34.8	F5 × 34.8	5.11
	37.8	F5 × 37.8	5.55
	39.8	F5 × 39.8	5.85
	49.8	F5 × 49.8	7.33

D-26 D-27

Needle Roller Bearings Contents

Needle roller bearings ····· E- 2
_
Needle roller and cage assemblies E-12
Drawn cup needle roller bearings E-26
Machined-ring needle roller bearings E-34
Thrust cylindrical roller bearings E-56
Thrust needle roller bearings E-62
Cam follower stud type track rollers E-66
Roller follower voke type track rollers E-84

Needle Roller Bearings

1. Characteristics and types of needle roller bearings

Needle roller bearing are rolling bearings which have small diameter cylindrical rolling elements whose length is relatively long compared with their diameter.

Needle roller bearings have a small crosssectional height and have a larger load capacity and rigidity than other types of rolling bearings for their relative size. They are also suitable for oscillating motion due to their low moment of inertia. Types of needle roller bearings are shown in the table below. This catalog **provides dimension tables for the representative bearing types indicated by blue text in the table below**.

For more information about needle roller bearings, see the special catalog issued separately "Needle roller bearings (CAT. No. 2300/E)."

	Bearing type	Type code	Shaft diameter	Page of bearing dimension table
	Needle roller bearing with cage	K,K···T2,K···S,KMJ···S,K···ZW, KV···S,KV···ZWS,K···L1	3~285	E-12~25
	Connecting rod needle roller bearings with cage	PK, KBK, GPK, KMJ····S, KBK, KV····S		
Radial roller	Drawn cup needle roller bearings	HK, HMK, HKZWD, HMKZWD, BK, BKZWD, HKL, HMKL, HKLL, HMKLL, DCL, HCK	3~ 50	E-26~33
bearings	Solid type needle roller bearings	RNA48, RNA49, RNA49…R, RNA59, RNA69…R, NK, NK…R, NA48, NA49, NA49…R, NA59, NA69…R, NK+IR, NK…R+IR NA49…L, RNA49…L, NA49…L, NA49…L, NA49…LL, RNA49…LL, RNA49…LL, RNA49…LL, RNA49…LL, RNA49…LL, MR, MR+MI NKS, NKS+IR	5~440	E-34~55
	Separable solid type needle roller bearings	RNAO,RNAO…ZW,NAO, NAO…ZW		
	Clearance adjusting needle roller bearings	RNA49···S, NA49···S		
Thrust roller bearings	Thrust cylindrical roller bearings	811,812,893,K811,K812,K893 WS,GS,874,K874	10~160	E-56~61
	Thrust needle roller bearings	AXK11,AS,WS,GS	10~160	E-62~65
Complex bearings	Complex bearings	NKX, NKXZ, NKXR, NKXRZ, NKX+IR, NKXZ+IR, NKXR+IR, NKXRZ+IR, NKIA, NKIB, AXN, ARN		
Total college	Cam followers	KR···(F), KR···(F)LL, KRV···(F), KRV···(F)LL, KR···(F)H, KRV···(F)H, KRT, KRT···LL, KRVT, KRVT···LL, KRVI, KRVU··LL, CR, CR···LL, CRV, CRV···LL, CR···H, CRV···H, NUKR, NUKRT, NUKRU	3∼ 64 (Stud diameter)	E-66~83
Track rollers	Roller followers	RNAB2, NAB2, RNA22···LL, NA22···LL, NATR, NATR···LL, NATV, NACV, NATV···LL, NACV···LL, NUTR, NUTW	5~ 50	E-84~91
Components	Inner rings, needle rollers, snap rings, seals	IR, MI, F, WR, BR, G, GD, LEG, LEGD		D-24~27
Linear motion bearings	Linear ball bearings	KLM,KH,KD,RLM,FF,FFZW, RF,BF		
Textile machinery bearings	Bottom roller bearing tension pulleys	JPU···S,FRIS,FR		

Note: 1. Bearings with polyamide resin cages (supplementary suffix code: T2/example: HK0408F<u>T2</u>) must be used at an allowable temperature of 120°C or below or 100°C or below for continuous use.

2. Handling and accuracy of needle roller bearings

2.1 Required accuracy and surface hardness of raceway surfaces

Needle Roller Bearings

For applications using needle roller bearings, the outer diameter of the shaft or the inner diameter of the housing or the gear is sometimes used directly as a raceway surface.

Table 1 shows the accuracy, surface roughness, and surface hardness required for raceway surfaces in order to keep radial clearance within the prescribed allowable tolerance range after needle roller bearing installation, and to ensuring high rotational accuracy. To set a surface hardness of the raceway surface from 58 to 64 HRC and obtain a sufficient load capacity, apply appropriate heat treatment to materials as shown in Table 2.

Depending on the usage conditions, the bearing function may not be satisfactory even with the following recommended values. If this applies, consult with **NTN** Engineering.

Table 1 Recommended accuracy of raceway surfaces

Characteristics		Housing
Dimensional accuracy		IT6 (IT5)
Roundness Cylindricity (Max.)		IT4 (IT3)
Radial	IT3	
Thrust	IT5 (IT4)	
Ra	Shaft diameter ϕ 80 or below: 0.2 Shaft diameter ϕ 81 to ϕ 120: 0.3 Shaft diameter over ϕ 120 : 0.4	
Surface hardness		54 HRC
	curacy ax.) Radial Thrust	curacy IT5 (IT4) ax.) IT3 (IT2) Radial IT Thrust IT5 (Shaft diameter ϕ Shaft diameter of Shaft

Remarks: Accuracy in () applies for high rotational accuracy.

Table 2 Materials used for raceways

oresentative example	Standard
example	Standard
SUJ2	JIS G 4805
SK85 ormer: SK5)	JIS G 4401
SNCM420	JIS G 4053 (Former: JIS G 4103)
SCr420	JIS G 4053 (Former: JIS G 4104)
SCM420	JIS G 4053 (Former: JIS G 4105)
USU440C	JIS G 4303
	SK85 prmer: SK5) SNCM420 SCr420

When steel is surface-hardened by carburizing or carbonitriding, the depth from the surface to 550 HV is defined as effective case depth per JIS. The minimum value of the effective case depth is roughly estimated using formula (1).

 $Eht \min \ge 0.8D_{W}(0.1 + 0.002D_{W}) \cdots (1)$

Where:

 Eht_{min} : Minimum effective case depth, mm D_{W} : Roller diameter, mm

Needle roller bearings have low allowable

Needle roller bearings have low allowable misalignment because the ratio of roller length to roller diameter is high. For normal applications, bearing misalignment must not exceed the values shown in **Table 3**.

Table 3 Allowable misalignment of needle roller bearings

3					
Bearing type	Allowable misalignment				
Radial roller bearings	1/2 000				
Thrust roller bearings	1/10 000				

Mating part dimensions must be set so that the rolling surface does not come in contact with the recessed portion of the shaft or the chamfered area of the housing raceway surface. Contact $\bf NTN$ Engineering when dimension $\bf A_{min}$ (Fig. 1) must be confirmed.

Fig. 1 Dimension Amin

2 E-3

Bearings with an attached synthetic rubber seal and filled with grease inside (supplementary suffix code: L or LL/example: NATR20<u>LL</u>/3AS)
must be used at an allowable temperature of -20 to 120°C or 100°C or below for continuous use.

2.2 Needle roller bearing with cage

These needle roller bearings include needle rollers and cages that guide and hold the needle rollers. The structure is lightweight and compact because no inner ring or outer ring is used and the shaft and the housing are used as raceway surfaces.

Table 4 shows recommended fits for this bearing type, and Table 5 shows the diameter dimensional tolerance and classification of needle rollers. See section 2.1 for the accuracy and surface hardness necessary for shafts and housings serving as the raceway surfaces for these bearings.

The needle roller diameter variation included in a single assembly is within 2 μ m, and the standard classification shown in Table 5 will be supplied if there is no particular designation. When two or more of the same bearings are to be used in tandem arrangement, it is necessary to use bearings having rollers of the same classification promote equal load sharing.

For caged needle roller bearings that are used for the connecting rod of small/medium reciprocating engines, see the catalog "Needle roller bearings (CAT. No. 2300/E)."

Table 4 Fits recommended for needle roller bearings with cage

	Recommended fits									
Shaft diameter mm	clea	ernal rance ess normal		rmal rance	Internal clearance greater than normal					
	Shaft	Housing	Shaft	Housing	Shaft	Housing				
Up to 80	j5	G6	h5	G6	g6	G6				
80 to140	h5	G6	g5	G6	f6	G6				
140 or more	h5	G6	f5	Н6	f6	G6				

Table 5 Diameter dimensional tolerance and classification of needle rollers

Label color	Tolerance range (µm)	Classification
Red Navy Blue Black White	-0 to - 2 -1 to - 3 -2 to - 4 -3 to - 5 -4 to - 6	Standard
Gray Green Brown Yellow	-5 to - 7 -6 to - 8 -7 to - 9 -8 to -10	Sub standard

When a caged needle roller bearing is used as a single body to be directly guided in the axial direction by a shaft shoulder (Fig. 2), any part coming into contact with the cage side surface must be sufficiently finished without burrs. For high speed or heavy load operation, the contact surface is hardened and finished by grinding.

When a cage is to be guided in the axial direction with a snap ring (Fig. 2), a thrust ring is used between the cage and the snap ring so that the snap ring lugs do not come in contact with the cage directly.

Fig. 2 Fixing using thrust ring

2.3 Drawn cup needle roller bearings

The outer ring of drawn cup needle roller bearings is formed by precision drawing from a thin steel plate, and is designed to have an appropriate accuracy for its intended function when press-fit into a rigid housing.

Therefore, it is meaningless to measure the dimensional accuracy of the bearing itself before press fitting. After pressing into a ring gage (with wall thickness of 20 mm or more) having appropriate dimensions, the bearing accuracy is evaluated by measuring the roller inscribed circle diameter (F_W) with a plug gauge or a tapered gauge.

Recommended fits for drawn cup needle roller bearings are shown in Table 6, and recommended shaft and housing accuracy is shown in Table 7. Tables 8.1 and 8.2 show the dimensional tolerances of the ring gauge inner diameter dimension and the roller inscribed circle diameter (F_{W}) with respect to the standard metric series HK and BK types and the heavy load series HMK type.

Table 6 Drawn cup needle roller bearing housing and shaft fits

	Hous	sing	Shaft					
Bearing type	Iron-based	Light alloy	No inner ring	With an inner ring				
нк, вк	N6(N7)	R6(R7)	h5(h6)	k5(j6)				
НМК	J6(J7)	M6(M7)	115(110)	(300)				

Table 7 Recommended shaft and housing accuracy

Characteristics	Shaft	Housing
Dimensional accuracy	IT6 (IT5)	IT7 (IT6)
Roundness Cylindricity (Max.)	IT3	IT4
Abutment squareness (Max.)	IT3	IT3
Fitting surface roughness Ra	0.8	1.6
· · · · · · · · · · · · · · · · · · ·	0.8	

Note: Accuracy in () applies to bearings of accuracy class 5 and higher.

When a plug gauge is used for the measurement of the roller inscribed circle diameter (F_w) , the dimension of the go side is the lower limit of the dimensional tolerance of the roller inscribed circle diameter, and the dimension of the no-go side is the value obtained by adding 2 μ m to the upper limit of the dimensional tolerance of the roller inscribed circle diameter.

Since the outer ring is formed by a thin steel plate, the safety factor (S_0) when the bearing is used must be $S_0 \ge 3$ for standard specifications, and $S_0 \ge 2$ must be maintained for the carburized/quenched specification (premium shell bearing¹⁾).

1) Premium shell bearings

35 40 45

50

For details, see the special catalog issued separately "Premium shell bearings (CAT. No. 3029/JE)." (Suffix code F is added to the bearing number.)

Table 8.1 Accuracy of drawn cup needle roller bearings (1)

Dimensional tolerance of roller inscribed circle diameter (HK and BK types) Unit: mm Nominal roller Nominal Dimensional inscribed outer ring tolerance of roller gauge circle outer inner inscribed circle diameter diameter diameter diameter F_{W} DJpper limit Lower limit 6.5 3.006 4.010 8 7.984 4.022 5 8.984 5.022 5.010 10 9.984 6.022 6.010 11 10.980 7.028 7.013 12 11.980 8.028 8.013 9 13 14 16 12.980 9.028 9.013 10 12 10.028 10.013 15.980 12.016 12 18 17.980 12.034 12.016 13 18.976 19.976 13.034 14.034 19 20 13.016 14 14.016 15 16 17 21 22 23 15.034 20.976 15.016 21.976 22.976 16.034 17.034 16.016 17.016 18 20 22 24 26 28 23.976 25.976 27.976 18.034 18.016 20.041 20.020 22.041 22.020 25 32 31.972 25.041 25.020 28 30 35 37 34.972 28 041 28.020

36.972

41.972

51.967

57.967

42

47

52

58

30 041

35.050

40.050

50.050

30.020

35.025

40.025

45.025

50.025

E-5

Table 8.2 Accuracy of drawn cup needle roller bearings (2)

Dimensional tolerance of roller inscribed circle diameter (HMK type) Unit: mm

(HMK type) Unit: mn								
Nominal roller	Nominal	Ring	Dimensional					
inscribed	outer ring	gauge	tolerance of roller					
circle	outer	inner	inscribed circle					
diameter	diameter	diameter	diameter					
F_{W}	D		Upper limit	Lower limit				
8	15	14.995	8.028	8.013				
9	16	15.995	9.028	9.013				
10	17	16.995	10.028	10.013				
12	19	18.995	12.034	12.016				
14	22	21.995	14.034	14.016				
15	22	21.995	15.034	15.016				
16	24	23.995	16.034	16.016				
17	24	23.995	17.034	17.016				
18	25	24.995	18.034	18.016				
19	27	26.995	19.041	19.020				
20	27	26.995	20.041	20.020				
21	29	28.995	21.041	21.020				
22	29	28.995	22.041	22.020				
24	31	30.994	24.041	24.020				
25	33	32.994	25.041	25.020				
26	34	33.994	26.041	26.020				
28	37	36.994	28.041	28.020				
29	38	37.994	29.041	29.020				
30	40	39.994	30.041	30.020				
32	42	41.994	32.050	32.025				
35	45	44.994	35.050	35.025				
37	47	46.994	37.050	37.025				
38	48	47.994	38.050	38.025				
40	50	49.994	40.050	40.025				
45	55	54.994	45.050	45.025				
50	62	61.994	50.050	50.025				

When a drawn cup needle roller bearing is to be inserted into a housing, the marked side of the bearing must be press-fit into the appropriate position with the use of a jig. (There is no designation for the installation direction of pre-bent specification products¹,)

The bearings must not be directly struck by a hammer when being installed. Use an installation jig like that shown in **Fig. 3**, having a mandrel equipped with an O-ring for ease of installation, should be used to ensure the bearing will not fall off or become damaged during installation.

When inserting an inner ring or a shaft into a drawn cup needle roller bearing installed in a housing, insert it straightly by aligning the central axis of the inner ring or the shaft with the central axis of the housing.

Since a drawn cup needle roller bearing is positioned by means of the housing, it is unnecessary to provide a snap ring or a shoulder. However, when a drawn cup needle roller bearing is to be press-fitted into a housing having a shoulder, it is necessary to pay attention to prevent the bearing side surface from contacting the shoulder, thereby causing deformation of the bearing.

1) Pre-bent specification

The outer ring flange is hardened on both sides by heat treating the outer ring after inserting the cage and rollers and bending the edge of the ring.

Thus, bearings can be press-fitted from any direction

Thus, bearings can be press-fitted from any direction compared with conventional products, which required applying a jig on the outer ring marking side. (Suffix code M is added to the bearing number.)

Fig. 3

2.4 Solid type needle roller bearings

These bearings have a non-separable construction held together by flanges or side plates on both sides of the outer ring, with needle rollers and cages contained within a solid (machined) outer ring. Since the outer ring is solid (machined), it has high rigidity and the bearing accuracy can be increased; therefore, the bearings are suitable for applications that require high speed, high load, and high rotational accuracy.

There are two types of solid type needle roller bearings: one having an inner ring and one having no inner ring. Bearings without an inner ring use the shaft directly as a raceway surface, and the required dimensional tolerance of the shaft diameter (raceway diameter) is as shown in **Table 9** based on required operating clearance (see **Table 1** required accuracy of other parameters). The corresponding dimensional tolerance of the housing bore is set to K7, which is widely used in general. Please consult **NTN** Engineering when setting the dimensional tolerance of the housing bore to other classes.

Table 9 Dimensional tolerance for shaft (raceway diameter)

	Roller inscribed circle diameter Fw mm Over Incl.		Shaft tolerance class					
			Internal clearance less than normal	Normal clearance	Internal clearance greater than normal			
		80	k5	h5	f6			
	80	160	k5	g5	f6			
	160	180	k5	g5	e6			
	180 200		j5	g5	e6			
	200	250	j5	f6	e6			
	250 315		h5	f6	e6			
	315	400	g5	f6	d6			

Tables 10.1 and 10.2 show values of the radial internal clearance of bearings with an inner ring. Table 10.1 shows the clearance of interchangeable bearings, and the clearance values are satisfied even if the inner rings and outer rings are intermixed. Table 10.2 shows the clearance of non-interchangeable bearings, and the clearance range is tightly controlled. Therefore, the inner rings and outer rings cannot be intermixed. The clearance codes are C2, normal, C3, and C4 from smallest to largest, and suffix code NA is added for the non-interchangeable clearance.

Table 10.1 Radial internal clearance of solid type needle roller bearings (1) interchangeable bearings

		interchangeable bearings					Un	it: μm			
Nominal bearing bore diameter			Radial internal clearance								
	d (m		C	2	Nor	nal ¹⁾	С	C3		C4	
	Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
	_ 10 18	10 18 24	0 0 0	30 30 30	10 10 10	40 40 40	25 25 25	55 55 55	35 35 35	65 65 65	
	24	30	0	30	10	45	30	65	40	70	
	30	40	0	35	15	50	35	70	45	80	
	40	50	5	40	20	55	40	75	55	90	
	50	65	5	45	20	65	45	90	65	105	
	65	80	5	55	25	75	55	105	75	125	
	80	100	10	60	30	80	65	115	90	140	
	100	120	10	65	35	90	80	135	105	160	
	120	140	10	75	40	105	90	155	115	180	
	140	160	15	80	50	115	100	165	130	195	
	160	180	20	85	60	125	110	175	150	215	
	180	200	25	95	65	135	125	195	165	235	
	200	225	30	105	75	150	140	215	180	255	
	225	250	40	115	90	165	155	230	205	280	
	250	280	45	125	100	180	175	255	230	310	
	280	315	50	135	110	195	195	280	255	340	
	315	355	55	145	125	215	215	305	280	370	
	355	400	65	160	140	235	245	340	320	415	
	400	450	70	190	155	275	270	390	355	465	

1) No clearance code is given to this type of bearings.

Table 10.2 Radial internal clearance of solid type needle roller bearings (2) non-interchangeable bearings Hait (18)

Unit: μm									
Nominal bearing bor diameter	е	Radial internal clearance							
d (mm)	C2	2NA	Nori	mal 1)	С3	C3NA		C4NA	
Over Incl	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
- 10	10	20	20	30	35	45	45	55	
10 18	10	20	20	30	35	45	45	55	
18 24	10	20	20	30	35	45	45	55	
24 30	10	25	25	35	40	50	50	60	
30 40	12	25	25	40	45	55	55	70	
40 50	15	30	30	45	50	65	65	80	
50 65	15	35	35	50	55	75	75	90	
65 80	20	40	40	60	70	90	90	110	
80 100	25	45	45	70	80	105	105	125	
100 120	25	50	50	80	95	120	120	145	
120 140	30	60	60	90	105	135	135	160	
140 60	35	65	65	100	115	150	150	180	
160 180	35	75	75	110	125	165	165	200	
180 200	40	80	80	120	140	180	180	220	
200 225	45	90	90	135	155	200	200	240	
225 250	50	100	100	150	170	215	215	265	
250 280	55	110	110	165	185	240	240	295	
280 315	60	120	120	180	205	265	265	325	
315 355	65	135	135	200	225	295	295	360	
355 400	75	150	150	225	255	330	330	405	
400 450	85	170	170	255	285	370	370	455	

1) Only code "NA" is given to this type of bearings. Example: NA4920NA

E-6 E-7

When there is an oil hole on the raceway surface, bearings should be installed such that the oil hole position is located in the non-loaded region. A bearing with an inner ring must be used within the allowable movement amount (s) (a state in which the rollers are within the range of the inner ring effective contact length). The allowable movement amount (s) is illustrated in Fig. 4, values are listed in the bearing dimension tables.

Fig. 4 Allowable movement amount (s)

2.5 Thrust roller bearing

Thrust roller bearings are bearings having a disc-shaped raceway combined with a cage-and-roller assembly having needle rollers or cylindrical rollers radially embedded, and are suitable for axial loads applied in a single direction.

Further, a shaft or housing can be directly used as a raceway surface without using a separate raceway ring. Thereby, size in the axial direction can be minimized, and lightweight and compact designs can be obtained. **Table 11** shows fits recommended for thrust roller bearings. See **Table 1** for the required accuracy of the raceway surface.

Table 11 Fits recommended for thrust roller bearings

		Type and	d class
Bearing	parts	Shaft diameter	Housing bore
AXK type, K811 type	Inner diameter guide	h8 ¹⁾	_
K812 type, K893 type	Outer diameter guide	_	H9 ¹⁾
WS type raceway	(inner ring)	h6	-
GS type raceway	(outer ring)	_	H7
Steel AS type	Shaft fixing	h10	Clearance with housing
raceway AS type	Housing fixing	Clearance with shaft Loose	H11

¹⁾ The guide surface is finished by grinding.

2.6 Cam follower/roller follower

A cam follower is a track roller having a stud in place of an inner ring, and the outer ring rolls on a track. It is a bearing used as an eccentric roller, a guide roller, etc., and it can have a cylindrical shape or a spherical shape for the outer ring outer diameter. Cam follower bearings are offered in both cage type and full complement designs.

When attaching a cam follower do not strike the flange part with a hammer because sharp impact may cause cracks and rotational failure (Fig. 5). In addition, the oil supply hole position on the stud raceway surface of the cam follower is indicated by the NTN mark on the stud flange surface. Install it by rotating the nut while the fixing the stud so that the mark (oil hole) is positioned in the non-loaded region (Fig. 6). The thread part may break if too much tightening torque is applied.

Fig. 5

Fig. 6

A roller follower is a bearing in which the outer ring rolls on a track. As with the cam follower, there is a cylindrical shape or a spherical shape for the outer ring outer diameter, and are offered in both cage type and full complement designs. Common uses include use as an eccentric roller, guide roller, rocker arm roller, cam roller, pressure roller, etc.

A roller follower must be installed so that the oil hole is positioned in the non-loaded region because installing the oil hole position of the inner ring in the loaded region may shorten the bearing life.

Table 12 shows the radial internal clearance of cam followers and roller followers, **Tables 13** and **14** show the dimensional accuracy and recommended fits of cam followers, and **Table 15** shows the recommended fits of roller followers.

Table 12 Radial internal clearance of cam followers and roller followers

Nom				Int	ernal c	leara	nce		μm
roll inscr circ diam F _w	ibed cle eter mm		2	CN (normal)		C3		C4	
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
3	6	0	10	3	17	15	30	20	40
6	10	0	12	5	20	15	30	25	45
10	18	0	15	5	25	15	35	30	55
18	30	0	20	10	30	20	40	40	65
30	50	0	25	10	40	25	55	50	80
50	80	0	30	15	50	30	65	60	100
80	100	0	35	20	55	35	75	70	115

Table 13 Dimensional accuracy of cam followers

Unit: //r

	TOHOVVC	13		Unit: μ m	
Bearing	Outer ring shape	Outer ring width			
Milli	Spherical surface	h7	0 -50	JIS Class 0	
series	Cylindrical surface	117	JIS Class 0	JIS Class 0	
Inch	Spherical surface	+25	0 -50	0	
series	Cylindrical surface	0	0 -25	-130	

E-8 E-9

Table 14 Fits recommended for cam followers

Bearing	Type and class of mounting hole
Metric series	Н7
Inch series	F7

Note: Assembly must be done without backlash for impact loads.

Table 15 Fits recommended for roller followers

Type and cl	ass of shaft
No inner ring	With an inner ring
k5 or k6	g6 or h6

The maximum radial load that can be statically permitted on the contact surface between the track and the track roller is referred to as the track load capacity, and the value differs depending on the hardness of the track. The track load capacity specified in the dimension table is a value considering a track hardness of 40 HRC, and the load capacity of tracks having different hardness may be obtained by multiplying the track load capacity in the dimension table by the correction coefficient Gin Table 16. However, when the calculated track load capacity exceeds the basic static rating load C_{0r} of the bearing, the track load capacity is equal to the basic static rating load C_{0r} of the bearing.

Table 16 Correction coefficient G

Hardness	Correction coefficient G					
(HRC)	Cylindrical shape	Spherical shape				
20	0.368	0.223				
25	0.459	0.311				
30	0.583	0.446				
35	0.750	0.650				
40	1.000	1.000				
45	1.414	1.681				
50	1.987	2.800				
55	2.787	4.652				

Since **NTN** cam followers and roller followers are generally installed with cantilever loading, a non-uniform load (one-sided load) may act on the bearing due to the influence of loosening of the fitting caused by continuous use. For stable operation of equipment, it is necessary to pay sufficient attention to the looseness of the fitting.

Further, lubrication is also necessary between the outer ring outer diameter surface and the track of the bearing. Even after lubrication, the bearing and the track may be damaged at an early stage when slippage occurs between the outer ring outer diameter surface and the track of the bearing due to rapid radial load fluctuation or rotational speed fluctuation during use.

For details, see the special catalog "Needle roller bearings (CAT. No. 2300/E)" or "Cam follower & roller follower (CAT. No. 3604/JE)."

E-10 E-11

-NTN

Needle Roller Bearings

NTN

Needle roller and cage assemblies

K type

 $K \cdots T2 \ type$

K ⋅ · S type

 $K \cdot \cdot ZW$ type $KMJ \cdot \cdot S$ type

KV··S type

	I w J	1011								
	Boun	dary d	imensions	Basic load	rating	Fatigue	Allowab	le speed	Number	Mass
		mr	n	dynamic N	static	load limit N	min ⁻¹ Grease Oil			kg
	$F_{ m w}$	$E_{\rm w}$	$B_{\rm c}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$		lubrication		(approx.)
ı										
	3	6	$\begin{array}{ccc} 7 & ^{-0.2}_{-0.55} \end{array}$	1 460	970	118	33 000	50 000	$K3 \times 6 \times 7T2T$	0.0004
		6	8 - 0.2	1 560	1 330	162	30 000	45 000	K4×6×7.8XT2	0.0003
	4	7	7 - 0.55	1 770	1 270	155	30 000	45 000	$K4 \times 7 \times 7T2$	0.0005
	_	8	8 - 0.2	2 640	2 190	267	27 000	40 000	K5×8×8T2	0.0007
	5	8	10 - 0.55	2 720	2 250	275	27 000	40 000	K5×8×10T2	0.0009
ı		9	8	2 660	2 280	278	25 000	37 000	K6×9×8T2T	0.0009
	6	9	10 - 0.2	3 400	3 150	380	25 000	37 000	K6×9×10T2T	0.0011
		10	13	4 400	3 700	455	25 000	37 000	K6×10×13T2	0.0019
ı		10	8	2 670	2 350	286	23 000	34 000	K7×10×8T2	0.0009
	7	10	10 - 0.2	3 400	3 200	390	23 000	34 000	K7×10×10T2	0.0011
		10	13	5 050	5 400	655	23 000	34 000	$KV7 \times 10 \times 12.8X3S$	0.0023
ı		11	8	3 150	3 000	365	21 000	32 000	K8×11×8T2T	0.0011
		11	9	3 150	3 000	365	21 000	32 000	8E-KV8×11×8.8X2S	0.0019
		11	10	4 000	4 100	500	21 000	32 000	K8×11×10T2	0.0013
	8	11	12 0.2	4 450	4 650	570	21 000	32 000	8E-KV8×11×11.8X2S	0.0025
	٠	11	13 ^{- 0.55}	4 850	5 200	635	21 000	32 000	K8×11×13	0.0026
		12	10	4 650	4 150	510	21 000	32 000	K8×12×10T2	0.0020
		12	12	5 600	5 300	650	21 000	32 000	8E-KV8×12×11.8X1S	0.0040
		12	13	5 050	4 650	565	21 000	32 000	K8×12×13	0.0036
	9	12	10 _ 0.2	4 550	5 000	615	20 000	30 000	K9×12×10T2	0.0015
		12	13 ^{- 0.55}	5 500	6 400	780	20 000	30 000	K9×12×13T2	0.0021
		13	10	4 550	5 100	620	19 000	28 000	K10×13×10T2T	0.0016
		13	13	5 450	6 450	790	19 000	28 000	8E-KV10 \times 13 \times 12.8XS	0.0032
		14	8	4 300	3 950	485	19 000	28 000	K10×14×8	0.0027
	10	14	10 _{- 0.2}	5 500	5 450	660	19 000	28 000	K10×14×10T	0.0034
		14	- 11	5 500	5 450	660	19 000	28 000	8E-KV10×14×10.8XS	0.0039
		14	11.5	6 800	7 200	875	19 000	28 000	KMJ10×14×11.3XS	0.0040
		14	13	6 600	6 900	840	19 000	28 000	K10×14×13	0.0044
		14	14	7 150	7 650	930	19 000	28 000	8E-KV10 \times 14 \times 13.8X4S	0.0050

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

F_w 10 ∼ 15mm

Bour	ndary d	imensions	Basic loa	d rating	Fatigue load	Allowab	le speed	Number	Mass
	mn	n	dynamic	static	limit	min-1			kg
$F_{ m w}$	$E_{\rm w}$	B_{c}	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
10	14 16	$\begin{array}{ccc} 17 & -0.2 \\ 12 & -0.55 \end{array}$	8 050 7 100	8 850 5 950	1 080 730	19 000 19 000	28 000 28 000	8E-K10×14×16.8X1 K10×16×12	0.0064 0.0066
11	14	10 ^{- 0.2} _{- 0.55}	5 050	6 000	735	18 000	27 000	K11×14×10	0.0028
	15	9	4 450	5 250	640	17 000	26 000	K12×15×9	0.0027
	15	10	5 000	6 100	740	17 000	26 000	8Q-K12×15×10	0.0030
	15	13	6 000	7 700	940	17 000	26 000	K12×15×13	0.0038
	15	20	8 550	12 200	1 480	17 000	26 000	$K12 \times 15 \times 20ZW$	0.0059
	16	8	4 850	4 900	600	17 000	26 000	K12×16×8	0.0034
	16	11.5	6 750	7 400	900	17 000	26 000	KMJ12 \times 16 \times 11.3XS	0.0047
12	16	13 - 0.2	7 500	8 500	1 040	17 000	26 000	8Q-K12×16×13	0.0060
	16	18	9 800	11 900	1 460	17 000	26 000	8E-K12×16×17.8X1	0.0070
	16	20	10 300	12 800	1 560	17 000	26 000	K12×16×19.8X4	0.010
	17	10	7 350	7 200	880	17 000	26 000	KMJ12 \times 17 \times 9.8XS	0.0050
	17	13	9 000	9 400	1 150	17 000	26 000	K12×17×13	0.0075
	17	18	12 600	14 400	1 760	17 000	26 000	$KV12 \times 17 \times 17.8XS$	0.0080
	18	12	8 650	8 000	975	17 000	26 000	8Q-K12×18×12	0.0089
	17	10	5 400	7 050	860	16 000	24 000	KV14×17×10ST	0.0040
	18	10	6 900	8 000	975	16 000	24 000	K14×18×10	0.0046
	18	11	7 600	9 050	1 100	16 000	24 000	K14×18×11	0.0053
	18	13	8 300	10 100	1 240	16 000	24 000	K14×18×13	0.0063
14	18	15 _{- 0.2}	9 650	12 300	1 500	16 000	24 000	K14×18×15S	0.0076
14	18	17 ^{- 0.55}	10 900	14 400	1 760	16 000	24 000	K14×18×17V5	0.0079
	18	39	18 800	28 900	3 500	16 000	24 000	$K14 \times 18 \times 39ZW$	0.018
	19	13	8 950	9 650	1 180	16 000	24 000	K14×19×13	0.0080
	20	12	9 350	9 150	1 110	16 000	24 000	K14×20×12	0.0095
	20	17	13 500	14 600	1 780	16 000	24 000	K14×20×17	0.014
	18	14	7 850	11 600	1 420	15 000	23 000	K15×18×14	0.0060
15	19	8 - 0.2 10 - 0.55	5 350	5 850	715	15 000	23 000	KV15×19×7.8XS	0.0033
15	19	10 - 0.55	6 850	8 050	980	15 000	23 000	K15×19×10T	0.0055
	19	13	8 250	10 200	1 250	15 000	23 000	K15×19×13	0.0067

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

E-12 E-13

-NTN

Needle Roller Bearings

NTN

K type

 $K\!\cdot\!\cdot\!T2\ type$

K · · S type

 $K\!\cdot\!\cdot\! ZW \ type$

 $\mathsf{KMJ}\!\cdot\!\cdot\!\mathsf{S}\;\mathsf{type}$

 $F_{\rm w}$ 15 \sim 18mm

Boun	dary di	imensions	Basic loa	d rating	Fatigue load	Allowab	le speed	Number	Mass
	mn	n	dynamic	dynamic static			in-1		kg
$F_{ m w}$	E_{w}	B_{c}	$C_{ m r}$ N	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
	19	17	10 900	14 600	1 780	15 000	23 000	K15×19×17	0.0090
	19	24	14 100	20 400	2 490	15 000	23 000	K15×19×24ZW	0.013
	20	13	10 100	11 500	1 410	15 000	23 000	K15×20×13	0.0088
15	20	16 ^{- 0.2} _{- 0.55}	12 600	15 200	1 850	15 000	23 000	KMJ15×20×15.8XS	0.0090
	21	15	11 900	12 500	1 530	15 000	23 000	K15×21×15	0.013
	21	17	14 900	16 800	2 050	15 000	23 000	$KMJ15 \times 21 \times 16.8X1SK$	0.012
	21	21	16 500	19 100	2 330	15 000	23 000	K15×21×21	0.017
	20	10	7 500	9 250	1 130	15 000	23 000	K16×20×10T	0.0057
	20	11	8 300	10 500	1 280	15 000	23 000	K16×20×11T	0.0061
	20	13	9 050	11 800	1 430	15 000	23 000	K16×20×13	0.0071
	20	17	11 900	16 800	2 050	15 000	23 000	K16×20×17ST	0.0092
16	22	$12 \begin{array}{c} -0.2 \\ -0.55 \end{array}$	11 700	12 500	1 530	15 000	23 000	K16×22×12	0.010
	22	13	12 600	13 900	1 690	15 000	23 000	KMJ16 \times 22 \times 13S	0.011
	22	16	13 600	15 200	1 850	15 000	23 000	K16×22×15.8X	0.014
	22	17	14 400	16 400	2 000	15 000	23 000	K16×22×17	0.015
	22	20	16 000	18 800	2 300	15 000	23 000	K16×22×20	0.017
	21	10	7 450	9 300	1 140	15 000	22 000	K17×21×10S	0.0056
	21	13	9 400	12 600	1 530	15 000	22 000	K17×21×13S	0.0075
	21	15	10 400	14 400	1 750	15 000	22 000	K17×21×15	0.0089
17	21	17 - 0.2	11 800	16 900	2 060	15 000	22 000	K17×21×17	0.0095
	22	20	14 700	19 200	2 340	15 000	22 000	$K17 \times 22 \times 20$	0.015
	23	17	14 400	16 500	2 020	15 000	22 000	K17×23×17	0.016
	23	23	16 800	20 200	2 470	15 000	22 000	$K17 \times 23 \times 22.8X1T2$	0.013
	22	10	7 400	9 400	1 140	14 000	21 000	K18×22×10	0.0061
	22	13	8 900	11 900	1 450	14 000	21 000	K18×22×13	0.0077
18	22	17 _ 0.2	11 700	17 000	2 070	14 000	21 000	K18×22×17	0.011
10	23	20 - 0.55	14 600	19 300	2 360	14 000	21 000	K18×23×20S	0.015
	24	12	12 300	13 800	1 690	14 000	21 000	K18×24×12	0.012
	24	13	11 600	12 800	1 560	14 000	21 000	K18×24×13	0.013

 $\phi E_{
m W}$ $\phi F_{
m W}$

Fw 18 ~ 22mm

Воц	ındary d	imensions	Basic loa	nd rating	Fatigue load	Allowab	le speed	Number	Mass
	mr	n	dynamic	static	limit		in-1		kg
$F_{ m w}$	$E_{ m w}$	Bc	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
	24	17	16 000	19 300	2 350	14 000	21 000	KMJ18×24×17SV1	0.014
18	24	20 – 0.2	17 000	20 900	2 550	14 000	21 000	K18×24×20	0.019
18	25	17 ^{- 0.55}	18 000	20 400	2 490	14 000	21 000	K18×25×17	0.019
	25	22	22 100	26 600	3 250	14 000	21 000	K18×25×22	0.024
40	23	13 _ 0.2	9 650	13 500	1 640	14 000	21 000	K19×23×13	0.0082
19	23	17 - 0.55	12 700	19 200	2 340	14 000	21 000	K19×23×17	0.011
	24	10	8 300	11 200	1 370	13 000	20 000	K20×24×10S	0.0065
	24	11	9 500	13 400	1 640	13 000	20 000	K20×24×11	0.0072
	24	13	10 000	14 300	1 740	13 000	20 000	$K20 \times 24 \times 13SV4$	0.0086
	24	17	13 200	20 400	2 480	13 000	20 000	K20×24×17S	0.011
	24	45	16 400	27 100	3 300	13 000	20 000	$K20 \times 24 \times 45ZW$	0.028
	25	40	29 000	48 000	5 880	13 000	20 000	$K20 \times 25 \times 40ZWT$	0.033
	26	12 _ 0.2	12 900	15 100	1 840	13 000	20 000	K20×26×12	0.013
20	26	13 ^{- 0.55}	14 000	16 700	2 040	13 000	20 000	$KMJ20 \times 26 \times 13ST$	0.012
	26	14	15 800	19 600	2 390	13 000	13 000	$KMJ20 \times 26 \times 13.8X1S$	0.013
	26	17	17 800	22 800	2 780	13 000	20 000	$KMJ20 \times 26 \times 17S$	0.016
	26	20	20 600	27 600	3 350	13 000	20 000	$KMJ20 \times 26 \times 20S$	0.019
	28	17	21 700	24 600	3 000	13 000	20 000	$KMJ20 \times 28 \times 16.8XS$	0.022
	28	20	24 600	28 900	3 500	13 000	20 000	KMJ20×28×19.8X4S	0.026
	28	25	27 100	32 500	3 950	13 000	20 000	$8Q-K20\times28\times25$	0.039
21	25	13 0.2	10 700	15 900	1 940	13 000	19 000	KMJ21 \times 25 \times 12.8X1S	0.0081
21	25	17 ^{- 0.55}	13 600	21 500	2 630	13 000	19 000	K21×25×17	0.012
	26	10	8 500	11 900	1 450	12 000	18 000	K22×26×10S	0.0071
	26	11	10 100	14 900	1 820	12 000	18 000	8Q-K22×26×11	0.0090
	26	13	10 200	15 200	1 850	12 000	18 000	K22×26×13	0.0094
22	26	17 _{- 0.2}	13 500	21 600	2 640	12 000	18 000	K22×26×17S	0.012
	27	20 - 0.55	17 500	25 900	3 150	12 000	18 000	K22×27×20	0.020
	27	28.5	24 200	39 500	4 800	12 000	18 000	$K22 \times 27 \times 28.3X$	0.028
	27	40	29 900	51 500	6 300	12 000	18 000	$K22 \times 27 \times 40ZW$	0.039
	28	17	17 700	23 300	2 850	12 000	18 000	K22×28×17V1	0.020

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

E-14

-NTN

Needle Roller Bearings

NTN

Needle roller and cage assemblies

K type

K∵T2 type

 $K\!\cdot\!\cdot\! S \, type$

 $K\!\cdot\!\cdot\! ZW \ type$

 $KMJ \cdot \cdot S$ type $KV \cdot \cdot S$ type

 $F_{\rm w}$ 22 \sim 25mm

Boun	dary di	imensions	Basic loa	d rating	Fatigue	Allowab	le speed	Number	Mass
	mn	n	dynamic N	static	load limit N	mi Grease	n-1		kg
F_{w}	E_{w}	B_{c}	$C_{ m r}$	$C_{0\mathrm{r}}$	C_{u}		Oil lubrication		(approx.)
	29	16	18 700	22 700	2 770	12 000	18 000	K22×29×16	0.023
	30	15 _ 0.2	19 300	21 700	2 640	12 000	18 000	K22×30×15T	0.022
22	30	17.5 ^{- 0.55}	23 200	27 500	3 350	12 000	18 000	KMJ22×30×17.3X2S	0.024
	30	24	31 000	40 000	4 900	12 000	18 000	KMJ22×30×23.8X3S	0.035
	27	13	11 400	17 700	2 160	11 000	17 000	KMJ23×27×12.8X1S	0.0086
23	28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 800	31 000	3 750	11 000	17 000	K23×28×24	0.023
	29	18	20 600	28 800	3 500	11 000	17 000	$\textbf{KMJ23}{\times}\textbf{29}{\times}\textbf{17.8X2S}$	0.019
	28	10	9 000	13 200	1 610	11 000	17 000	K24×28×10T	0.0080
	28	13	10 800	16 800	2 050	11 000	17 000	$K24 \times 28 \times 13$	0.010
04	28	17 – 0.2	14 300	23 900	2 920	11 000	17 000	K24×28×17	0.013
24	29	13 - 0.55	12 300	16 900	2 060	11 000	17 000	K24×29×13	0.012
	30	17	18 400	25 200	3 050	11 000	17 000	K24×30×17	0.022
	30	31	27 900	43 000	5 200	11 000	17 000	$K24 \times 30 \times 31ZW$	0.039
	29	10	8 950	13 300	1 620	11 000	16 000	K25×29×10	0.0083
	29	13	10 800	16 900	2 050	11 000	16 000	K25×29×13	0.010
	29	17	14 200	24 000	2 930	11 000	16 000	K25×29×17S	0.014
	30	13	13 200	18 800	2 290	11 000	16 000	$K25 \times 30 \times 13$	0.013
	30	17	17 400	26 800	3 250	11 000	16 000	K25×30×17S	0.017
	30	20	19 400	31 000	3 750	11 000	16 000	$K25 \times 30 \times 20 SV3$	0.021
	30	22	22 300	37 000	4 500	11 000	16 000	KMJ25 \times 30 \times 21.8XS	0.020
25	30	26 - 0.2	21 800	35 500	4 350	11 000	16 000	$K25 \times 30 \times 26ZW$	0.027
25	30	39 ^{- 0.55}	29 800	53 500	6 550	11 000	16 000	$K25 \times 30 \times 39ZW$	0.040
	31	13	15 200	19 900	2 430	11 000	16 000	$K25 \times 31 \times 13V3$	0.018
	31	14	16 500	22 100	2 700	11 000	16 000	K25×31×14	0.018
	31	17	18 300	25 300	3 100	11 000	16 000	$K25 \times 31 \times 17$	0.022
	31	18.5	21 000	30 000	3 650	11 000	16 000	$KMJ25 \times 31 \times 18.3X1SK$	0.021
	31	21	22 500	33 000	4 000	11 000	16 000	$K25 \times 31 \times 21V3$	0.028
	32	16	19 500	24 700	3 000	11 000	16 000	K25×32×16	0.027
	33	24	34 500	47 000	5 750	11 000	16 000	$KMJ25 \times 33 \times 24S$	0.040

F_w 26 ∼ 30mm

Boun	dary d	imensions	Basic load	drating	Fatigue load	Allowab	le speed	Number	Mass
	mr	n	dynamic .	static	limit	mi			kg
$F_{ m w}$	E_{w}	Bc	$C_{ m r}$ N	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
	30	13	11 800	19 200	2 340	10 000	15 000	K26×30×13	0.011
26	30 31	17 - 0.2 - 0.55	15 500 21 400	27 400 35 500	3 350 4 300	10 000	15 000 15 000	K26×30×17	0.015 0.029
	34	22				10 000		8E-K26×31×23.8X1ZW K26×34×22	
			24 200	30 000	3 700		15 000		0.041
	32	17	15 300	27 500	3 350	9 500	14 000	K28×32×17	0.017
	32	21	18 700	35 500	4 350	9 500	14 000	K28×32×21T	0.020
	33	13	13 900	20 900	2 550	9 500	14 000	K28×33×13	0.015
	33	17	18 300	29 800	3 650	9 500	14 000	K28×33×17S	0.020
28	33	26 _{- 0.2} _{- 0.55}	23 900	42 000	5 100	9 500	14 000	K28×33×26ZW	0.033
	33	21	28 300	52 000	6 350	9 500	14 000	K28×33×27	0.032
	34	14	17 500	24 800	3 000	9 500	14 000	K28×34×14	0.020
	34	17	18 100	25 800	3 150	9 500	14 000	K28×34×17V1	0.025
	35	16	21 200	28 400	3 450	9 500	14 000	K28×35×16	0.029
	35	18	21 500	28 900	3 550	9 500	14 000	K28×35×18	0.031
29	34	17 - 0.2	18 900	31 000	3 800	9 500	14 000	$K29 \times 34 \times 17S$	0.022
23	34	27 - 0.55	28 100	52 000	6 350	9 500	14 000	$K29 \times 34 \times 27$	0.033
	34	14	12 400	21 500	2 600	8 500	13 000	KV30×34×13.8XS	0.014
	34	23	18 000	34 500	4 200	8 500	13 000	$K30 \times 34 \times 22.8 X1T2$	0.013
	35	11	12 200	18 000	2 200	8 500	13 000	K30×35×11S	0.014
	35	13	14 700	22 900	2 800	8 500	13 000	$KV30 \times 35 \times 13S$	0.017
	35	20	21 600	37 500	4 600	8 500	13 000	K30×35×20S	0.025
30	35	26 - 0.2	25 200	46 000	5 600	8 500	13 000	K30×35×26ZWV1	0.036
00	35	27 ^{- 0.55}	29 900	57 000	6 950	8 500	13 000	$K30 \times 35 \times 27S$	0.033
	37	16	21 900	30 500	3 700	8 500	13 000	K30×37×16	0.029
	37	18	23 300	33 000	4 000	8 500	13 000	K30×37×18	0.034
	37	20	26 200	38 000	4 650	8 500	13 000	$KMJ30 \times 37 \times 20S$	0.032
	37	48	40 000	65 500	8 000	8 500	13 000	$K30 \times 37 \times 48ZW$	0.075
	38	18	25 000	33 000	4 000	8 500	13 000	K30×38×18	0.036

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

E-16

NTN

Needle Roller Bearings

NTN

Needle roller and cage assemblies

K type

 $K \cdot \cdot T2$ type $K \cdot \cdot S$ type

K · · ZW type

KMJ··S type

KV··S type

Fw 31 ~ 35mm

Boun	dary di	imensions	Basic loa	d rating	Fatigue load	Allowab	le speed	Number	Mass
	mn	n	dynamic	static	limit		n-1		kg
F_{w}	E_{w}	B_{c}	$C_{ m r}$ N	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
31	35 36	24 - 0.2 14 - 0.55	21 200 15 800	43 500 25 400	5 300 3 100	8 500 8 500	13 000 13 000	KV31×35×23.8XS KV31×36×13.8XS	0.022 0.017
	36	15	14 300	26 400	3 200	8 500	13 000	K32×36×15ST	0.017
	37	13	14 500	23 000	2 810	8 500	13 000	K32×37×13	0.018
	37	17	19 200	33 000	4 000	8 500	13 000	K32×37×17S	0.022
	37	26	24 900	46 000	5 600	8 500	13 000	K32×37×26ZWV3	0.032
32	37	27 ^{- 0.2} _{- 0.55}	29 600	57 500	7 000	8 500	13 000	K32×37×27	0.037
	38	14	19 800	30 500	3 700	8 500	13 000	KMJ32×38×14S	0.022
	38	26	31 500	54 000	6 600	8 500	13 000	K32×38×26	0.041
	39	16	22 600	32 000	3 900	8 500	13 000	K32×39×16V1	0.033
	39	18	24 000	35 000	4 250	8 500	13 000	$K32 \times 39 \times 18$	0.037
33	38	30.5 ⁻ 0.2 0.55	28 400	55 000	6 700	8 000	12 000	K33×38×30.3X1T2	0.026
34	40	$39.5^{-0.2}_{-0.55}$	39 000	73 500	8 950	8 000	12 000	KV34×40×39.3X1ZWS	0.066
	39	22.5	21 500	46 000	5 600	7 500	11 000	KV35×39×22.3XS	0.024
	39	24	21 300	45 000	5 500	7 500	11 000	$K35 \times 39 \times 23.8X1T2$	0.015
	40	13	15 200	25 100	3 050	7 500	11 000	K35×40×13	0.019
	40	17	20 000	36 000	4 350	7 500	11 000	K35×40×17	0.025
	40	19	22 300	41 000	5 000	7 500	11 000	K35×40×19	0.029
	40	26	26 100	50 000	6 100	7 500	11 000	$K35 \times 40 \times 26ZW$	0.037
	40	30 ^{- 0.2} _{- 0.55}	26 100	50 000	6 100	7 500	11 000	$K35 \times 40 \times 30ZW$	0.043
35	41	14	19 400	30 500	3 700	7 500	11 000	$K35 \times 41 \times 14$	0.026
	41	15	20 900	33 500	4 050	7 500	11 000	K35×41×15	0.027
	41	24	31 000	55 500	6 800	7 500	11 000	$K35 \times 41 \times 23.8X1$	0.042
	41	40	43 000	84 000	10 200	7 500	11 000	$K35 \times 41 \times 40ZW$	0.055
	42	16	24 100	36 000	4 350	7 500	11 000	$K35 \times 42 \times 16$	0.035
	42	18	24 700	37 000	4 500	7 500	11 000	K35×42×18	0.039

 $F_{\rm w}$ 35 \sim 42mm

Bour	ndary d	imensions	Basic loa	ad rating	Fatigue load	Allowab	le speed	Number	Mass
	mn	n	dynamic	static	limit		in-1		kg
$F_{ m w}$	$E_{\rm w}$	B_{c}	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
	42	20	26 500	40 500	4 950	7 500	11 000	KV35×42×20SV2	0.040
35	42	30 - 0.2	39 500	68 000	8 300	7 500	11 000	K35×42×30	0.062
	42	45	42 500	74 000	9 000	7 500	11 000	$K35 \times 42 \times 45ZW$	0.106
36	42	46 ^{- 0.2} _{- 0.55}	51 000	106 000	12 900	7 500	11 000	K36×42×46ZW	0.086
	42	13	15 900	27 100	3 300	7 500	11 000	K37×42×13V4	0.021
	42	17	21 000	38 500	4 700	7 500	11 000	K37×42×17V2	0.026
37	43	$33.5^{-0.2}_{-0.55}$	39 000	76 000	9 250	7 500	11 000	$KV37 \times 43 \times 33.3XS$	0.062
	44	18	26 300	41 000	5 000	7 500	11 000	K37×44×18	0.042
	45	25	37 000	58 000	7 050	7 500	11 000	$K37 \times 45 \times 24.8 XT2$	0.039
	43	17	20 900	38 500	4 700	7 500	11 000	8E-K38×43×17	0.027
38	43	27	32 000	67 500	8 250	7 500	11 000	K38×43×27	0.043
36	43	29 - 0.2	32 500	68 000	8 300	7 500	11 000	K38×43×28.8X	0.047
	46	32	54 000	95 500	11 600	7 500	11 000	K38×46×32	0.073
	45	13	16 500	29 200	3 550	6 500	10 000	K40×45×13V2	0.023
	45	17	21 800	41 500	5 100	6 500	10 000	$K40 \times 45 \times 17T$	0.027
	45	21	26 700	54 000	6 600	6 500	10 000	K40×45×21V2	0.035
	45	27	33 500	72 500	8 850	6 500	10 000	K40×45×27	0.044
40	46	17 _{- 0.2}	24 600	43 000	5 200	6 500	10 000	K40×46×17	0.030
40	46	34 ^{- 0.55}	40 500	80 500	9 850	6 500	10 000	$KV40 \times 46 \times 33.8XS$	0.063
	47	18	27 700	45 000	5 450	6 500	10 000	K40×47×18	0.045
	47	20	31 000	51 500	6 300	6 500	10 000	$K40 \times 47 \times 20$	0.048
	48	20	33 000	51 000	6 250	6 500	10 000	$K40 \times 48 \times 20$	0.052
	48	25	41 000	68 000	8 300	6 500	10 000	KV40×48×25SV1	0.065
41	49	$\begin{array}{ccc} 22 & {}^{-0.2}_{-0.55} \end{array}$	30 500	46 000	5 650	6 500	9 500	8E-KV41×49×21.8XS	0.065
	47	17	22 100	43 000	5 250	6 500	9 500	K42×47×17	0.028
42	47	27 - 0.2	34 000	75 500	9 200	6 500	9 500	K42×47×27	0.047
42	48	17 - 0.55	25 700	46 000	5 650	6 500	9 500	K42×48×17	0.036
	50	20	34 000	53 500	6 550	6 500	9 500	K42×50×20	0.054

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

E-18 E-19

-NTN

Needle Roller Bearings

NTN

Needle roller and cage assemblies

K type K··T2 type K··ZW type KV··S type

KVS··ZWS type

	Boun	dary di	imensions	Basic loa	d rating	Fatigue	Allowable	e speed	Number	Mass
		mn	n	dynamic	static	load limit	min	1-1		kg
	$F_{ m w}$	E_{w}	B_{c}	$C_{\rm r}$ N	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil		_
	ΓW	Lw	Dc	Cr	C0r	Cu	lubrication	lubrication		(approx.)
		48	17	22 000	43 000	5 250	6 500	9 500	K43×48×17	0.029
		48	27 _ 0.2	34 000	75 500	9 200	6 500	9 500	K43×48×27	0.046
	43	48	38 - 0.55	41 000	96 000	11 700	6 500	9 500	KV43×48×37.8XZWS	0.058
		50	18	29 100	49 000	5 950	6 500	9 500	K43×50×18	0.049
	44	50	31 ^{- 0.2} _{- 0.55}	43 500	91 500	11 100	6 500	9 500	KV44×50×30.8XS	0.067
		49	19	22 100	52 000	6 350	6 000	9 000	K45×49×19	0.027
		50	17	22 300	44 500	5 450	6 000	9 000	K45×50×17V3	0.033
		50	25.8	30 500	66 500	8 100	6 000	9 000	KV45×50×25.8XS	0.045
		50	27	34 500	78 000	9 500	6 000	9 000	K45×50×27	0.050
	45	51	$\begin{array}{ccc} 27 & ^{-0.2}_{-0.55} \end{array}$	34 500	68 000	8 300	6 000	9 000	KV45×51×26.8XS	0.058
		52	18	29 700	51 000	6 200	6 000	9 000	K45×52×18	0.051
		52	21	32 000	56 500	6 900	6 000	9 000	K45×52×21	0.061
		53	20	36 000	59 000	7 200	6 000	9 000	K45×53×20	0.062
		53	25	46 500	82 000	10 000	6 000	9 000	K45×53×25	0.077
		52	15.5	19 400	38 000	4 650	5 500	8 500	8E-K47×52×15.3X2	0.031
		52	17	23 200	47 500	5 800	5 500	8 500	K47×52×17	0.033
	47	52	23 0.2	29 600	65 500	7 950	5 500	8 500	$KV47 \times 52 \times 22.8X2S$	0.044
	41	52	24 ^{- 0.55}	33 500	76 500	9 350	5 500	8 500	$K47 \times 52 \times 23.8X$	0.044
		52	27	35 500	83 000	10 100	5 500	8 500	$K47 \times 52 \times 27$	0.051
		52	33	38 000	90 500	11 100	5 500	8 500	$KV47 \times 52 \times 32.8XZWS$	0.064
		53	22.5	31 000	69 500	8 450	5 500	8 500	$KV48 \times 53 \times 22.3XS$	0.042
		53	26	36 500	86 500	10 600	5 500	8 500	$K48 \times 53 \times 25.8X3T2$	0.029
		53	30	36 500	85 500	10 400	5 500	8 500	K48×53×29.8X1	0.062
	48	53	37 ^{- 0.2} _{- 0.55}	45 000	112 000	13 700	5 500	8 500	KV48×53×36.8XZWS	0.064
		53	37.5		101 000	12 300	5 500	8 500	$K48 \times 53 \times 37.5ZW$	0.072
		54	19	31 000	61 000	7 450	5 500	8 500	K48×54×19	0.044
		55	24.5	39 000	74 500	9 050	5 500	8 500	KV48×55×24.3XS	0.070
	50	55	$13.5_{-0.2}$	18 100	35 500	4 300	5 500	8 000	K50×55×13.5T	0.023
	30	55	20 - 0.55	27 900	62 000	7 550	5 500	8 000	$KV50 \times 55 \times 20S$	0.040

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

 $F_{\rm w}$ 50 \sim 60mm

Bour	ndary d	imensions	Basic lo	ad rating	Fatigue load	Allowab	le speed	Number	Mass
	mn	n	dynamic		limit	_ mi			kg
F_{w}	$E_{\rm w}$	B_{c}	$C_{ m r}$	$N = C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
	55	27	37 000	88 500	10 800	5 500	8 000	K50×55×27	0.053
	55	30	39 500	97 000	11 800	5 500	8 000	K50×55×30	0.059
50	57	18 _{- 0.2}	31 500	57 000	6 950	5 500	8 000	K50×57×18	0.053
30	58	20 - 0.55	38 500	67 500	8 200	5 500	8 000	K50×58×20	0.065
	58	25	48 500	90 000	11 000	5 500	8 000	K50×58×25	0.081
	58	58	83 500	181 000	22 100	5 500	8 000	KV50×58×57.8XZWS	0.188
	57	18	22 800	48 000	5 850	5 000	7 500	KV52×57×17.8XS	0.037
52	57	23 - 0.2	30 500	69 500	8 500	5 000	7 500	KV52×57×22.8X1S	0.048
	58	19	32 000	65 500	7 950	5 000	7 500	K52×58×19	0.048
54	59	$\begin{array}{ccc} 23 & \begin{array}{c} -0.2 \\ -0.55 \end{array}$	31 500	73 500	8 950	5 000	7 500	KV54×59×22.8XS	0.049
	60	17	25 800	58 000	7 050	5 000	7 500	K55×60×17	0.043
	60	20	28 800	66 500	8 100	5 000	7 500	K55×60×20T	0.045
	60	30	42 000	108 000	13 200	5 000	7 500	$KV55 \times 60 \times 30S$	0.069
	60	37	47 500	127 000	15 500	5 000	7 500	$K55 \times 60 \times 36.8X$	0.086
	61	19	33 000	69 500	8 450	5 000	7 500	K55×61×19	0.051
55	61	$\begin{array}{ccc} 20 & ^{-0.2}_{-0.55} \end{array}$	33 000	69 500	8 450	5 000	7 500	K55×61×20	0.054
	61	30	48 000	113 000	13 700	5 000	7 500	$K55 \times 61 \times 30$	0.081
	62	18	33 500	63 000	7 700	5 000	7 500	K55×62×18	0.054
	63	20	39 000	70 000	8 500	5 000	7 500	K55×63×20	0.073
	63	25	50 500	97 500	11 900	5 000	7 500	K55×63×25	0.088
	63	32	61 000	125 000	15 200	5 000	7 500	K55×63×32	0.117
56	66	41 ^{- 0.2} _{- 0.55}	90 000	178 000	21 700	5 000	7 500	K56×66×40.8XT2	0.148
57	65	40 - 0.2 - 0.55	66 000	140 000	17 100	4 700	7 000	$KV57 \times 65 \times 39.8XZWS$	0.145
58	64	19 ^{- 0.2} _{- 0.55}	34 000	73 500	8 950	4 700	7 000	K58×64×19	0.052
	65	20	29 800	71 500	8 750	4 300	6 500	K60×65×20	0.051
	65	27	40 000	104 000	12 700	4 300	6 500	$K60 \times 65 \times 26.8X$	0.067
60	65	$30 {}^{-\; 0.2}_{-\; 0.55}$	43 500	116 000	14 200	4 300	6 500	K60×65×30	0.071
	66	19	33 500	73 500	8 950	4 300	6 500	K60×66×19	0.053
	66	20	33 500	73 500	8 950	4 300	6 500	$K60 \times 66 \times 20$	0.056

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

E-20 E-21

-NTN

Needle Roller Bearings

NTN

Needle roller and cage assemblies

K type K··T2 type K··ZW type KV··S type KVS··ZWS type

F_w 60 ∼ 73mm

Bour	ndary d	imensions	Basic lo	ad rating	Fatigue	Allowable	e speed	Number	Mass
	mn	n	dynamic	static	load limit	min			kg
77	T.	D		V	N	Grease	Oil		
$F_{ m w}$	E_{w}	B_{c}	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	lubrication	lubrication		(approx.)
	66	30	49 000	119 000	14 600	4 300	6 500	K60×66×30	0.084
	68	15	27 200	45 500	5 550	4 300	6 500	K60×68×15	0.058
	68	20	40 000	75 000	9 200	4 300	6 500	K60×68×20	0.077
	68	23 - 0.2	44 500	85 000	10 400	4 300	6 500	K60×68×23	0.092
60	68	25	52 000	105 000	12 800	4 300	6 500	$K60 \times 68 \times 25T$	0.097
	68	27	52 000	105 000	12 800	4 300	6 500	K60×68×27	0.098
	68	30	46 500	91 000	11 100	4 300	6 500	$K60 \times 68 \times 30ZW$	0.119
0.4	66	20 – 0.2	29 700	71 500	8 750	4 300	6 500	K61×66×20	0.054
61	66	30 - 0.55	43 500	116 000	14 200	4 300	6 500	$K61 \times 66 \times 30$	0.073
	70	21 _ 0.2	44 500	95 500	11 600	4 300	6 500	K63×70×21	0.075
63	71	50.5 ^{-0.55}	74 500	167 000	20 400	4 300	6 500	$KV63 \times 71 \times 50.3 XZWS$	0.193
64	70	16 ^{- 0.2} _{- 0.55}	28 400	60 500	7 350	4 300	6 500	K64×70×16	0.053
	70	20	30 500	75 000	9 150	4 000	6 000	K65×70×20	0.055
	70	21.5	30 500	75 000	9 150	4 000	6 000	KV65×70×21.3X1S	0.056
65	70	30 - 0.2	45 000	124 000	15 200	4 000	6 000	$K65 \times 70 \times 30$	0.083
	73	23	47 000	94 000	11 500	4 000	6 000	K65×73×23	0.100
	73	30	61 000	132 000	16 000	4 000	6 000	K65×73×30	0.126
	74	20	36 000	83 500	10 200	4 000	6 000	K68×74×20	0.065
68	74	30 _ 0.2	51 500	133 000	16 200	4 000	6 000	K68×74×30	0.097
00	74	35 - 0.55	49 500	125 000	15 300	4 000	6 000	K68×74×35ZW	0.116
	75	21	45 500	101 000	12 300	4 000	6 000	K68×75×21	0.077
	76	20	36 500	86 000	10 500	3 700	5 500	K70×76×20	0.070
	76	30	53 000	139 000	17 000	3 700	5 500	K70×76×30	0.100
70	77	21 ^{- 0.2} _{- 0.55}	45 000	101 000	12 300	3 700	5 500	K70×77×21	0.080
	78	23	49 500	103 000	12 600	3 700	5 500	K70×78×23	0.107
	78	30	65 500	149 000	18 100	3 700	5 500	K70×78×30	0.136
72	79	21 ^{- 0.2} _{- 0.55}	46 500	106 000	12 900	3 700	5 500	K72×79×21	0.085
73	79	20 _ 0.2	37 500	90 000	11 000	3 700	5 500	K73×79×20	0.074
13	79	30 - 0.55	54 500	146 000	17 800	3 700	5 500	K73×79×30	0.106

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

F_w 74 ~ 100mm

Bour	ndary di	imen	sions	Basic lo	ad rating	Fatigue load	Allowable	e speed	Number	Mass
	mn	n		dynamic		limit	mir			kg
F_{w}	$E_{\rm w}$	B_0		$C_{\rm r}$	N $C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
74	90	50	- 0.2 - 0.55	157 000	287 000	35 000	3 700	5 500	K74×90×49.8XT2	0.380
	81	20		40 000	99 500	12 200	3 700	5 500	KV75×81×19.8X1S	0.071
	81	30		56 000	152 000	18 600	3 700	5 500	$K75 \times 81 \times 30$	0.108
75	82	21	- 0.2 - 0.55	46 000	106 000	13 000	3 700	5 500	K75×82×21	0.088
	83	23		50 500	109 000	13 300	3 700	5 500	K75×83×23	0.113
	83	30		67 500	157 000	19 200	3 700	5 500	K75×83×30	0.147
	86	20		39 000	98 000	11 900	3 300	5 000	KV80×86×20SV1	0.077
	86	30		57 000	159 000	19 400	3 300	5 000	$K80 \times 86 \times 30$	0.110
80	88	23	- 0.2 - 0.55	53 000	118 000	14 400	3 300	5 000	K80×88×23	0.125
	88	26		61 000	142 000	17 300	3 300	5 000	K80×88×26	0.131
	88	30		69 000	166 000	20 300	3 300	5 000	K80×88×30	0.157
	92	30		66 000	176 000	21 500	3 100	4 700	K85×92×30	0.142
85	93	27	- 0.2 - 0.55	64 000	153 000	18 700	3 100	4 700	K85×93×27	0.145
	93	30		71 000	175 000	21 400	3 100	4 700	8Q-K85×93×30	0.174
	97	20		46 000	113 000	13 700	2 900	4 400	K90×97×20	0.103
	97	30		67 500	184 000	22 400	2 900	4 400	K90×97×30	0.151
90	98	26	- 0.2 - 0.55	64 000	157 000	19 200	2 900	4 400	K90×98×26	0.148
	98	27		64 000	157 000	19 200	2 900	4 400	K90×98×27	0.150
	98	30		72 500	184 000	22 400	2 900	4 400	K90×98×30	0.172
	102	21		48 000	122 000	14 900	2 800	4 200	K95×102×21	0.115
95	102	31	- 0.2	70 500	199 000	24 300	2 800	4 200	K95×102×31	0.172
95	103	27	- 0.55	65 500	165 000	20 100	2 800	4 200	K95×103×27	0.159
	103	30		74 000	193 000	23 500	2 800	4 200	K95×103×30	0.165
	107	21		47 500	122 000	14 700	2 700	4 000	KV100×107×21S	0.120
100	107	31	- 0.3	71 500	207 000	24 900	2 700	4 000	K100×107×31	0.173
100	108	27	- 0.65	61 000	153 000	18 400	2 700	4 000	K100×108×27	0.176
	108	30		76 000	201 000	24 300	2 700	4 000	$K100 \times 108 \times 30$	0.190

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

E-22 E-23

Needle roller and cage assemblies

K type K··L1 type

*F*_w 105 ∼ 170mm

В	oun	dary di	imens	sions	Basic lo	ad rating	Fatigue load	Allowab	le speed	Number	Mass
		mn	n		dynamic	static	limit	mi mi			kg
F	$7_{ m w}$	E_{w}	B_{c}	:	$C_{ m r}$	N $C_{0{ m r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		(approx.)
		112	21	- 0.3	48 500	127 000	15 100	2 500	3 800	K105×112×21	0.130
10	J5	112	31	- 0.65	71 000	207 000	24 600	2 500	3 800	K105×112×31	0.176
		113			77 500	210 000	25 000	2 500	3 800	K105×113×30	0.198
		117	24	- n 3	54 500	149 000	17 500	2 400	3 600	K110×117×24	0.145
11	10	117 118	34 30	- 0.3 - 0.65	77 500 79 000	235 000 219 000	27 600 25 700	2 400 2 400	3 600 3 600	K110×117×34 K110×118×30	0.205 0.217
11	15	123	27	- 0.3 - 0.65	64 000	170 000	19 700	2 300	3 500	K115×123×27	0.200
		125	34	0.00	95 000	241 000	27 800	2 300	3 500	K115×125×34	0.330
12	20	127	24	- 0.3 - 0.65	57 500	165 000	18 900	2 200	3 300	K120×127×24	0.160
		127	34	- 0.05	82 000	260 000	29 800	2 200	3 300	K120×127×34	0.235
12	25	133	35	- 0.3	87 000	260 000	29 300	2 100	3 200	K125×133×35	0.275
		135	34	- 0.65	100 000	265 000	29 800	2 100	3 200	K125×135×34	0.350
13	20	137	24	- 0.3	59 000	175 000	19 600	2 100	3 100	K130×137×24	0.170
١,	50	137	34	- 0.65	84 500	277 000	31 000	2 100	3 100	K130×137×34	0.240
13) E	143	35	- 0.3	92 500	288 000	32 000	2 000	3 000	K135×143×35L1	0.313
13	55	150	38	- 0.65	145 000	325 000	36 000	2 000	3 000	K135×150×38	0.590
		153	26		72 000	214 000	23 100	1 900	2 800	K145×153×26	0.250
14	15	153	28	- 0.3 - 0.65	80 500	247 000	26 700	1 900	2 800	K145×153×28	0.252
		153	36		100 000	325 000	35 000	1 900	2 800	K145×153×36	0.335
15	50	160	46	- 0.3 - 0.65	149 000	470 000	50 500	1 800	2 700	K150×160×46	0.550
		163	26	- 0.3	73 500	224 000	23 800	1 700	2 600	K155×163×26	0.270
11	15	163	36	- 0.65	102 000	340 000	36 000	1 700	2 600	K155×163×36	0.355
16	60	170	46	- 0.3 - 0.65	155 000	505 000	53 000	1 700	2 500	K160×170×46	0.570
		173	26		79 000	251 000	26 100	1 600	2 400	K165×173×26	0.290
16	35	173	32	- 0.3 - 0.65	97 000	330 000	34 000	1 600	2 400	K165×173×32	0.340
		173	36	0.00	109 000	380 000	39 500	1 600	2 400	K165×173×36	0.375
17	70	180	46	- 0.3 - 0.65	160 000	540 000	55 500	1 600	2 400	K170×180×46	0.620

Fw 175 ~ 285mm

Bour	ndary di	mensions	Basic lo	ad rating	Fatigue load	Allowab	le speed	Number	Mass
	mm	า	dynamic	static N	limit	mi Grease	n-1 Oil		kg
$F_{ m w}$	$E_{\rm w}$	$B_{\rm c}$	$C_{ m r}$	C_{0r}	C_{u}		lubrication		(approx.)
175	183	32 ^{- 0.3} - 0.65	101 000	350 000	36 000	1 500	2 300	K175×183×32L1	0.379
185	195	37 ^{-0.3} _{-0.65}	131 000	425 000	43 000	1 500	2 200	K185×195×37L1	0.581
195	205	37 ^{- 0.3} _{- 0.65}	135 000	450 000	44 500	1 400	2 100	K195×205×37L1	0.620
210	220	$42 \begin{array}{c} -0.3 \\ -0.65 \end{array}$	156 000	560 000	54 000	1 300	1 900	K210×220×42	0.740
220	230	$42 \begin{array}{c} -0.3 \\ -0.65 \end{array}$	161 000	590 000	56 500	1 200	1 800	$K220 \times 230 \times 42$	0.790
240	250	42 ^{- 0.3} - 0.65	167 000	635 000	59 000	1 100	1 700	K240×250×42L1	0.849
265	280	50 ^{- 0.3} _{- 0.65}	256 000	850 000	77 000	1 000	1 500	K265×280×50L1	1.77
285	300	50 ^{- 0.3} _{- 0.65}	268 000	930 000	82 000	950	1 400	K285×300×50	1.97

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

Note: Bearings may be delivered with a different cage type even if they are ordered by the bearing numbers in the table.

Drawn cup needle roller bearings

HK type, HK $\cdot\cdot$ ZWD type HMK type BK type, BK $\cdot\cdot$ ZWD type

*F*_w 3 ~ 10mm

12 10 1.6 3 850 3 950 480 20 20 000 30 000 000 000 00000 0000 0000 0000 0000 0000 0000 0000 0000 000000								ı					
The color of th	Bou			ensions	Basic load	rating		Allowab	le speed	Nu	mber	Mass	
3 6.5 6	$F_{ m w}$		$_{0}^{C}$	_	N		limit N	Grease	Oil				J
3 6.5 6 0.8 925 565 69 33 000 50 000 — BK0306T2 0.0007 — 4 8 8 - 1 770 1 270 155 30 000 45 000 — BK0408T2 0.0016 — 5 9 9 - 2 450 1 990 243 27 000 40 000 — BK0509 0.0021 — 6 10 9 - 2 920 2 590 315 25 000 37 000 — BK0509 0.0021 — 7 11 9 — 2 920 2 590 315 25 000 37 000 — BK0609T2 0.0022 — 11 9 — 3 150 2 930 355 23 000 34 000 — BK0609T2 0.0022 — 11 9 1.6 3 150 2 930 355 23 000 34 000 — HK0810FM — 0.0022 —					-		-			31	71	,	VII /
6.5 6 0.8 925 565 69 33 000 50 000 — BK0306T2 0.0007 — 4 8 8 8 —	,	6.5	6	_	925	565	69	33 000	50 000	HK0306FT2	_	0.0006	_
4 8 8 1.6 1 770 1 270 155 30 000 45 000 — BK0408T2 0.0018 — 5 9 9 — 2 450 1 990 243 27 000 40 000 — BK0509 0.0021 — 6 10 9 — 2 920 2 590 315 25 000 37 000 — BK0609T2 0.0022 — 7 11 9 — 3 150 2 930 355 23 000 34 000 — BK0609T2 0.0024 — 7 11 9 — 3 150 2 930 355 23 000 34 000 — BK0609T2 0.0024 — 12 10 — 3 150 2 930 355 23 000 34 000 — BK0709CT 0.0027 — 12 10 — 3 850 3 950 480 20 000 30 000 — BK0810CT 0.0032 IR 5x	J	6.5	6	8.0	925	565	69	33 000	50 000	_	BK0306T2	0.0007	_
8 8 1.6 1 770 1 270 155 30 000 45 000 — BK0408T2 0.0018 — 5 9 9 7 — 2 450 1 990 243 27 000 40 000 — BK0509 0.0021 — 6 10 9 — 2 920 2 590 315 25 000 37 000 — BK0609FM — 0.0022 — 7 11 9 — 3 150 2 930 355 23 000 34 000 — BK0709CT 0.0025 — 12 10 — 3 850 3 950 480 20 000 30 000 — BK0810CT 0.0034 IR 5 × 8×11 15 15 — 7 300 6 650 770 20 000 30 000 HK0815CT — 0.010 IR 5 × 8×11 15 15 — 7 300 6 650 770 20 000 30 000 HK0815CT — 0.010 IR 5 × 8×11 15 10 — 4 200 3 3 00 4 650 570 18 000 27 000 — BK0910CT 0.0035 IR 6 × 9×11 13 12 — 5 400 6 250 765 18 000 27 000 — BK0910CT 0.0035 IR 6 × 9×11 15 15 — 7 400 6 850 840 18 000 27 000 — BK0910CT 0.0035 IR 6 × 9×11 15 15 — 7 400 6 850 840 18 000 27 000 — BK0912CT 0.0045 IR 6 × 9×11 15 15 — 5 300 4 450 545 18 000 27 000 — BK0912CT 0.0045 IR 6 × 9×11 16 16 — 7 400 6 850 840 18 000 27 000 — BK0912CT 0.0045 IR 6 × 9×11 16 16 — 7 400 6 850 840 18 000 27 000 — BK0912CT 0.0045 IR 6 × 9×11 16 16 — 7 4500 5 100 620 16 000 24 000 — BK1010C — 0.0056 IR 7×10×11 14 12 — 5 650 6 800 830 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 5 900 7 250 880 16 000 24 000 — BK1015CT — 0.0056 IR 7×10×11 14 15 1.6 5 900 7 250 880 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 14 15 1.6 7 250 9 400 1140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 15 15 — 0.0062 IR 7×10×11 15 —		8	8	_	1 770	1 270	155	30 000	45 000	HK0408FT2	_	0.0016	_
5 9 9 1.6 2 450 1 990 243 27 000 40 000 — BK0509 0.0021 — 6 10 9 — 2 920 2 590 315 25 000 37 000 — BK0609FM — 0.0022 — 7 11 9 — 3 150 2 930 355 23 000 34 000 — BK0709CT 0.0025 — 11 9 1.6 3 150 2 930 355 23 000 34 000 — BK0709CT 0.0027 — 12 10 — 3 850 3 950 480 20 000 30 000 — BK0810CT 0.0027 — 15 15 — 7 300 6 650 770 20 000 30<	4	8	8	1.6	1 770	1 270	155	30 000	45 000	_	BK0408T2	0.0018	_
9 9 1.6 2 450 1 990 243 27 000 40 000 — BK0509 0.0021 — 10 9 — 2 920 2 590 315 25 000 37 000 — BK0609T2 0.0024 — 7 11 9 — 3 150 2 930 355 23 000 34 000 — BK0709CT 0.0027 — 11 9 1.6 3 150 2 930 355 23 000 34 000 — BK0709CT 0.0027 — 12 10 — 3 850 3 950 480 20 000 30 000 — BK0810CT 0.0032 IR 5× 8×11 12 10 1.6 3 850 3 950 480 20 000 30 000 — BK0810CT 0.0034 IR 5× 8×11 15 15 — 7 300 6 650 770 20 000 30 000 — BK0810CT — 0.010 IR 5× 8×11 15 15 — 7 300 4 650 570 18 000 27 000 HMK0815CT — 0.010 IR 5× 8×11 13 10 — 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0035 IR 6× 9×11 13 10 1.6 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0039 IR 6× 9×11 13 12 — 5 400 6 250 765 18 000 27 000 — BK0912CT 0.0045 IR 6× 9×11 16 12 — 5 300 4 450 545 18 000 27 000 HMK0912 — 0.0045 IR 6× 9×11 16 16 — 7 400 6 850 840 18 000 27 000 HMK0912 — 0.0087 IR 6× 9×11 14 10 — 4 500 5 100 620 16 000 24 000 — BK1010 — 0.0036 IR 7×10×11 10 14 12 — 5 650 6 800 830 16 000 24 000 — BK1015CT — 0.0042 IR 7×10×11 10 14 12 — 5 650 6 800 830 16 000 24 000 — BK1015CT — 0.0045 IR 7×10×11 10 14 12 — 5 650 6 800 830 16 000 24 000 — BK1015CT — 0.0045 IR 7×10×11 10 14 12 — 5 650 6 800 830 16 000 24 000 — BK1015CT — 0.0045 IR 7×10×11 10 14 12 — 5 650 6 800 830 16 000 24 000 — BK1015CT — 0.0045 IR 7×10×11 10 14 15 — 7 250 9 400 1 140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11 11 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT — 0.0062 IR 7×10×11	_	9	9	_	2 450	1 990	243	27 000	40 000	HK0509FM	_	0.0019	_
6 10 9 1.6 2 260 2 28 25 000 37 000 — BK0609T2 0.0024 — 7 11 9 — 3 150 2 930 355 23 000 34 000 — BK0709CT 0.0025 — 12 10 — 3 850 3 950 480 20 000 30 000 — BK0810CT 0.0032 IR 5 × 8×11 12 10 — 3 850 3 950 480 20 000 30 000 — BK0810CT 0.0032 IR 5 × 8×11 15 15 — 4 200 3 400 20 000 30 000 HK0810CT — 0.0067 IR 5 × 8×11 15 15 — 7 300 6 50 770 20 000 3	5	9	9	1.6	2 450	1 990	243	27 000	40 000	_	BK0509	0.0021	_
10		10	9	_	2 920	2 590	315	25 000	37 000	HK0609FM	_	0.0022	_
This is a state of the first	6	10	9	1.6	2 660	2 280	278	25 000	37 000	_	BK0609T2	0.0024	_
To 1.6 3 150 2 930 355 23 300 34 300		11	9	_	3 150	2 930	355	23 000	34 000	HK0709FM	_	0.0025	_
12 10 1.6 3 850 3 950 480 20 20 000 30 000 — BK0810CT 0.0034 IR 5 8 8 15 10 — 4 200 3 300 400 20 20 000 30 000 HMK0810CT — 0.0067 IR 5 8 8 15 15 — 7 300 6 650 770 20 20 000 30 000 HMK0815CT — 0.010 IR 5 8 8 15 20 — 9 050 8 750 1 070 20 20 000 30 000 HMK0820T2 — 0.013 — 13 10 — 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0035 IR 6 9 9 13 12 — 5 400 6 250 765 18 000 27 000 — BK0910CT 0.0042 IR 6 9 9 13 12 — 5 300 4 450 545 18 000 27 000 HMK0912F — 0.0042 IR 6 9 9 16 16 — 7 400 6 850 840 18 000 27 000 HMK0916 — 0.0012 — 14 10 — 4 500 5 100 620 16 000 24 000 HK1010FM — 0.0038 IR 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1015F — 0.0045 IR 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1010FM — 0.0056 IR 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1010FM — 0.0056 IR 7 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1010FM — 0.0056 IR 7 7 7 7 7 7 7 50 9 400 1 140 16 000 24 000 HK1010FF — 0.0056 IR 7 7 7 7 7 7 7 50 9 400 1 140 16 000 24 000 HK1010FF — 0.0056 IR 7 7 7 7 7 7 7 7 7	7		9	1.6	3 150	2 930	355	23 000	34 000	_	BK0709CT	0.0027	_
12 10 1.6 3 850 3 950 480 20 20 000 30 000 — BK0810CT 0.0034 IR 5 8 8 15 10 — 4 200 3 300 400 20 20 000 30 000 HMK0810CT — 0.0067 IR 5 8 8 15 15 — 7 300 6 650 770 20 20 000 30 000 HMK0815CT — 0.010 IR 5 8 8 15 20 — 9 050 8 750 1 070 20 20 000 30 000 HMK0820T2 — 0.013 — 13 10 — 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0035 IR 6 9 9 13 12 — 5 400 6 250 765 18 000 27 000 — BK0910CT 0.0042 IR 6 9 9 13 12 — 5 300 4 450 545 18 000 27 000 HMK0912F — 0.0042 IR 6 9 9 16 16 — 7 400 6 850 840 18 000 27 000 HMK0916 — 0.0012 — 14 10 — 4 500 5 100 620 16 000 24 000 HK1010FM — 0.0038 IR 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1015F — 0.0045 IR 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1010FM — 0.0056 IR 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1010FM — 0.0056 IR 7 7 7 10 — 4 250 3 450 420 16 000 24 000 HK1010FM — 0.0056 IR 7 7 7 7 7 7 7 50 9 400 1 140 16 000 24 000 HK1010FF — 0.0056 IR 7 7 7 7 7 7 7 50 9 400 1 140 16 000 24 000 HK1010FF — 0.0056 IR 7 7 7 7 7 7 7 7 7		12	10	_	3 850	3 950	480	20 000	30 000	HK0810FM	_	0.0032	IR 5× 8×12
15 15 — 7 300 6 650 770 20 000 30 000 HMK0815CT — 0.010 IR 5× 8×11 15 20 — 9 050 8 750 1 070 20 000 30 000 HMK0820T2 — 0.013 — 0.013 — 1.01 15 20 — 9 050 8 750 1 070 20 000 30 000 HK0910FM — 0.0035 IR 6× 9×11 13 10 — 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0039 IR 6× 9×11 13 12 — 5 400 6 250 765 18 000 27 000 HK0912F — 0.0042 IR 6× 9×11 13 12 1.6 5 400 6 250 765 18 000 27 000 — BK0910CT 0.0039 IR 6× 9×11 16 12 — 5 300 4 450 545 18 000 27 000 — BK0912CT 0.0045 IR 6× 9×11 16 16 — 7 400 6 850 840 18 000 27 000 HMK0912 — 0.0087 IR 6× 9×11 16 16 — 7 400 6 850 840 18 000 27 000 HMK0916 — 0.012 — 11 10 1.6 4 500 5 100 620 16 000 24 000 HK1010FM — 0.0038 IR 7×10×11 10 14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7×10×11 10 14 15 1.6 5 900 7 250 880 16 000 24 000 HK1015F — 0.0056 IR 7×10×11 14 15 1.6 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×11 11 15 1.6 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0062 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10 10 10 0.0079 IR 7×10×10 0.0079 IR			10	1.6	3 850	3 950	480	20 000	30 000		BK0810CT		IR 5× 8×12
15 20 — 9 050 8 750 1 070 20 000 30 000 HMK0820T2 — 0.013 — 13 10 — 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0035 IR 6× 9×12 13 10 1.6 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0039 IR 6× 9×12 13 12 — 5 400 6 250 765 18 000 27 000 — BK0912CT 0.0042 IR 6× 9×12 13 12 1.6 5 400 6 250 765 18 000 27 000 — BK0912CT 0.0045 IR 6× 9×12 16 12 — 5 300 4 450 545 18 000 27 000 — BK0912CT 0.0045 IR 6× 9×12 16 16 — 7 400 6 850 840 18 000 27 000 HMK0912 — 0.0087 IR 6× 9×12 16 16 — 7 400 6 850 840 18 000 27 000 HMK0916 — 0.012 — 14 10 — 4 500 5 100 620 16 000 24 000 HK1010FM — 0.0038 IR 7×10×11 14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7×10×11 14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7×10×11 14 15 — 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×11 14 15 1.6 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×11 14 15 1.6 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — BK1015CT 0.0062 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×11	8	15	10	_	4 200	3 300	400	20 000	30 000	HMK0810CT	_	0.0067	IR 5× 8×12
13 10 — 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0035 IR 6× 9×12 13 10 1.6 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0039 IR 6× 9×12 13 12 — 5 400 6 250 765 18 000 27 000 — BK0912CT 0.0042 IR 6× 9×12 16 12 — 5 300 4 450 545 18 000 27 000 — BK0912CT 0.0045 IR 6× 9×12 16 16 — 7 400 6 850 840 18 000 27 000 HMK0912 — 0.0087 IR 6× 9×12 16 16 — 4 500 5 100 620 16 000 27 000 HMK0916 — 0.012 — 14 10 — 4 500 5 100 620 16 000 24 000 HK1010FM — 0.0038 IR 7×10×12 14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7×10×12 14 15 — 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×12 14 15 1.6 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×12 14 15 1.6 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×12 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — BK1015CT 0.0062 IR 7×10×12 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10		15	15	_	7 300	6 650	770	20 000	30 000	HMK0815CT	_	0.010	IR 5× 8×16
9 13 10 1.6 4 300 4 650 570 18 000 27 000 — BK0910CT 0.0039 IR 6× 9×11 13 12 — 5 400 6 250 765 18 000 27 000 — BK0912CT 0.0042 IR 6× 9×11 13 12 1.6 5 400 6 250 765 18 000 27 000 — BK0912CT 0.0045 IR 6× 9×11 16 12 — 5 300 4 450 545 18 000 27 000 HMK0912 — 0.0087 IR 6× 9×11 16 16 — 7 400 6 850 840 18 000 27 000 HMK0916 — 0.012 — 14 10 — 4 500 5 100 620 16 000 24 000 HK1010FM — 0.0038 IR 7×10×11 14 12 — 5 650 6 800 830 16 000 24 000 — BK1010 0.0042 IR 7×10×11 15 14 15 — 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×11 16 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HKK1010 — 0.0079 IR 7×10×11		15	20	_	9 050	8 750	1 070	20 000	30 000	HMK0820T2	_	0.013	_
9 13 12 — 5 400 6 250 765 18 000 27 000 HK0912F — 0.0042 IR 6× 9×12 16 12 — 5 300 4 450 545 18 000 27 000 HK0912 — 0.0087 IR 6× 9×12 16 16 — 7 400 6 850 840 18 000 27 000 HMK0912 — 0.0087 IR 6× 9×12 16 16 — 4 500 5 100 620 16 000 24 000 HK1010FM — 0.0038 IR 7×10×11 14 10 — 4 500 5 100 620 16 000 24 000 — BK1010 0.0042 IR 7×10×11 14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7×10×11 15 14 15 — 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×11 14 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7×10×11 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×11		13	10	_	4 300	4 650	570	18 000	27 000	HK0910FM	_	0.0035	IR 6× 9×12
9 13 12 1.6 5 400 6 250 765 18 000 27 000 — BK0912CT 0.0045 IR 6x 9x1: 16 12 — 5 300 4 450 545 18 000 27 000 HMK0912 — 0.0087 IR 6x 9x1: 16 16 — 7 400 6 850 840 18 000 27 000 HMK0916 — 0.012 — 14 10 — 4 500 5 100 620 16 000 24 000 — BK1010 0.0042 IR 7x10x1: 14 10 1.6 4 500 5 100 620 16 000 24 000 — BK1010 0.0042 IR 7x10x1: 14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7x10x1: 16 14 12 1.6 5 900 7 250 880 16 000 24 000 — BK1012 0.0050 IR 7x10x1: 17 10 — 4 250 3 450 420 16 000 24 000 — BK1015CT 0.0062 IR 7x10x1: 18 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7x10x1: 19 16 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7x10x1:		13	10	1.6	4 300	4 650	570	18 000	27 000	_	BK0910CT	0.0039	IR 6× 9×12
13 12 1.6 5 400 6 250 765 18 000 27 000 —	9									HK0912F	_		IR 6× 9×12
16 16 — 7 400 6 850 840 18 000 27 000 HMK0916 — 0.012 — 14 10 — 4 500 5 100 620 16 000 24 000 — HK1010FM — 0.0038 IR 7×10×10 14 10 1.6 4 500 5 100 620 16 000 24 000 — BK1010 0.0042 IR 7×10×10 14 12 — 5 650 6 800 830 16 000 24 000 — BK1012 0.0050 IR 7×10×10 14 12 1.6 5 900 7 250 880 16 000 24 000 — BK1012 0.0050 IR 7×10×10 14 15 — 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×10 14 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7×10×10 17 10 — 4 250 3 450 420 16 000 24 000 </th <th>Ĭ</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th>_</th> <td>BK0912CT</td> <td></td> <td>IR 6× 9×12</td>	Ĭ									_	BK0912CT		IR 6× 9×12
14 10 — 4 500 5 100 620 16 000 24 000 — BK1010 — 0.0038 IR 7×10×10 14 10 1.6 4 500 5 100 620 16 000 24 000 — BK1010 0.0042 IR 7×10×10 14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7×10×10 14 12 1.6 5 900 7 250 880 16 000 24 000 — BK1012 0.0050 IR 7×10×10 14 15 — 7 250 9 400 1 140 16 000 24 000 HK1015F — 0.0056 IR 7×10×10 14 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7×10×10 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10											_		IR 6× 9×16
14 10 1.6 4 500 5 100 620 16 000 24 000 — BK1010 0.0042 IR 7×10×10 14 12 — 5 650 6 800 830 16 000 24 000 — BK1012 0.0050 IR 7×10×10 14 12 1.6 5 900 7 250 880 16 000 24 000 — BK1012 0.0050 IR 7×10×10 14 15 — 7 250 9 400 1 140 16 000 24 000 — BK1015F — 0.0056 IR 7×10×10 14 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7×10×10 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10			_										_
14 12 — 5 650 6 800 830 16 000 24 000 HK1012F — 0.0045 IR 7×10×10 14 12 1.6 5 900 7 250 880 16 000 24 000 — BK1012 0.0050 IR 7×10×10 14 15 — 7 250 9 400 1 140 16 000 24 000 — BK1015F — 0.0056 IR 7×10×10 14 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7×10×10 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10										HK1010FM			IR 7×10×10.5
10											BK1010		IR 7×10×10.5
10										HK1012F	— —		
14 15 1.6 7 250 9 400 1 140 16 000 24 000 — BK1015CT 0.0062 IR 7×10×10 17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10	10									HK1015F	- BK1012		
17 10 — 4 250 3 450 420 16 000 24 000 HMK1010 — 0.0079 IR 7×10×10										_	BK1015CT		IR 7×10×16
17 12 — 5 600 4 850 590 16 000 24 000 HMK1012 — 0.0094 IR 7×10×1							_			HMK1010			IR 7×10×10.5
		17	12	_	5 600	4 850	590	16 000	24 000	HMK1012	_	0.0094	IR 7×10×16

*F*_w 10 ∼ 15mm

Во		y dime	ensions	Basic loa	ad rating	Fatigue load	Allowab	le speed	Num	ber	Mass	Applied inner ring 1)
	,	<i>C</i>	C_1	dynamic	static	limit N	mi Grease	in-1 Oil	Open end	Closed end	kg	illier ring -
$F_{\rm w}$	D	-0.	2 Max.	$C_{ m r}$	C_{0r}	C_{u}	lubrication	lubrication	type	type	(approx.)	(approx.)
10		15	_	7 400	6 950	850	16 000	24 000	HMK1015	_	0.012	IR 7×10×16
	17	20	_	9 900	10 100	1 240	16 000	24 000	7E-HMK1020CT	_	0.016	_
	16	10	_	5 050	6 250	760	13 000	20 000	HK1210FM	_	0.0046	IR 8×12×10.5
	16	10	1.6	5 050	6 250	760	13 000	20 000	_	BK1210	0.0052	IR 8×12×10.5
	18	12	_	6 600	7 300	890	13 000	20 000	HK1212FM	_	0.0091	IR 8×12×12.5
12	18	12	2.7	6 600	7 300	890	13 000	20 000	_	BK1212	0.010	IR 8×12×12.5
	19	12	_	7 100	6 900	845	13 000	20 000	HMK1212	_	0.011	IR 8×12×12.5
	19	15	_	9 400	9 900	1 210	13 000	20 000	7E-HMK1215C	_	0.014	IR 9×12×16
	19	20	_	12 900	14 900	1 820	13 000	20 000	HMK1220CT	_	0.018	_
	19	25	_	15 300	18 600	2 260	13 000	20 000	HMK1225	_	0.023	_
	19	12	_	6 950	7 900	965	12 000	18 000	HK1312FM	_	0.010	IR10×13×12.5
13	19	12	2.7	6 950	7 900	965	12 000	18 000	_	BK1312	0.011	IR10×13×12.5
	20	12	_	7 200	8 500	1 040	11 000	17 000	HK1412FM	_	0.011	IR10×14×13
	20	12	2.7	7 200	8 500	1 040	11 000	17 000	_	BK1412	0.012	IR10×14×13
14	20	16	_	10 300	13 400	1 640	11 000	17 000	HK1416F	_	0.015	_
14	20	16	2.7	10 300	13 400	1 640	11 000	17 000	_	BK1416CT	0.016	_
	22	16	_	11 500	12 000	1 460	11 000	17 000	HMK1416C	_	0.019	IR10×14×20
	22	20	_	14 600	16 200	1 980	11 000	17 000	HMK1420C	_	0.024	_
	21	12	_	7 500	9 100	1 110	11 000	16 000	HK1512FM	_	0.011	IR12×15×12.5
	21	12	2.7	7 500	9 100	1 110	11 000	16 000	_	BK1512	0.013	IR12×15×12.5
	21	16	_	10 700	14 400	1 750	11 000	16 000	HK1516F	_	0.015	IR12×15×16.5
	21	16	2.7	10 700	14 400	1 750	11 000	16 000	_	BK1516	0.017	IR12×15×16.5
	21	22	_	12 900	18 200	2 220	11 000	16 000	HK1522ZWFD	_	0.020	IR12×15×22.5
15	21	22	2.7	12 900	18 200	2 220	11 000	16 000	_	BK1522ZWD	0.022	IR12×15×22.5
	22	10	_	6 100	6 000	730	11 000	16 000	HMK1510	_	0.011	IR10×15×12.5
	22	12	_	7 950	8 450	1 030	11 000	16 000	HMK1512	_	0.013	IR12×15×12.5
	22	15	_	10 500	12 100	1 480	11 000	16 000	HMK1515C	_	0.016	IR12×15×16
	22	20	_	15 300	19 700	2 400	11 000	16 000	HMK1520CV6	_	0.022	IR12×15×22.5
	22	25	_	18 500	25 000	3 050	11 000	16 000	HMK1525	_	0.027	–

¹⁾ If the bearing has an inner ring, the value indicates HK + IR. Example: HK1312FM + IR10 \times 13 \times 12.5

NTN

Needle Roller Bearings

NTN

Drawn cup needle roller bearings

HK type, HK $\cdot\cdot$ ZWD type HMK type BK type, BK $\cdot\cdot$ ZWD type

 $F_{\rm w}$ 16 \sim 20mm

F	W	16	~]	20mm	ו								
В	our		$\stackrel{mm}{C}$	ensions C_1	dynamic	ad rating static	load limit	m	in-1		mber	Mass kg	Applied inner ring 1)
F	w	D	0 -0.2	2 Max.	$C_{ m r}$	$C_{0\mathrm{r}}$	C_{u}	Grease Iubrication	Oil lubrication	Open end type	Closed end type	(approx.)	(approx.)
		22	12	_	7 750	9 700	1 180	10 000	15 000	HK1612FM	_	0.012	IR12×16×13
		22	12	2.7	7 750	9 700	1 180	10 000	15 000	—	BK1612	0.012	IR12×16×13
		22	16		11 100	15 300	1 870	10 000	15 000	HK1616F	—	0.014	IR12×16×20
		22	16	2.7	11 100	15 300	1 870	10 000	15 000	_	BK1616	0.018	IR12×16×20
10	a .	22	22	_	13 300	19 400	2 370	10 000	15 000	HK1622ZWFD	_	0.022	_
		22	22	2.7	13 300	19 400	2 370	10 000	15 000	_	BK1622ZWD	0.023	_
		24	16	_	12 400	13 500	1 640	10 000	15 000	HMK1616	_	0.021	IR12×16×20
		24	20	_	15 600	18 200	2 220	10 000	15 000	7E-HMK1620C	т —	0.027	IR12×16×22
		23	12	_	8 050	10 300	1 260	9 500	14 000	HK1712FM	_	0.012	_
		23	12	2.7	8 050	10 300	1 260	9 500	14 000	_	BK1712CT	0.015	_
1	7	24	15	_	11 600	14 200	1 740	9 500	14 000	7E-HMK1715C	т —	0.018	IR14×17×17
		24	20	_	15 200	20 000	2 440	9 500	14 000	7E-HMK1720C	т —	0.024	IR12×17×20.5
		24	25	_	19 000	26 700	3 250	9 500	14 000	7E-HMK1725C	т —	0.030	IR12×17×25.5
		24	12	_	8 300	10 900	1 330	8 500	13 000	HK1812FM	_	0.013	IR15×18×12.5
		24	12	2.7	8 300	10 900	1 330	8 500	13 000	_	BK1812	0.015	IR15×18×12.5
		24	16	_	11 800	17 300	2 110	8 500	13 000	HK1816F	_	0.018	IR15×18×16.5
		24	16	2.7	11 800	17 300	2 110	8 500	13 000	_	BK1816	0.020	IR15×18×16.5
18	8	25	13	_	10 200	12 200	1 480	8 500	13 000	HMK1813	_	0.016	IR15×18×16
		25	15	_	12 000	15 100	1 840	8 500	13 000	HMK1815	_	0.019	IR15×18×16
		25	17	_	13 300	17 200	2 100	8 500	13 000	HMK1817C	_	0.021	IR15×18×17.5
		25	19	_	15 500	20 900	2 540	8 500	13 000	HMK1819	_	0.024	IR15×18×20.5
		25	20	_	16 300	22 300	2 720	8 500	13 000	HMK1820	_	0.025	IR15×18×20.5
	_	25	25	_	20 900	31 000	3 750	8 500	13 000	HMK1825V2	_	0.031	IR15×18×25.5
19	q	27	16	_	13 900	16 300	2 000	8 500	13 000	HMK1916	_	0.025	IR15×19×20
		27	20	_	18 100	23 000	2 800	8 500	13 000	HMK1920F	_	0.031	_
		26	12	_	8 750	12 100	1 480	8 000	12 000	HK2012FM	_	0.014	IR15×20×13
		26	12	2.7	9 250	13 000	1 590	8 000	12 000	_	BK2012	0.017	IR15×20×13
2	0	26	16	_	12 500	19 200	2 340	8 000	12 000	HK2016F	_	0.019	IR17×20×16.5
		26	16	2.7	13 000	20 100	2 450	8 000	12 000	_	BK2016	0.022	IR17×20×16.5
		26	20	_	16 000	26 200	3 200	8 000	12 000	HK2020F	_	0.024	IR17×20×20.5

¹⁾ If the bearing has an inner ring, the value indicates HK + IR. Example: HK1812FM + IR15 \times 18 \times 12.5

F_w 20 ∼ 25mm

Во		y dime mm	ensions	Basic loa	ad rating	Fatigue load	Allowab	le speed	Nun	nber	Mass	Applied inner ring 1)
		$C \\ 0$	C_1	dynamic	static N	limit N	mi Grease	in-1 Oil	Open end	Closed end	kg	illiler ring 17
$F_{\rm w}$	D	-0.2	2 Max.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	lubrication	lubrication	type	type	(approx.)	(approx.)
	26	20	2.7	16 000	26 200	3 200	8 000	12 000	_	BK2020CT	0.027	IR17×20×20.5
	26	30	_	21 500	38 500	4 700	8 000	12 000	HK2030ZWFD	_	0.035	IR17×20×30.5
	26	30	2.7	22 200	40 000	4 900	8 000	12 000	_	BK2030ZWD	0.037	IR17×20×30.5
20	27	15	_	13 000	17 300	2 110	8 000	12 000	HMK2015CV3	_	0.021	IR17×20×16.5
	27	20	_	17 200	24 800	3 000	8 000	12 000	HMK2020CT	_	0.027	IR17×20×20.5
	27	25	_	22 000	34 000	4 150	8 000	12 000	HMK2025C	_	0.034	IR15×20×26
	27	30	_	26 100	42 000	5 150	8 000	12 000	HMK2030	_	0.041	IR17×20×30.5
	29	16	_	15 300	19 100	2 320	7 500	11 000	HMK2116	_	0.027	IR17×21×20
21	29	20	_	19 400	25 800	3 150	7 500	11 000	HMK2120	_	0.033	_
	28	12	_	9 200	13 400	1 630	7 500	11 000	HK2212FM	_	0.013	IR17×22×13
	28	12	2.7	9 200	13 400	1 630	7 500	11 000	_	BK2212CT	0.015	IR17×22×13
	28	16	_	13 200	21 100	2 570	7 500	11 000	HK2216F	_	0.021	IR17×22×18
	28	16	2.7	13 600	22 100	2 700	7 500	11 000	_	BK2216	0.024	IR17×22×18
	28	20	_	16 800	28 800	3 500	7 500	11 000	HK2220F	_	0.026	IR17×22×20.5
22	28	20	2.7	17 200	29 800	3 650	7 500	11 000	_	BK2220	0.030	IR17×22×20.5
	29	10	_	8 400	10 100	1 240	7 500	11 000	HMK2210	_	0.015	IR17×22×13
	29	15	_	12 900	17 600	2 150	7 500	11 000	7E-HMK2215C	_	0.022	IR17×22×16D
	29	20	_	18 200	27 400	3 350	7 500	11 000	HMK2220CV2	_	0.030	IR17×22×20.5
	29	25	_	23 200	37 500	4 550	7 500	11 000	HMK2225CT	_	0.037	IR17×22×26
	29	30	_	26 900	45 000	5 500	7 500	11 000	HMK2230	_	0.045	IR17×22×32
24	31	20	_	18 300	28 200	3 450	6 500	10 000	HMK2420CT	_	0.032	_
24	31	28	_	26 000	44 500	5 400	6 500	10 000	HMK2428	_	0.045	IR20×24×28.5
	32	12	_	11 100	15 200	1 850	6 500	9 500	HK2512F	_	0.021	IR20×25×12.5
	32	12	2.7	11 800	16 300	1 990	6 500	9 500	_	BK2512	0.023	IR20×25×12.5
	32	16	_	15 900	24 000	2 920	6 500	9 500	HK2516F	_	0.027	IR20×25×17
25	32	16	2.7	15 900	24 000	2 920	6 500	9 500	_	BK2516	0.031	IR20×25×17
25	32	20	_	20 300	33 000	4 000	6 500	9 500	HK2520	_	0.034	IR20×25×20.5
	32	20	2.7	20 300	33 000	4 000	6 500	9 500	_	BK2520	0.039	IR20×25×20.5
	32	26	_	26 400	46 000	5 600	6 500	9 500	HK2526C	_	0.045	IR20×25×26.5
	32	26	2.7	26 400	46 000	5 600	6 500	9 500	_	BK2526C	0.049	IR20×25×26.5

¹⁾ If the bearing has an inner ring, the value indicates HK + IR. Example: HK2512F + IR20 \times 25 \times 12.5

E-28 E-29

Drawn cup needle roller bearings

HK type, HK \cdot ZWD type HMK type, HMK \cdot ZWD type BK type, BK \cdot ZWD type

Boundary dimensions C C1	Γ	y 25	,~ ;	SUIIII	1								
F _w D O ₀ O	Во			ensions	Basic loa	d rating		Allowab	le speed	Nun	nber	Mass	
Fw D -0.2 Max Cr N Grease Oil lubrication lubrication Open end type Closed end type (approx.) (approx.) 32 38 — 35 000 65 500 8 000 6 500 9 500 — BK2538ZWD — 0.065 IR20×25×38. 33 10 — 9 150 1 0400 1 270 6 500 9 500 — BK2538ZWD — 0.065 IR20×25×38. 33 10 — 9 150 1 0400 1 270 6 500 9 500 HMK2510 — 0.019 IR20×25×32. 33 20 — 21 200 30 500 3 750 6 500 9 500 HMK2510T — 0.039 IR20×25×32. 33 25 — 26 700 41 000 5 000 6 500 9 500 HMK2510T — 0.048 IR20×25×20. 33 30 — 32 400 2 860 6 000 9 500 HK2816CT — 0				C_1	dynamic	static		mi	in-1			kσ	inner ring 1)
32 38 — 35 000 65 500 8 000 6 500 9 500			0	_	, N		N	Grease	Oil	Open end	Closed end	\ \K	
32 38 2.7 35 000 65 500 8 000 6 500 9 500 — BK2538ZWD 0.069 IR20×25×38.83 10 — 9 150 10 400 1 270 6 500 9 500 HMK2510 — 0.019 IR20×25×12.3 10 10 400 1 270 6 500 9 500 HMK2510 — 0.029 IR20×25×12.3 10 10 400 1 270 1 200 1 10 400 1 270 6 500 9 500 HMK2510CT — 0.029 IR20×25×16 10 10 10 10 1 10 10 10 10 10 10 10 10 1	$F_{\rm v}$	v D	-0.2	2 Max.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	lubrication	lubrication	type	type	(approx.)	(approx.)
32 38 2.7 35 000 65 500 8 000 6 500 9 500 — BK2538ZWD 0.069 IR20×25×38.83 10 — 9 150 10 400 1 270 6 500 9 500 HMK2510 — 0.019 IR20×25×12.3 10 10 400 1 270 6 500 9 500 HMK2510 — 0.029 IR20×25×12.3 10 10 400 1 270 1 200 1 10 400 1 270 6 500 9 500 HMK2510CT — 0.029 IR20×25×16 10 10 10 10 1 10 10 10 10 10 10 10 10 1		20	20	_	25 000	6E E00	9 000	6 500	0.500	HK3E30ZWD	_	0.065	ID20~2E~20 E
33 10											RK25387WD		
25 33 15 — 15 200 19 900 2 430 6 500 9 500 HMK2515CT — 0.029 IR20×25×16 33 20 — 21 200 30 500 3 750 6 500 9 500 HMK2520CT — 0.039 IR20×25×20.3													
33 20	25										_		
33 25 — 26 700 41 000 5 000 6 500 9 500 HMK255F — 0.048 IR20×25×26. 33 30 — 32 000 52 000 6 350 6 500 9 500 7E-HMK2530C — 0.058 IR20×25×32 26 34 16 — 17 100 23 400 2 860 6 000 9 000 7E-HMK2616 — 0.032 IR22×26×20 34 20 — 21 100 30 500 3 750 6 000 9 000 7E-HMK2616 — 0.040 — 35 16 — 16 700 26 400 3 200 5 500 8 500 HK2816CT — 0.040 — 35 16 2.7 16 700 26 400 3 200 5 500 8 500 HK2816CT — 0.030 IR22×28×17 35 16 2.7 16 700 26 400 3 200 5 500 8 500 — BK2816CT 0.034 IR22×28×20. 35 20 — 21 300 36 000 4 400 5 500 8 500 — BK2820 — 0.038 IR22×28×20. 37 20 — 23 600 32 500 4 000 5 500 8 500 HMK2820 — 0.049 IR22×28×20. 37 30 — 35 000 54 500 6 600 5 500 8 500 HMK2820 — 0.073 — 29 38 20 — 24 600 35 000 4 250 5 500 8 500 HMK2930 — 0.075 — 37 12 — 12 300 18 200 2 220 5 500 8 500 HMK2930 — 0.075 — 37 12 — 12 300 18 200 2 220 5 500 8 000 — BK3012CT — 0.024 IR25×30×12. 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3016CT — 0.032 IR25×30×17. 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3016CT — 0.047 IR25×30×20. 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT — 0.047 IR25×30×20. 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT — 0.040 IR25×30×20. 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT — 0.051 IR25×30×20. 37 26 — 28 500 54 000 6 650 5 500 8 000 — BK3020 — 0.047 IR25×30×20. 37 38 — 38 500 78 500 9 600 5 500 8 000 — FT-BK3026T — 0.059 IR25×30×20. 37 38 — 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD — 0.076 IR25×30×38.											_		
33 30											_		
26 34 20 — 21 100 30 500 3 750 6 000 9 000 7E-HMK2620CT — 0.040 — 35 16 — 16 700 26 400 3 200 5 500 8 500 — BK2816CT 0.030 IR22×28×17 28 35 20 — 21 300 36 000 4 400 5 500 8 500 — BK2816CT 0.038 IR22×28×20.3 37 20 — 21 300 36 000 4 400 5 500 8 500 — BK2820 0.043 IR22×28×20.3 37 20 — 23 600 32 500 4 000 5 500 8 500 HKK2820 — 0.049 IR22×28×20.3 37 30 — 35 000 54 500 6 600 5 500 8 500 HKK2820 — 0.049 IR22×28×20.3 37 30 — 35 000 5 500 8 500 HKK2820 — 0.049 IR22×28×20.3				_							_		
26 34 20 — 21 100 30 500 3 750 6 000 9 000 7E-HMK2620CT — 0.040 — 35 16 — 16 700 26 400 3 200 5 500 8 500 — BK2816CT 0.030 IR22×28×17 28 35 20 — 21 300 36 000 4 400 5 500 8 500 — BK2816CT 0.038 IR22×28×20.3 37 20 — 21 300 36 000 4 400 5 500 8 500 — BK2820 0.043 IR22×28×20.3 37 20 — 23 600 32 500 4 000 5 500 8 500 HKK2820 — 0.049 IR22×28×20.3 37 30 — 35 000 54 500 6 600 5 500 8 500 HKK2820 — 0.049 IR22×28×20.3 37 30 — 35 000 5 500 8 500 HKK2820 — 0.049 IR22×28×20.3		34	16	_	17 100	23 400	2 860	6 000	9 000	7F-HMK2616	_	0.032	IB22×26×20
35 16 — 16 700 26 400 3 200 5 500 8 500 — BK2816CT — 0.030 IR22×28×17 35 16 2.7 16 700 26 400 3 200 5 500 8 500 — BK2816CT — 0.034 IR22×28×17 35 20 — 21 300 36 000 4 400 5 500 8 500 — BK2820 — 0.043 IR22×28×20.3 37 20 — 23 600 32 500 4 000 5 500 8 500 — BK2820 — 0.049 IR22×28×20.3 37 30 — 35 000 54 500 6 600 5 500 8 500 — HK2820 — 0.049 IR22×28×20.3 38 20 — 24 600 35 000 4 250 5 500 8 500 — HK2820 — 0.073 — 0.073 — 0.075	26												_
28 35 16 2.7 16 700 26 400 3 200 5 500 8 500 — BK2816CT 0.034 IR22×28×17 35 20 — 21 300 36 000 4 400 5 500 8 500 — BK2820 — 0.038 IR22×28×20.3 37 20 — 23 600 32 500 4 000 5 500 8 500 HMK2820 — 0.049 IR22×28×20.3 37 30 — 35 000 5 4 500 6 600 5 500 8 500 HMK2820 — 0.073 — 0.073 — 0.073 29 38 20 — 24 600 35 000 4 250 5 500 8 500 HMK2920 — 0.050 — 0.075 — 0.0													ID00×00×17
28										HK2816C1			
28										— —	DK2010C1		
37 20 — 23 600 32 500 4 000 5 500 8 500 FE-HMK2820 — 0.049 IR22×28×20.3 37 30 — 35 000 54 500 6 600 5 500 8 500 FE-HMK2830C — 0.073 — 29 38 20 — 24 600 35 000 4 250 5 500 8 500 HMK2920 — 0.050 — 37 12 — 12 300 18 200 2 220 5 500 8 000 HMK2930 — 0.075 — 37 12 2.7 12 300 18 200 2 220 5 500 8 000 HK3012CT — 0.024 IR25×30×12.3 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3012CT 0.028 IR25×30×12.3 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.032 IR25×30×17 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.037 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT 0.040 IR25×30×20.3 37 20 2.7 22 300 39 500 4 800 5 500 8 000 — BK3020 — 0.040 IR25×30×20.3 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 0.047 IR25×30×20.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — TE-BK3026T 0.059 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD — 0.076 IR25×30×26.3 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.3	28										BK3830		
37 30 — 35 000 54 500 6 600 5 500 8 500 7E-HMK2830C — 0.073 — 29 38 20 — 24 600 35 000 4 250 5 500 8 500 HMK2930 — 0.050 — 37 12 — 12 300 18 200 2 220 5 500 8 000 HK2930 — 0.024 IR25×30×12.9 37 12 2.7 12 300 18 200 2 220 5 500 8 000 — BK3012CT — 0.024 IR25×30×12.9 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3012CT — 0.032 IR25×30×12.9 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT — 0.032 IR25×30×17 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT — 0.032 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT — 0.040 IR25×30×20.9 37 20 2.7 22 300 39 500 4 800 5 500 8 000 — BK3020 — 0.040 IR25×30×20.9 37 20 2.7 22 300 39 500 4 800 6 550 5 500 8 000 — BK3020 — 0.040 IR25×30×20.9 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 — 0.053 IR25×30×26.9 37 38 — 38 500 78 500 9 600 5 500 8 000 — 7E-BK3026T — 0.059 IR25×30×26.9 37 38 — 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD — 0.076 IR25×30×38.9 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD — 0.083 IR25×30×38.9										HWK3830			
29 38 20 — 24 600 35 000 4 250 5 500 8 500 HMK2920 — 0.050 — 37 12 — 12 300 18 200 2 220 5 500 8 000 HK3012CT — 0.024 IR25×30×12.9 37 12 2.7 12 300 18 200 2 220 5 500 8 000 — BK3012CT 0.028 IR25×30×12.9 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.032 IR25×30×17 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.037 IR25×30×17 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.037 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT 0.040 IR25×30×20.9 37 20 2.7 22 300 39 500 4 800 5 500 8 000 — BK3020 0.047 IR25×30×20.9 37 30 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 0.047 IR25×30×20.9 37 38 — 38 500 78 500 9 600 5 500 8 000 — TE-BK3026T 0.059 IR25×30×26.9 37 38 — 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD — 0.076 IR25×30×26.9 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.9													
29 38 30 — 34 500 54 000 6 600 5 500 8 500 HMK2930 — 0.075 — 37 12 — 12 300 18 200 2 220 5 500 8 000 — BK3012CT — 0.024 IR25×30×12.3 37 12 2.7 12 300 18 200 2 220 5 500 8 000 — BK3012CT — 0.028 IR25×30×12.3 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3016CT — 0.032 IR25×30×17 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT — 0.032 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT — 0.040 IR25×30×20.3 37 20 2.7 22 300 39 500 4 800 5 500 8 000 — BK3020 — 0.040 IR25×30×20.3 30 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 — 0.053 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — TE-BK3026T — 0.059 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD — 0.076 IR25×30×38.3													
37 12 — 12 300 18 200 2 220 5 500 8 000 — BK3012CT — 0.024 IR25×30×12.3 37 12 2.7 12 300 18 200 2 220 5 500 8 000 — BK3012CT 0.028 IR25×30×12.3 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.032 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3016CT 0.037 IR25×30×20.3 37 20 2.7 22 300 39 500 4 800 5 500 8 000 — BK3020 0.040 IR25×30×20.3 30 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 0.047 IR25×30×20.3 37 38 — 28 500 54 000 6 550 5 500 8 000 — BK3026T 0.053 IR25×30×26.3 37 38 — 38 500 78 500 9	29										<u> </u>		_
37 12 2.7 12 300 18 200 2 220 5 500 8 000 — BK3012CT 0.028 IR25×30×12:1 37 16 — 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.032 IR25×30×17 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.037 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3020F — 0.040 IR25×30×20.3 30 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 0.047 IR25×30×20.3 37 38 — 28 500 54 000 6 550 5 500 8 000 — 7E-BK3026T 0.053 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — 7E-BK3026T 0.059 IR25×30×38.3 37 38 2.7 38 500 78 500 <											_		
37 16 — 18 100 30 000 3 650 5 500 8 000 7E-HK3016C — 0.032 IR25×30×17 37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.037 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3020 0.047 IR25×30×20.3 30 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 0.047 IR25×30×20.3 37 26 2.7 28 500 54 000 6 550 5 500 8 000 — FBK3026T 0.053 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — HK3038ZWD — 0.076 IR25×30×38.3 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.3										HK3012CT			
37 16 2.7 18 100 30 000 3 650 5 500 8 000 — BK3016CT 0.037 IR25×30×17 37 20 — 22 300 39 500 4 800 5 500 8 000 — BK3020 — 0.040 IR25×30×20.3 30 37 26 — 28 500 54 000 6 550 5 500 8 000 — BK3020 0.047 IR25×30×20.3 37 26 2.7 28 500 54 000 6 550 5 500 8 000 — 7E-BK3026T 0.053 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD — 0.076 IR25×30×38.3 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.3											BK3012CT		
37 20 — 22 30 39 500 4 800 5 500 8 6 0.040 IR25×30×20.2 37 20 2.7 22 30 39 500 4 800 5 500 8 000 — BK3020 0.047 IR25×30×20.2 30 37 26 — 28 500 54 000 6 550 8 000 — HK3026F — 0.053 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 — TE-BK3026T 0.059 IR25×30×38.3 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.3										7E-HK3016C	_		
37 20 2.7 22 300 39 500 4 800 5 500 8 000 — BK3020 0.047 IR25×30×20.3 30 37 26 — 28 500 54 000 6 550 5 500 8 000 — HK3026F — 0.053 IR25×30×26.3 37 26 2.7 28 500 54 000 6 550 5 500 8 000 — 7E-BK3026T 0.059 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 HK3038ZWD — 0.076 IR25×30×38.3 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.3										_	BK3016CT	I .	
30 37 26 — 28 500 54 500 500 8 000 HK3026F — 0.053 IR25×30×26:3 37 26 2.7 28 500 5500 8 000 — 7E-BK3026T 0.059 IR25×30×26:3 37 38 — 38 500 78 500 9 600 5 500 8 000 HK3038ZWD — 0.076 IR25×30×38:3 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38:3										HK3020F	— —		
37 26 2.7 28 500 54 000 6 550 8 000 — 7E-BK3026T 0.059 IR25×30×26.3 37 38 — 38 500 78 500 9 600 5 500 8 000 HK3038ZWD — 0.076 IR25×30×38.3 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.3											BK3020		
37 38 — 38 500 78 500 9 600 5 500 8 000 HK3038ZWD — 0.076 IR25×30×38.4 37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.4	30									HK3026F	TE BY202ET		
37 38 2.7 38 500 78 500 9 600 5 500 8 000 — BK3038ZWD 0.083 IR25×30×38.										— —	/E-BK30201		
										HK3U36ZWD	BK30387WD		
40 15 — 17 100 22 100 2 690 5 500 8 000 HMK3015 — 0.044 IR25×30×16											_		
											_		IR25×30×20.5

E-30

*F*_w 30 ∼ 40mm

Во		y dime mm	nsions	Basic lo	ad rating	Fatigue load	Allowab	le speed	Num	ber	Mass	Applied inner ring 1)
		<i>C</i>	C_1	dynamic	static N	limit		n-1 Oil	Open end	Closed end	kg	8
F_{v}	v D	•	2 Max.	$C_{ m r}$	$C_{0\mathrm{r}}$	$egin{array}{c} N \ C_{\mathrm{u}} \end{array}$	Grease lubrication	lubrication	type	type	(approx.)	(approx.)
												.=
30	40	25	_	31 000	47 500	5 800	5 500	8 000	7E-HMK3025CT		0.073	IR25×30×26.5
	40	30	_	36 000	57 500	7 000	5 500	8 000	HMK3030		0.087	IR25×30×32
32	42	20	_	27 500	38 000	4 600	5 000	7 500	7E-HMK3220	_	0.062	_
	42	30	_	41 500	64 500	7 850	5 000	7 500	7E-HMK3230		0.092	_
	42	12	_	13 300	21 300	2 600	4 700	7 000	HK3512CV2	_	0.028	_
	42	12	2.7	13 300	21 300	2 600	4 700	7 000	_	BK3512CT	0.033	_
	42	16	_	19 000	33 500	4 100	4 700	7 000	HK3516CT	_	0.037	_
	42	16	2.7	19 000	33 500	4 100	4 700	7 000	_	BK3516CT	0.044	_
	42	20	_	24 800	47 500	5 800	4 700	7 000	HK3520	_	0.046	_
35	42	20	2.7	24 800	47 500	5 800	4 700	7 000	_	BK3520	0.055	_
	45	12	_	14 900	17 600	2 150	4 700	7 000	HMK3512	_	0.040	_
	45	15	_	20 200	26 200	3 200	4 700	7 000	HMK3515	_	0.050	_
	45	20	_	28 400	40 500	4 900	4 700	7 000	7E-HMK3520B	_	0.067	_
	45	25	_	36 000	54 500	6 650	4 700	7 000	HMK3525	_	0.083	_
	45	30	_	44 000	71 000	8 650	4 700	7 000	HMK3530CV1		0.100	
37	47	20	_	29 300	43 000	5 250	4 300	6 500	HMK3720	_	0.070	_
31	47	30	_	44 500	73 000	8 900	4 300	6 500	HMK3730	_	0.105	_
	48	15	_	21 700	29 300	3 550	4 300	6 500	HMK3815	_	0.054	_
	48	20	_	30 500	45 000	5 500	4 300	6 500	HMK3820	_	0.072	_
38	48	25	_	38 500	61 000	7 450	4 300	6 500	HMK3825	_	0.090	_
	48	30	_	46 000	77 000	9 400	4 300	6 500	HMK3830	_	0.107	IR32×38×32
	48	45	_	62 000	113 000	13 700	4 300	6 500	HMK3845ZWD	_	0.161	_
	47	12	_	12 100	19 500	2 380	4 000	6 000	HK4012V2	_	0.031	IR35×40×12.5
	47	12	2.7	12 600	20 800	2 530	4 000	6 000	_	7E-BK4012CT	0.038	IR35×40×12.5
	47	16	_	20 300	38 500	4 700	4 000	6 000	HK4016CT	_	0.041	IR35×40×17
40	47	16	2.7	20 300	38 500	4 700	4 000	6 000	_	BK4016CT	0.051	IR35×40×17
40	47	20	_	25 900	52 500	6 400	4 000	6 000	HK4020F	_	0.052	IR35×40×20.5
	47	20	2.7	25 900	52 500	6 400	4 000	6 000	_	BK4020	0.064	IR35×40×20.5
	50	15	_	23 100	32 500	3 950	4 000	6 000	HMK4015	_	0.056	IR35×40×17
	50	20	_	32 500	50 000	6 100	4 000	6 000	7E-HMK4020	_	0.075	IR35×40×20.5

¹⁾ If the bearing has an inner ring, the value indicates HK + IR. Example: HK4012 + IR35 \times 40 \times 12.5

E-31

¹⁾ If the bearing has an inner ring, the value indicates HK + IR. Example: HK2820 + IR22 $\times\,28\times20.5$

Drawn cup needle roller bearings

HK type HMK $\cdot \cdot$ ZWD type BK type

(Open end type)

Bou		dimer	nsions	Basic lo	ad rating	Fatigue load	Allowab	le speed	Numl	ber	Mass	Applied inner ring 1)
$F_{ m w}$	D	$_{0}^{C}$	C_1 Max.	dynamic $C_{ m r}$	static N $C_{0{ m r}}$	limit N Cu	mi Grease Iubrication	n-1 Oil Iubrication	Open end type	Closed end type	kg (approx.)	(approx.)
40	50 50 50	25 30 40	_ _ _	41 000 49 000 58 500	67 500 85 000 107 000	8 250 10 400 13 000	4 000 4 000 4 000	6 000 6 000 6 000	7E-HMK4025 HMK4030 HMK4040ZWD	_ _ _	0.094 0.112 0.150	 IR35×40×34
	52 52	16	_ _ 2.7	21 600 21 600	43 000 43 000	5 250 5 250	3 700 3 700	5 500 5 500	HK4516	— — BK4516	0.130 0.046 0.058	IR40×45×17
45	52 52	20		27 600 27 600	59 000 59 000	7 200 7 200	3 700 3 700 3 700	5 500 5 500	HK4520	— BK4520	0.058 0.072	IR40×45×20.5 IR40×45×20.5
45	55 55 55	20 25 30	_ _ _	32 000 41 500 49 500	51 000 71 500 90 000	6 200 8 700 11 000	3 700 3 700 3 700	5 500 5 500 5 500	7E-HMK4520CT HMK4525 7E-HMK4530CT	_	0.083 0.104 0.125	IR40×45×20.5 IR40×45×26.5 IR40×45×34
	55	40	_	59 500	113 000	13 800	3 700	5 500	HMK4540ZWD	_	0.167	
	58 58		— 2.7	31 500 31 500	63 000 63 000	7 700	3 200	4 800 4 800		— BK5020	0.072	IR40×50×22 IR40×50×22
	58 58 62	25 25 12	_ 2.7 _	38 500 38 500 18 200	82 000 82 000 23 600	10 000 10 000 2 880	3 200 3 200 3 200	4 800 4 800 4 800	HK5025 — 7E-HMK5012	— ВК5025	0.090 0.109 0.067	IR45×50×25.5 IR45×50×25.5 —
50	62	15	_	25 900 37 500	37 000 60 000	4 550 7 300	3 200	4 800 4 800 4 800	7E-HMK5015 7E-HMK5020CT	_	0.007	— IR40×50×22
	62 62	25 30	_ _	48 000 58 500	82 500 105 000	10 100 12 800	3 200 3 200	4 800 4 800	7E-HMK5025 7E-HMK5030CPX	_ 11 _	0.140 0.168	IR45×50×25.5 IR45×50×32
	62 62	40 45	_ _	70 000 79 000	134 000 156 000	16 300 19 100	3 200 3 200	4 800 4 800	7E-HMK5040ZWI 7E-HMK5045ZWCDPX		0.224 0.252	_ _

E-32 E-33

¹⁾ If the bearing has an inner ring, the value indicates HK + IR. Example: HK4516 + IR40 $\times\,45\times17$

NTN

Machined-ring needle roller bearings

without an inner ring

RNA49 type RNA59 type RNA69 type NK type

RNA49 \cdot R type ($\phi F_{\mathrm{W}} {\ge} 14\mathrm{mm}$) RNA59 type RNA69 \cdot R type NK \cdot R type ($\phi F_{\mathrm{W}} {\ge} 14\mathrm{mm}$)

I' W	5.5.	101111											
В	ounda	r y din mm	nens	ions	Basic load dynamic N	rating static	Fatigue Ioad Iimit N	Allowab mi Grease	le speed	Number	Installation dimens mr	sions	Mass kg
$F_{\rm w}$	7	D	C	$r_{\rm s min^{1)}}$	$C_{ m r}$	$C_{0\mathbf{r}}$	$C_{ m u}$		lubrication		Max.	Max.	(approx.)
5	+0.018 +0.010	10 10		0.15 0.15	2 640 2 720	2 190 2 250	267 275	27 000 27 000	40 000 40 000	NK5/10T2 NK5/12T2		0.15 0.15	0.0031 0.0037
6	+0.018 +0.010	12 12		0.15 0.15	2 660 3 400	2 280 3 150	278 380		37 000 37 000	NK6/10T2 NK6/12T2	-	0.15 0.15	0.0047 0.0057
7	+0.022 +0.013	13 14 14		0.15 0.3 0.3	2 670 2 670 3 400	2 350 2 350 3 200	286 286 390	23 000	34 000 34 000 34 000	RNA495T2 NK7/10T2 NK7/12T2	8.5	0.15 0.3 0.3	0.0055 0.0069 0.0082
8	+0.022 +0.013	15 15 15	10 12	0.15 0.3 0.3	3 150 4 000 4 850	3 000 4 100 5 200	365 500 635	21 000 21 000	32 000 32 000 32 000	RNA496T2T NK8/12T2 NK8/16	9.5 9.5	0.15 0.3 0.3	0.0073 0.0087 0.012
9	+0.022 +0.013	16 16 17	16	0.3 0.3 0.15	4 550 5 500 3 600	5 000 6 400 3 650	615 780 445	20 000 20 000 20 000		NK9/12T2 NK9/16T2 RNA497	10.5 10.5 10.5		0.010 0.013 0.0095
10	+0.022 +0.013	17 17 19	16	0.3 0.3 0.15	4 550 5 450 5 250	5 100 6 450 5 150	620 790 630	19 000	28 000 28 000 28 000	NK10/12T2 8E-NK10/16CT RNA498CT	11.5 11.5 12		0.010 0.013 0.013
12	+0.027 +0.016	19 19 20	16	0.3 0.3 0.3	5 000 6 000 4 850	6 100 7 700 4 900	740 940 600	17 000	26 000 26 000 26 000	NK12/12 NK12/16 RNA499	13.5 13.5 14		0.013 0.016 0.013
14	+0.027 +0.016	22 22 22	13 16 20	0.3 0.3 0.3	8 600 10 300 13 000	9 200 11 500 15 600	1 120 1 400 1 900	16 000	24 000 24 000 24 000	RNA4900R NK14/16RCT NK14/20R	20 20 20	0.3 0.3 0.3	0.017 0.021 0.026
15	+0.027 +0.016	23 23		0.3 0.3	10 900 13 800	12 700 17 200	1 550 2 100	15 000 15 000	23 000 23 000	NK15/16R NK15/20R	21 21	0.3 0.3	0.022 0.027
16	+0.027 +0.016	24 24 24	16 20	0.3 0.3 0.3	9 550 12 200 14 600	10 900 14 900 18 800	1 330 1 820 2 290	15 000 15 000	23 000 23 000 23 000	RNA4901R NK16/16R NK16/20R	22 22 22	0.3 0.3 0.3	0.017 0.022 0.028
		24	22	0.3	15 400	20 000	2 440	15 000	23 000	RNA6901R	22	0.3	0.031

E-34

Needle Roller Bearings

Fw 17 ~ 28mm

В	ounda	ry dir	nens	sions	Basic load	rating	Fatigue load	Allowab	le speed	Number		on-related	Mass
		mm			dynamic	static	limit		in-1 Oil			ım	kg
F_{w}		D	C	$r_{ m s min^{1)}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	lubrication		D_{a} Max.	$r_{ m as^{2)}}$ Max.	(approx.)
17	+0.027 +0.016	25 25	16 20	0.3	12 100 15 400	15 000 20 400	1 830 2 490		22 000 22 000	NK17/16R NK17/20R	23 23	0.3	0.024 0.030
18	+0.027 +0.016	26 26		0.3	12 700 16 100	16 200 22 000	1 980 2 690		21 000 21 000	NK18/16R NK18/20RCT	24 24	0.3	0.025 0.031
19	+0.033 +0.020	27	16	0.3	13 300 16 000	17 400 22 200	2 120 2 700	14 000	21 000 21 000	NK19/16R NK19/20R	25 25	0.3	0.026 0.032
		28	13	0.3	10 300	12 800	1 560	13 000	20 000	RNA4902R	26	0.3	0.022
20	+0.033 +0.020	28 28		0.3	13 200 14 100	17 500 19 100	2 140 2 330		20 000	NK20/16RCT RNA5902CT	26 26	0.3	0.027 0.033
		28 28		0.3	16 700 17 600	23 800 25 300	2 900 3 100	13 000 13 000		NK20/20R RNA6902R	26 26	0.3	0.034 0.040
	+0.033 +0.020	29 29	16 20	0.3 0.3	13 700 17 400	18 700 25 400	2 280 3 100		19 000 19 000	NK21/16R NK21/20R	27 27	0.3 0.3	0.028 0.035
		30		0.3	14 200	19 900	2 430		18 000	NK22/16R	28	0.3	0.034
22	+0.033 +0.020	30	20 13	0.3	18 000 11 200	27 000 14 600	3 300 1 780		18 000 18 000	NK22/20R RNA4903R	28 28	0.3	0.037 0.022
	10.020	30 30		0.3	15 200 18 200	21 700 27 200	2 650 3 300		18 000 18 000	RNA5903 RNA6903R	28 28	0.3	0.035 0.042
24	+0.033 +0.020	32	16	0.3	15 200	22 300	2 720	11 000	17 000	NK24/16R	30	0.3	0.032
	+0.020	32	20 16	0.3	18 600 15 100	28 800 22 400	3 500 2 730		17 000 16 000	NK24/20R NK25/16R	30	0.3	0.040
	+0.033	33	20	0.3	19 200	30 500	3 700	11 000	16 000	NK25/20RCT	31	0.3	0.042
25	+0.033 +0.020	37 37	23	0.3	21 300 28 400	25 500 37 000	3 100 4 500		16 000 16 000	RNA4904RCT RNA5904	35 35	0.3	0.052 0.084
		37		0.3	36 500	50 500	6 150		16 000	RNA6904R	35	0.3	0.100
26	+0.033 +0.020	34 34		0.3 0.3	15 600 19 100	23 600 30 500	2 880 3 700	10 000 10 000	15 000 15 000	8E-NK26/16RC NK26/20R	32 32	0.3 0.3	0.034 0.042
28	+0.033 +0.020	37 37		0.3 0.3	22 300 26 700	34 000 48 000	4 150 5 850	9 500 9 500	14 000 14 000	NK28/20R NK28/30RCT	35 35	0.3 0.3	0.052 0.082

E-35

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

NTN

Needle Roller Bearings

NTN

Machined-ring needle roller bearings

without an inner ring

RNA49 type RNA59 type RNA69 type NK type

RNA49 · · R type, RNA59 type RNA69 ·· R type ($\phi F_{\rm W} \leq$ 35mm) NK··R type

RNA69 type \cdot R type ($\phi F_{\mathrm{W}} {\ge} 40 \mathrm{mm}$)

1	W	20 ∼	4011	1111										
	Во	undar	ry din	nens	ions	Basic load	rating	Fatigue	Allowab	le speed	Number		on-related	Mass
			mm			dynamic	static	load limit	mi	n-1			nsions ım	kg
	$F_{ m w}$		D	C	$r_{ m smin^{1)}}$	$C_{ m r}$ N	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease	Oil lubrication		$D_{ m a}$ Max.	$r_{ m as^{2)}}$ Max.	(approx.)
	r. W		39	17	0.3	23 200	29 300	3 600	9 500	14 000	RNA49/22R	37	0.3	0.050
	28	+0.033 +0.020	39	23	0.3	26 400	37 500	4 600		14 000	RNA59/22	37	0.3	0.092
		+0.020	39		0.3	40 000	58 500	7 150		14 000	RNA69/22R	37	0.3	0.100
		+0.033	38	20	0.3	22 200	34 000	4 150	9 500	14 000	NK29/20R	36	0.3	0.054
	29	+0.020	38	30	0.3	27 500	50 500	6 150	9 500	14 000	NK29/30R	36	0.3	0.084
-			40	20	0.3	22 100	34 000	4 150	8 500	13 000	NK30/20R	38	0.3	0.065
			40		0.3	33 000	57 000	6 950	8 500	13 000	NK30/30R	38	0.3	0.098
	30	+0.033 +0.020	42	17	0.3	24 000	31 500	3 800	8 500	13 000	RNA4905R	40	0.3	0.061
			42	23	0.3	30 500	43 000	5 200	8 500	13 000	RNA5905	40	0.3	0.101
			42	30	0.3	41 500	63 000	7 650	8 500	13 000	RNA6905R	40	0.3	0.112
			42	20	0.3	23 500	37 500	4 600	8 500	13 000	NK32/20R	40	0.3	0.068
			42	30	0.3	34 000	60 500	7 350	8 500	13 000	NK32/30R	40	0.3	0.102
	32	+0.041 +0.025	45	17	0.3	24 800	33 500	4 050	8 500	13 000	RNA49/28RCT	43	0.3	0.073
			45	23		32 000	45 500	5 550	8 500	13 000	RNA59/28	43	0.3	0.108
			45	30	0.3	43 000	67 000	8 150	8 500	13 000	RNA69/28R	43	0.3	0.135
			45	20	0.3	24 800	41 500	5 050	7 500	11 000	NK35/20RCT	43	0.3	0.074
			45	30	0.3	36 000	66 500	8 100	7 500	11 000	NK35/30R	43	0.3	0.112
	35	+0.041 +0.025	47	17		25 500	35 500	4 300	7 500	11 000	RNA4906R	45	0.3	0.069
			47	23	0.3	32 500	48 500	5 950	7 500	11 000	RNA5906	45	0.3	0.108
			47	30	0.3	42 500	67 500	8 250	7 500	11 000	RNA6906R	45	0.3	0.126
	37	+0.041 +0.025	47	20	0.3	25 300	43 500	5 300	7 500	11 000	NK37/20R	45	0.3	0.077
		10.023	47	30	0.3	36 500	69 500	8 500	7 500	11 000	NK37/30R	45	0.3	0.107
	38	+0.041 +0.025	48	20	0.3	25 900	45 000	5 500	7 500	11 000	NK38/20R	46	0.3	0.079
	-	+0.025	48	30	0.3	37 500	73 000	8 900	7 500	11 000	NK38/30R	46	0.3	0.107
			50	20		26 400	47 000	5 750	6 500	10 000	NK40/20R	48	0.3	0.083
		+0.041	50		0.3	38 500	76 000	9 250	6 500	10 000	NK40/30R	48	0.3	0.125
	40	+0.025	52		0.6	31 500	47 500	5 800	6 500	10 000	RNA49/32R	48	0.6	0.089
			52	27		38 000	61 000	7 450	6 500	10 000	RNA59/32	48	0.6	0.149
			52	36	0.6	47 500	82 000	10 000	6 500	10 000	RNA69/32R	48	0.6	0.162

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

F_w 42 ~ 63mm

Во	52 20 0				Basic loa	Ū	Fatigue load	Allowab	•	Number		on-related nsions	Mass
		mm			dynamic N	static	limit N	mi Grease	n-1 Oil		$D_{\rm a}$	$r_{ m as^{2)}}$	kg
F_{w}		D	C	$r_{\mathrm{s}\mathrm{min}^{\mathrm{1}\mathrm{)}}}$	$C_{ m r}$	C_{0r}	$C_{ m u}$	lubrication	lubrication		Max.	Max.	(approx.)
		52	20	0.3	26 900	49 000	5 950	6 500	9 500	NK42/20R	50	0.3	0.086
		52	30	0.3	39 000	79 000	9 650	6 500	9 500	NK42/30R	50	0.3	0.130
42	+0.041 +0.025	55	20	0.6	32 000	50 000	6 100	6 500	9 500	RNA4907R	51	0.6	0.107
		55	27	0.6	39 000	64 500	7 850	6 500	9 500	RNA5907	51	0.6	0.176
		55	36	0.6	49 000	86 500	10 500	6 500	9 500	RNA6907R	51	0.6	0.193
40	+0.041 +0.025	53	20	0.3	27 500	51 000	6 200	6 500	9 500	NK43/20R	51	0.3	0.086
43	+0.025	53	30	0.3	40 000	82 000	10 000	6 500	9 500	NK43/30R	51	0.3	0.133
45	+0.041	55	20	0.3	28 000	52 500	6 450	6 000	9 000	NK45/20R	53	0.3	0.092
45	+0.041 +0.025	55	30	0.3	41 000	85 500	10 400	6 000	9 000	NK45/30RCT	53	0.3	0.139
47	+0.041 +0.025	57	20	0.3	28 800	55 500	6 800	5 500	8 500	NK47/20RCT	55	0.3	0.095
47.	+0.025	57	30	0.3	42 500	91 500	11 200	5 500	8 500	NK47/30R	55	0.3	0.142
		62	22	0.6	43 500	66 500	8 150	5 500	8 500	RNA4908R	58	0.6	0.140
48	+0.041 +0.025	62	30	0.6	53 000	92 500	11 300	5 500	8 500	RNA5908	58	0.6	0.225
		62	40	0.6	67 000	116 000	14 100	5 500	8 500	RNA6908R	58	0.6	0.256
50 ⁻	+0.041	62	25	0.6	38 500	74 500	9 050	5 500	8 000	NK50/25RCT	58	0.6	0.158
JU ,	+0.025	62	35	0.6	51 000	106 000	12 900	5 500	8 000	NK50/35R	58	0.6	0.221
		68	22	0.6	46 000	73 000	8 950	5 000	7 500	RNA4909R	64	0.6	0.182
52	+0.049 +0.030	68	30	0.6	56 000	101 000	12 300	5 000	7 500	RNA5909	64	0.6	0.232
		68	40	0.6	70 500	127 000	15 500	5 000	7 500	RNA6909R	64	0.6	0.273
ee +	+0.049 +0.030	68	25	0.6	41 000	82 000	10 000	5 000	7 500	NK55/25R	64	0.6	0.193
55 .	+0.030	68	35	0.6	54 000	118 000	14 300	5 000	7 500	NK55/35R	64	0.6	0.26
		72	22	0.6	48 000	80 000	9 750	4 700	7 000	RNA4910R	68	0.6	0.163
58	+0.049 +0.030	72	30	0.6	58 000	110 000	13 400	4 700	7 000	RNA5910	68	0.6	0.289
		72	40	0.6	74 000	139 000	17 000	4 700	7 000	RNA6910R	68	0.6	0.320
<u>-</u> د د	+0.049	72	25	0.6	41 000	85 000	10 400	4 300	6 500	NK60/25R	68	0.6	0.185
, UO	+0.049 +0.030	72	35	0.6	57 000	130 000	15 800	4 300	6 500	NK60/35R	68	0.6	0.258
		80	25	1	58 500	99 500	12 100	4 300	6 500	RNA4911R	75	1	0.255
63	+0.049 +0.030	80	34	1	76 500	140 000	17 100	4 300	6 500	RNA5911	75	1	0.367
		80	45	1	94 000	183 000	22 300	4 300	6 500	RNA6911R	75	1	0.470

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

NTN

Needle Roller Bearings

NTN

Machined-ring needle roller bearings

without an inner ring

RNA49 type RNA59 type RNA69 type NK type

RNA48 type RNA49··R type RNA59 type NK··R type

RNA69 · · R type

F	W	65 ^	- 90n	nm										
	Во	unda	ry dir mm	nens	sions	Basic load	I rating static	Fatigue load limit		le speed	Number	dime	on-related nsions	Mass kg
F	w		D	C	$r_{ m smin^{1)}}$	C _r N	$C_{0\mathrm{r}}$	$N \\ C_{ m u}$	Grease	Oil lubrication		D_{a} Max.	$r_{ m as^{2)}}$ Max.	(approx.)
	_	+0.049	78	25	0.6	45 000	98 000	12 000	4 000	6 000	NK65/25R	74	0.6	0.221
C	.5	+0.049 +0.030	78	35	0.6	60 000	142 000	17 300	4 000	6 000	NK65/35R	74	0.6	0.310
			82	25	1	44 500	89 000	10 800	4 000	6 000	NK68/25R	77	0.6	0.241
			82	35	0.6	63 000	139 000	17 000	4 000	6 000	NK68/35R	78	0.6	0.338
6	8	+0.049 +0.030	85	25	1	61 500	108 000	13 100	4 000	6 000	RNA4912R	80	1	0.275
			85	34	1	80 500	153 000	18 600	4 000	6 000	RNA5912	80	1	0.408
			85	45	1	95 500	191 000	23 200	4 000	6 000	RNA6912R	80	1	0.488
_	· n	+0.049 +0.030	85	25	0.6	45 000	91 500	11 200	3 700	5 500	NK70/25R	81	0.6	0.275
•	U.	+0.030	85	35	0.6	64 000	144 000	17 600	3 700	5 500	NK70/35R	81	0.6	0.386
			90	25	1	62 500	112 000	13 700	3 700	5 500	RNA4913R	85	1	0.312
7	2	+0.049 +0.030	90	34	1	84 000	165 000	20 100	3 700	5 500	RNA5913	85	1	0.462
			90	45	1	97 000	198 000	24 200	3 700	5 500	RNA6913R	85	1	0.520
-	· 2	+0.049 +0.030	90	25	0.6	54 000	100 000	12 200	3 700	5 500	NK73/25R	86	0.6	0.302
′	J .	+0.030	90	35	0.6	76 500	156 000	19 100	3 700	5 500	NK73/35R	86	0.6	0.428
-	'5 <u>]</u>	+0.049 +0.030	92	25	0.6	55 000	104 000	12 600	3 700	5 500	NK75/25R	88	0.6	0.315
′	J .	+0.030	92	35	0.6	78 000	162 000	19 800	3 700	5 500	NK75/35R	88	0.6	0.492
			95	25	1	57 000	119 000	14 500	3 300	5 000	NK80/25R	90	1	0.301
			95	35	1	79 500	184 000	22 400	3 300	5 000	NK80/35R	90	1	0.425
8	0	+0.049 +0.030	100	30	1	85 500	156 000	19 000	3 300	5 000	RNA4914R	95	1	0.460
			100	40		103 000	187 000	22 800	3 300	5 000	RNA5914	95	1	0.706
			100	54	1	130 000	267 000	32 500	3 300	5 000	RNA6914R	95	1	0.857
			105	25	1	70 500	123 000	15 000	3 100	4 700	NK85/25R	100	1	0.404
			105	30	1	87 000	162 000	19 700	3 100	4 700	RNA4915R	100	1	0.489
8	5	+0.058 +0.036	105	35		100 000	193 000	23 600	3 100	4 700	NK85/35R	100	1	0.517
			105	40		109 000	205 000	25 000	3 100	4 700	RNA5915	100	1	0.745
			105	54	1	132 000	277 000	34 000	3 100	4 700	RNA6915R	100	1	0.935
		0.055	110	25	1	71 500	128 000	15 600	2 900	4 400	NK90/25R	105	1	0.426
G	0	+0.058 +0.036	110	30	1	90 500	174 000	21 200	2 900	4 400	RNA4916R	105	1	0.516
			110	35	1	104 000	208 000	25 400	2 900	4 400	NK90/35R	105	1	0.604

E-38

*F*_w 90 ∼ 135mm

ı	Bounda	ry dir	nens	ions	Basic loa	d rating	Fatigue load	Allowab	le speed	Number	Installatio dimen		Mass
		mm			dynamic	static	limit		n-1		mı	n	kg
F	187	D	C	$r_{ m smin^{1)}}$	$C_{ m r}$ N	C_{0r}	$C_{\rm u}$	Grease Jubrication	Oil lubrication		D _a	$r_{ m as^{2)}}$ Max.	(approx.)
-		110	40	1	115 000	223 000	27 200	2 900	4 400	RNA5916	105	1	0.787
90) +0.058 +0.036	110	54	-	138 000	298 000	36 500	2 900	4 400	RNA6916R	105	1	0.987
		115	26	1	74 500	137 000	16 600	2 800	4 200	NK95/26R	110	1	0.364
9	+0.058 +0.036	115	36		108 000	223 000	27 000	2 800	4 200	NK95/36R	110	1	0.652
		120		1	73 500	137 000	16 500	2 700	4 000	NK100/26R	115	1	0.487
		120		1.1	112 000	237 000	28 400	2 700	4 000	RNA4917R	113.5	-	0.467
10	0 ^{+0.058} _{+0.036}	120	36		107 000	223 000	26 700	2 700	4 000	NK100/36R	115	1	0.679
	+0.030	120	46	1.1	137 000	290 000	34 500	2 700	4 000	RNA5917	113.5	1	1.00
		120	63	1.1	169 000	400 000	48 000	2 700	4 000	RNA6917R	113.5	1	1.20
		125	26	1	76 500	147 000	17 300	2 500	3 800	NK105/26R	120	1	0.506
		125	35	1.1	116 000	252 000	29 800	2 500	3 800	RNA4918R	118.5	1	0.697
10	5 ^{+0.058} _{+0.036}	125	36	1	111 000	238 000	28 100	2 500	3 800	NK105/36R	120	1	0.713
		125	46	1.1	143 000	310 000	37 000	2 500	3 800	RNA5918	118.5	1	1.04
		125	63	1.1	175 000	425 000	50 500	2 500	3 800	RNA6918R	118.5	1	1.33
		130	30	1.1	97 500	204 000	23 800	2 400	3 600	NK110/30R	123.5	1	0.612
		130	35	1.1	118 000	260 000	30 500	2 400	3 600	RNA4919R	123.5	1	0.719
11	0 ^{+0.058} _{+0.036}	130	40	1.1	129 000	292 000	34 000	2 400	3 600	NK110/40R	123.5	1	0.830
		130	46	1.1	149 000	335 000	39 000	2 400	3 600	RNA5919	123.5		1.13
		130	63	1.1	177 000	440 000	51 000	2 400	3 600	RNA6919R	123.5	1	1.46
11	5 ^{+0.058} _{+0.036}	140	40	1.1	127 000	260 000	29 900	2 300	3 500	RNA4920	133.5	1	1.15
•	+0.036	140	54	1.1	182 000	395 000	45 500	2 300	3 500	RNA5920	133.5	1	1.76
40	0 ^{+0.058}	140	30	1	93 500	210 000	23 900	2 200	3 300	RNA4822	135	1	0.670
12	U _{+0.036}	140	40	1.1	113 000	268 000	30 500	2 200	3 300	NK120/40	133.5	1	0.910
40	+0.068	150	40	1.1	131 000	279 000	31 500	2 100	3 200	RNA4922	143.5	1	1.24
12	5 ^{+0.068} _{+0.043}	150	54	1.1	193 000	440 000	49 500	2 100	3 200	RNA5922	143.5	1	1.89
	• ±0 066	150	30	1	99 500	233 000	25 900	2 100	3 100	RNA4824	145	1	0.730
13	0 ^{+0.068} _{+0.043}	150	40	1.1	116 000	283 000	31 500	2 100	3 100	NK130/40	143.5	1	0.980
	+0.068	165	45	1.1	180 000	380 000	41 500	2 000	3 000	RNA4924	158.5	1	1.86
13	5 ^{+0.068} _{+0.043}	165	60	1.1	246 000	530 000	57 500	2 000	3 000	RNA5924	158.5	1	2.67

E-39

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

NTN

Needle Roller Bearings

NTN

Machined-ring needle roller bearings

without an inner ring

RNA48 type RNA49 type RNA59 type RNA69 type NK type

RNA69 ·· R type

FW	145	~ 24	5mr	n									
В	ounda	ry din mm	nens	ions	Basic load dynamic	I rating static	Fatigue load limit	mi	le speed	Number	Installation dimens mr	sions	Mass kg
$F_{ m w}$		D	C	$r_{ m smin^{1)}}$	$C_{ m r}$ N	$C_{0\mathrm{r}}$	$C_{ m u}$	Grease lubrication	Oil lubrication		D_{a}	$r_{ m as^{2)}}$ Max.	(approx.)
		165	35	1.1	118 000	305 000	32 500	1 900	2 800	RNA4826	158.5	1	0.95
145	+0.068 +0.043	170		1.5	111 000	238 000	25 600	1 900	2 800	NK145/32	162.5		1.12
		170	42	1.5	153 000	360 000	38 500	1 900	2 800	NK145/42	162.5	1.5	1.49
150	+0.068 +0.043	180	50	1.5	202 000	455 000	48 000	1 800	2 700	RNA4926	172	1.5	2.21
100	+0.043	180	67	1.5	296 000	690 000	73 000	1 800	2 700	RNA5926	172	1.5	3.21
		175	35	1.1	121 000	315 000	33 500	1 700	2 600	RNA4828	168.5	1	1.02
155	+0.068 +0.043	180		1.5	114 000	252 000	26 500	1 700	2 600	NK155/32	172	1.5	1.20
		180	42	1.5	156 000	380 000	40 000	1 700	2 600	NK155/42	172	1.5	1.59
160	+0.068 +0.043	190		1.5	209 000	485 000	50 500	1 700	2 500	RNA4928	182	1.5	2.35
	+0.043	190	67	1.5	315 000	760 000	79 000	1 700	2 500	RNA5928	182	1.5	3.48
	. 0. 000	190		1.5	117 000	265 000	27 400	1 600	2 400	NK165/32	182	1.5	1.42
165	+0.068 +0.043	190	40	1.1	152 000	390 000	40 500	1 600	2 400	RNA4830	183.5	1	1.60
	0.000	190	42	1.5	160 000	400 000	41 000	1 600	2 400	NK165/42	182	1.5	1.66
	+0.068 +0.043	210	60	2	261 000	610 000	62 500	1 600	2 400	RNA4930	201	2	2.98
	+0.068 +0.043	200	40	1.1	160 000	425 000	43 500	1 500	2 300	RNA4832	193.5	1	1.70
180	+0.068 +0.043	220	60	2	270 000	650 000	65 500	1 500	2 200	RNA4932	211	2	3.10
185	+0.079 +0.050	215	45	1.1	185 000	495 000	49 500	1 500	2 200	RNA4834	208.5	1	2.54
	+0.079 +0.050	230	60	2	279 000	690 000	68 500	1 400	2 100	RNA4934	221	2	3.22
	+0.079 +0.050	225	45	1.1	195 000	540 000	53 500	1 400	2 100	RNA4836	218.5	1	2.68
	+0.079 +0.050	250	69	2	375 000	890 000	86 000	1 300	2 000	RNA4936	241	2	4.48
210	+0.079 +0.050	240	50	1.5	227 000	680 000	65 500	1 300	1 900	RNA4838	232	1.5	3.21
	+0.079 +0.050	260	69	2	390 000	945 000	90 500	1 300	1 900	RNA4938	251	2	4.53
	+0.079 +0.050	250	50	1.5	231 000	705 000	67 000	1 200	1 800	RNA4840	242	1.5	3.35
	+0.079 +0.050	280	80	2.1	505 000 1	180 000	111 000	1 200	1 800	RNA4940	269	2	7.20
240	+0.079 +0.050	270	50	1.5	244 000	780 000	72 500	1 100	1 700	RNA4844	262	1.5	3.62
245	+0.079 +0.050	300	80	2.1	525 000 1	270 000	116 000	1 100	1 600	RNA4944	289	2	7.81

E-40

F_w 265 ~ 490mm

В.					Danie I		41	Fatiana	Allannala		Normala au	Installat!		Mass
В	ounda	ıry aı	mens	ions	Basic	ioad ra	iting	Fatigue load	Allowan	le speed	Number		on-related nsions	Mass
		mm	1		dynamic	S S	static	limit N	Grease	in-1 Oil		$D_{\rm a}$	nm	kg
$F_{ m w}$		D	C	$r_{ m s min^{1)}}$	$C_{ m r}$	IN	C_{0r}	C_{u}	lubrication			Max.	$r_{ m as^{2)}}$ Max.	(approx.)
265	+0.088 +0.056	300	60	2	365 00	0 1 0	90 000	98 500	1 000	1 500	RNA4848	291	2	5.40
203	+0.056	320	80	2.1	540 00	0 1 3	50 000	121 000	1 000	1 500	RNA4948	309	2	8.40
285	+0.088 +0.056	320	60	2	375 00	0 1 1	70 000	103 000	950	1 400	RNA4852	311	2	5.80
290	+0.088 +0.056	360	100	2.1	810 00	0 1 92	20 000	166 000	950	1 400	RNA4952	349	2	15.9
305	+0.088 +0.056	350	69	2	455 00	0 130	000 000	112 000	850	1 300	RNA4856	341	2	9.30
310	+0.088 +0.056	380	100	2.1	840 00	0 2 0	50 000	175 000	850	1 300	RNA4956	369	2	16.7
330	+0.098 +0.062	380	80	2.1	625 00	0 17	70 000	149 000	800	1 200	RNA4860	369	2	12.7
340	+0.098 +0.062	420	118	3	1 080 00	0 26	40 000	219 000	800	1 200	RNA4960	407	2.5	24.0
350	+0.098 +0.062	400	80	2.1	640 00	0 18	50 000	153 000	750	1 100	RNA4864	389	2	13.4
360	+0.098 +0.062	440	118	3	1 120 00	0 282	20 000	230 000	750	1 100	RNA4964	427	2.5	25.2
370	+0.098 +0.062	420	80	2.1	655 00	0 194	40 000	158 000	750	1 100	RNA4868	409	2	14.0
380	+0.098 +0.062	460	118	3	1 160 00	0 3 0	000 000	242 000	750	1 100	RNA4968	447	2.5	26.5
390	+0.098 +0.062	440	80	2.1	665 00	0 2 0	20 000	162 000	650	1 000	RNA4872	429	2	14.8
400	+0.108 +0.068	480	118	3	1 200 00	0 3 20	000 000	253 000	650	1 000	RNA4972	467	2.5	28.2
415	+0.108 +0.068	480	100	2.1	1 000 00	0 284	40 000	223 000	650	950	RNA4876	469	2	26.0
430	+0.108 +0.068	520	140	4	1 400 00	0 3 7	50 000	292 000	650	950	RNA4976	504	3	38.6
450	+0.108 +0.068	540	140	4	1 450 00	0 4 0	000 000	306 000	600	900	RNA4980	524	3	40.1
470	+0.108 +0.068	560	140	4	1 500 00	0 4 2	50 000	320 000	550	850	RNA4984	544	3	51.6
490	+0.108 +0.068	600	160	4	1 750 00	0 4 60	000 000	342 000	550	800	RNA4988	584	3	66.9

E-41

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

NTN

Needle Roller Bearings

NTN

Machined-ring needle roller bearings

with an inner ring

NA49 type NA59 type NA69 type NK+IR type

NA59 type NA69··R type

NA49 \cdot R type ($\phi d \ge$ 10mm)

NK+IR type ($\phi d \ge$ 10mm)

	E	Bound	dary	dimens	ions		Basic load	rating	Fatigue load	Allowable speed	Number
			m	ım			dynamic N	static	limit N	min-1 Grease Oil	
	d	D	C	$r_{\mathrm{s}\mathrm{min}^{1)}}$	F	S ²⁾	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$	lubrication lubrication	
		13	10	0.15	7	_	2 670	2 350	287	23 000 34 000	NA495T2
	5	15		0.3	8	1.5	4 000	4 100		21 000 32 000	
		15		0.3	8	2	4 850	5 200		21 000 32 000	NK8/16T2+IR5×8×16
		15		0.15	8		3 150	3 000		21 000 32 000	
	6	16 16	12	0.3	9	1.5	4 550 5 500	5 000 6 400		20 000 30 000 20 000 30 000	NK9/12T2+IR6×9×12 NK9/16T2+IR6×9×16
	7	17	10	0.15	9	_ 1.5	3 600	3 650 5 100		20 000 30 000	NA497 NK10/12T2+IR7×10×12
	′	17 17		0.3	10	2	4 550 5 450	6 450	790	19 000 28 000 19 000 28 000	8E-NK10/1212+1H7×10×12
	8	19	11	0.15	10	_	5 250	5 150	630	19 000 28 000	NA498CT
	0										
	9	19 19	12 16	0.3	12 12	1.5	5 000 6 000	6 100 7 700	740 940	17 000 26 000 17 000 26 000	NK12/12+IR9×12×12 NK12/16+IR9×12×16
	3	20	11	0.3	12	_	4 850	4 900		17 000 26 000	
		22	13	0.3	14	0.5	8 600	9 200	1 120	16 000 24 000	NA4900R
1	10	22	16	0.3	14	0.5	10 300	11 500	1 400	16 000 24 000	
		22	20	0.3	14	0.5	13 000	15 600	1 900	16 000 24 000	NK14/20R+IR10×14×20
		24	13	0.3	16	0.5	9 550	10 900	1 330	15 000 23 000	NA4901R
	12	24	16	0.3	16	0.5	12 200	14 900	1 820	15 000 23 000	NK16/16R+IR12×16×16
	12	24		0.3	16	0.5	14 600	18 800		15 000 23 000	
		24	22	0.3	16		15 400	20 000	2 440	15 000 23 000	NA6901R
		27	16	0.3	19	0.5	13 300	17 400	2 120	14 000 21 000	NK19/16R+IR15×19×16
		27		0.3	19	0.5	16 000	22 200		14 000 21 000	
1	15	28 28	13 18	0.3	20	0.5	10 300 14 100	12 800 19 100		13 000 20 000 13 000 20 000	NA4902R NA5902CT
		28		0.3	20	1	17 600	25 300	3 100	13 000 20 000	NA6902R
		29		0.3	21	0.5	13 700	18 700		13 000 19 000	
1	17	29	20	0.3	21	0.5	17 400	25 400		13 000 19 000	
		30		0.3	22		11 200	14 600		12 000 18 000	

S
3

Install di	Mass		
$d_{\rm a}$	$D_{\mathbf{a}}$	$r_{ m as}$ 3)	kg
Min.	Max.	Max.	(approx.)
6.2	8.5	0.15	0.007
7	9.5	0.3	0.012
7	9.5	0.3	0.016
8	9.5	0.15	0.009
8	10.5	0.3	0.013
8	10.5	0.3	0.017
9	10.5	0.15	0.010
9	11.5	0.3	0.014
9	11.5	0.3	0.018
10	12	0.15	0.016
11	13.5	0.3	0.018
11	13.5	0.3	0.022
11	14	0.3	0.017
12	20	0.3	0.024
12	20	0.3	0.030
12	20	0.3	0.038
14	22	0.3	0.026
14	22	0.3	0.033
14	22	0.3	0.042
14	22	0.3	0.046
17	25	0.3	0.039
17	25	0.3	0.045
17	26	0.3	0.036
17	26	0.3	0.052
17	26	0.3	0.064
19	27	0.3	0.042
19	27	0.3	0.053
19	28	0.3	0.037

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Allowable axial movement amount of the inner ring with respect to the outer ring. 3) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

NTN

Needle Roller Bearings

NTN

Machined-ring needle roller bearings

with an inner ring

NA49 type NA59 type NA69 type NK+IR type

NA59 type NA69··R type NK··R+IR type

Installation-related Mass

d 17 ∼ 32mm

	ı	Bound	lary o	dimens	ions		Basic load	rating	Fatigue load	Allowab	le speed	Number
			m	m			dynamic	static	limit	_ mi		
	d	D	C	$r_{ m smin}^{_{1)}}$	F	S 2)	$C_{ m r}$ N	$C_{0\mathrm{r}}$	$C_{\mathbf{u}}$	Grease lubrication	Oil lubrication	
	4-	30	18	0.3	22	0.5	15 200	21 700	2 650	12 000	18 000	NA5903
	17	30	23	0.3	22	1	18 200	27 200	3 300	12 000	18 000	NA6903R
		32	16	0.3	24	0.5	15 200	22 300	2 720	11 000	17 000	NK24/16R+IR20×24×16
		32	20	0.3	24	0.5	18 600	28 800	3 500	11 000	17 000	NK24/20R+IR20 \times 24 \times 20
	20	37	17	0.3	25	8.0	21 300	25 500	3 100	11 000	16 000	NA4904RCT
		37	23	0.3	25	8.0	28 400	37 000	4 500	11 000	16 000	NA5904
		37	30	0.3	25	1	36 500	50 500	6 150	11 000	16 000	NA6904R
		34	16	0.3	26	0.5	15 600	23 600	2 880	10 000	15 000	8E-NK26/16RCT+IR22×26×16
		34	20	0.3	26	0.5	19 100	30 500	3 700	10 000	15 000	NK26/20R+IR22 \times 26 \times 20
	22	39	17	0.3	28	8.0	23 200	29 300	3 600	9 500	14 000	NA49/22R
		39	23	0.3	28	8.0	26 400	37 500	4 600	9 500	14 000	NA59/22
		39	30	0.3	28	0.5	40 000	58 500	7 150	9 500	14 000	NA69/22R
ı		38	20	0.3	29	1	22 200	34 000	4 150	9 500	14 000	NK29/20R+IR25 $ imes$ 29 $ imes$ 20
		38	30	0.3	29	1.5	27 500	50 500	6 150	9 500	14 000	NK29/30R+IR25 \times 29 \times 30
	25	42	17	0.3	30	8.0	24 000	31 500	3 800	8 500	13 000	NA4905R
		42	23	0.3	30	8.0	30 500	43 000	5 200	8 500	13 000	NA5905
		42	30	0.3	30	1	41 500	63 000	7 650	8 500	13 000	NA6905R
		42	20	0.3	32	1	23 500	37 500	4 600	8 500	13 000	NK32/20R+IR28 \times 32 \times 20
		42	30	0.3	32	1.5	34 000	60 500	7 350	8 500	13 000	NK32/30R+IR28 \times 32 \times 30
	28	45	17	0.3	32	8.0	24 800	33 500	4 050	8 500	13 000	NA49/28RCT
		45	23	0.3	32	8.0	32 000	45 500	5 550	8 500	13 000	NA59/28
		45	30	0.3	32	1	43 000	67 000	8 150	8 500	13 000	NA69/28R
		45	20	0.3	35	0.5	24 800	41 500	5 050	7 500	11 000	NK35/20RCT $+$ IR30 $ imes$ 35 $ imes$ 20
		45	30	0.3	35	1	36 000	66 500	8 100	7 500	11 000	NK35/30R $+$ IR30 $ imes$ 35 $ imes$ 30
	30	47	17	0.3	35	8.0	25 500	35 500	4 300	7 500	11 000	NA4906R
		47	23	0.3	35	8.0	32 500	48 500	5 950		11 000	NA5906
		47	30	0.3	35	1	42 500	67 500	8 250	7 500	11 000	NA6906R
		47	20	0.3	37	0.5	25 300	43 500	5 300	7 500	11 000	NK37/20R+IR32 $ imes$ 37 $ imes$ 20
	32	47	30	0.3	37	1	36 500	69 500	8 500	7 500	11 000	NK37/30R+IR32 $ imes$ 37 $ imes$ 30
		52	20	0.6	40	8.0	31 500	47 500	5 800	6 500	10 000	NA49/32R

di	dimensions											
$d_{\rm a}$	$D_{\mathbf{a}}$	$r_{\rm as}$ 3)	kg									
Min.	Max.	Max.	(approx.)									
19	28	0.3	0.056									
19	28	0.3	0.069									
22	30	0.3	0.049									
22	30	0.3	0.061									
22	35	0.3	0.074									
22	35	0.3	0.115									
22	35	0.3	0.141									
24	32	0.3	0.046									
24	32	0.3	0.064									
24	37	0.3	0.080									
24	37	0.3	0.134									
24	37	0.3	0.154									
27	36	0.3	0.079 0.123									
27	36	0.3										
27	40	0.3	0.088									
27	40	0.3	0.139									
27	40	0.3	0.162									
30	40	0.3	0.096									
30	40	0.3	0.146									
30	43	0.3	0.098									
30	43	0.3	0.142									
30	43	0.3	0.179									
32	43	0.3	0.112									
32	43	0.3	0.171									
32	45	0.3	0.101									
32	45	0.3	0.152									
32	45	0.3	0.185									
34	45	0.3	0.117									
34	45	0.3	0.170									
36	48	0.6	0.157 er rings (IR									
INULE. I	ne nuntik	JCI OI IIII	ici illigə (Ir									

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Allowable axial movement amount of the inner ring with respect to the outer ring. 3) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

with an inner ring

NA49 type NA59 type NA69 type NK+IR type

NA49 · · R type NA59 type

NA69 $\cdot\cdot$ R type (ϕd \leq 30mm) NK··R+IR type

(*∮d* ≧32mm)

 $d \sim 55$ mm

	d 32 ~ 55mm												
	ı	Bound	dary	dimens	ions		Basic load	rating	Fatigue load	Allowab	le speed	Number	
			m	ım			dynamic	static	limit	_ mi			
	d	D	C	$r_{\mathrm{s}\mathrm{min}^{1)}}$	F	S ²⁾	$C_{ m r}$ N	C_{0r}	C_{11}	Grease lubrication	Oil lubrication		
ı		52		0.6	40	0.8	38 000	61 000	7 450		10 000	NA59/32	
	32	52	36	0.6	40	0.5	47 500	82 000	10 000		10 000	NA69/32R	
		50	20	0.3	40	0.5	26 400	47 000	5 750		10 000	NK40/20R+IR35×40×20	
		50	30	0.3	40	1	38 500	76 000	9 250		10 000	NK40/30R+IR35×40×30	
	35	55	20	0.6	42	0.8	32 000	50 000	6 100	6 500	9 500	NA4907R	
		55	27	0.6	42	0.8	39 000	64 500	7 850	6 500	9 500	NA5907	
		55	36	0.6	42	0.5	49 000	86 500	10 500	6 500	9 500	NA6907R	
-		53	20	0.3	43	0.5	27 500	51 000	6 200	6 500	9 500	NK43/20R+IR38×43×20	
	38	53	30	0.3	43	1	40 000	82 000	10 000	6 500	9 500	NK43/30R+IR38×43×30	
		55	20	0.3	45	0.5	28 000	52 500	6 450	6 000	9 000	NK45/20R+IR40×45×20	
		55	30	0.3	45	1	41 000	85 500	10 400	6 000	9 000	NK45/30RCT+IR40×45×30	
	40	62	22	0.6	48	1	43 500	66 500	8 150	5 500	8 500	NA4908R	
		62	30	0.6	48	1	53 000	92 500	11 300	5 500	8 500	NA5908	
		62	40	0.6	48	0.5	67 000	116 000	14 100	5 500	8 500	NA6908R	
	40	57	20	0.3	47	0.5	28 800	55 500	6 800	5 500	8 500	NK47/20RCT+IR42×47×20	
	42	57	30	0.3	47	1	42 500	91 500	11 200	5 500	8 500	NK47/30R $+$ IR42 $ imes$ 47 $ imes$ 30	
		62	25	0.6	50	1.5	38 500	74 500	9 050	5 500	8 000	NK50/25RCT+IR45 \times 50 \times 25	
		62	35	0.6	50	2	51 000	106 000	12 900	5 500	8 000	NK50/35R $+$ IR45 \times 50 \times 35	
	45	68	22	0.6	52	1	46 000	73 000	8 950	5 000	7 500	NA4909R	
		68	30	0.6	52	1	56 000	101 000	12 300	5 000	7 500	NA5909	
		68	40	0.6	52	0.5	70 500	127 000	15 500	5 000	7 500	NA6909R	
		68	25	0.6	55	1.5	41 000	82 000	10 000	5 000	7 500	NK55/25R+IR50 \times 55 \times 25	
		68	35	0.6	55	2	54 000	118 000	14 300	5 000	7 500	NK55/35R $+$ IR50 $ imes$ 55 $ imes$ 35	
	50	72	22	0.6	58	1	48 000	80 000	9 750	4 700	7 000	NA4910R	
		72	30	0.6	58	1	58 000	110 000	13 400	4 700	7 000	NA5910	
		72	40	0.6	58	0.5	74 000	139 000	17 000	4 700	7 000	NA6910R	
		72	25	0.6	60	1.5	41 000	85 000	10 400	4 300	6 500	NK60/25R+IR55 $ imes$ 60 $ imes$ 25	
	55	72	35	0.6	60	2	57 000	130 000	15 800	4 300	6 500	NK60/35R $+$ IR55 $ imes$ 60 $ imes$ 35	
		80	25	1	63	1.5	58 500	99 500	12 100	4 300	6 500	NA4911R	

1)	Smalles	t all	owable	dimension	for	chamfer	dimension r .	

²⁾ Allowable axial movement amount of the inner ring with respect to the outer ring. 3) Largest allowable dimension for fillet radius $\it r_a$ of housing and shaft.

Instal di	Mass		
	mm		kg
$d_{ m a}$ Min.	$D_{ m a}$ Max.	<i>r</i> _{as} 3) Max.	(approx.)
36	48	0.6	0.241
36	48	0.6	0.286
37	48	0.3	0.130
37	48	0.3	0.193
39	51	0.6	0.171
39	51	0.6	0.256
39	51	0.6	0.310
40	51	0.3	0.134
40	51	0.3	0.207
42	53	0.3	0.143
42	53	0.3	0.216
44	58	0.6	0.232
44	58	0.348	
44	58	0.6	0.426
44	55	0.3	0.148
44	55	0.3	0.222
48	58	0.6	0.229
48	58	0.6	0.322
49	64	0.6	0.270
49	64	0.6	0.396
49	64	0.6	0.437
53	64	0.6	0.271
53	64	0.6	0.379
54	68	0.6	0.276
54	68	0.6	0.498
54	68	0.6	0.529
58	68	0.6	0.271
58	68	0.6	0.379
60	75	1	0.396

Note: The number of inner rings (IR) is composed of the IR inner diameter dimension \times outer diameter dimension \times width dimension.

NTN

Needle Roller Bearings

Machined-ring needle roller bearings

with an inner ring

NA49 type NA59 type NA69 type NK+IR type

NA49 · · R type NA59 type NK··R+IR type

d 55 \sim 85mm

		Bound	dary	dimens	ions		Basic load	rating	Fatigue load	Allowabl	e speed	Number
			m	ım			dynamic	static	limit	mir)-1	
		_	~	1\	_	2)	N	~	N	Grease	Oil	
	d	D	C	$r_{\rm s min}^{\scriptscriptstyle 1)}$	F	S ²⁾	$C_{ m r}$	$C_{0\mathrm{r}}$	C_{u}	lubrication		
	55	80	34	1	63	1.5	76 500	140 000	17 100	4 300	6 500	NA5911
	-	80	45	1	63	1.5	94 000	183 000	22 300	4 300	6 500	NA6911R
		82	25	1	68	1	44 500	89 000	10 800	4 000	6 000	NK68/25R+IR60×68×25
		82	35	0.6	68	1	63 000	139 000	17 000	4 000	6 000	NK68/35R+IR60×68×35
	60	85	25	1	68	1.5	61 500	108 000	13 100	4 000	6 000	NA4912R
		85	34	1	68	1.5	80 500	153 000	18 600	4 000	6 000	NA5912
		85	45	1	68	1.5	95 500	191 000	23 200	4 000	6 000	NA6912R
		90	25	0.6	73	1	54 000	100 000	12 200	3 700	5 500	NK73/25R+IR65×73×25
		90	25	1	72	1.5	62 500	112 000	13 700	3 700	5 500	NA4913R
	65	90	34	1	72	1.5	84 000	165 000	20 100	3 700	5 500	NA5913
		90	35	0.6	73	1	76 500	156 000	19 100	3 700	5 500	NK73/35R+IR65×73×35
		90	45	1	72	1.5	97 000	198 000	24 200	3 700	5 500	NA6913R
		95	25	1	80	0.8	57 000	119 000	14 500	3 300	5 000	NK80/25R+IR70×80×25
		95	35	1	80	8.0	79 500	184 000	22 400	3 300	5 000	NK80/35R+IR70×80×35
	70	100	30	1	80	1.5	85 500	156 000	19 000	3 300	5 000	NA4914R
		100	40	1	80	1.5	103 000	187 000	22 800	3 300	5 000	NA5914
		100	54	1	80	1	130 000	267 000	32 500	3 300	5 000	NA6914R
		105	25	1	85	1	70 500	123 000	15 000	3 100	4 700	NK85/25R+IR75×85×25
		105	30	1	85	1.5	87 000	162 000	19 700	3 100	4 700	NA4915R
	75	105	35	1	85	1	100 000	193 000	23 600	3 100	4 700	NK85/35R+IR75×85×35
		105	40	1	85	1.5	109 000	205 000	25 000	3 100	4 700	NA5915
		105	54	1	85	1	132 000	277 000	34 000	3 100	4 700	NA6915R
		110	25	1	90	1	71 500	128 000	15 600	2 900	4 400	NK90/25R+IR80×90×25
		110	30	1	90	1.5	90 500	174 000	21 200	2 900	4 400	NA4916R
	80	110	35	1	90	1	104 000	208 000	25 400	2 900	4 400	NK90/35R+IR80×90×35
		110	40	1	90	1.5	115 000	223 000	27 200	2 900	4 400	NA5916
		110	54	1	90	1.5	138 000	298 000	36 500	2 900	4 400	NA6916R
		115	26	1	95	1.5	74 500	137 000	16 600	2 800	4 200	NK95/26R+IR85×95×26
	85	115	36	1	95	1.5	108 000	223 000	27 000	2 800	4 200	NK95/36R+IR85×95×36

1) Smallest	allowable	dimension	for chamfe	er dimension r

Smallest allowable dimension for channel dimensions.
 Allowable axial movement amount of the inner ring with respect to the outer ring.
 Largest allowable dimension for fillet radius r_h of housing and shaft.

	s
-	

Instal	Mass		
d_{a}	${f mension} \ {f mm} \ {f D_a}$	$r_{ m as}$ 3)	kg
Min.	Max.	Max.	(approx.)
60	75	1	0.559
60	75	1	0.726
65	77	0.6	0.393
64	78	0.6	0.551
65	80	1	0.427
65	80	1	0.614
65	80	1	0.758
69	86	0.6	0.466
70	85	1	0.454
70	85	1	0.655
69	86	0.6	0.660
70	85	1	0.779
75	90	1	0.525
75	90	1	0.738
75	95	1	0.727
75	95	1	1.06
75	95	1	1.34
80	100	1	0.642
80	100	1	0.776
80	100	1	0.853
80	100	1	1.13
80	100	1	1.45
85	105	1	0.680
85	105	1	0.820
85	105	1	0.959
85	105	1	1.15
85	105	1	1.53
90	110	1	0.644
90	110	1	1.05

Note: The number of inner rings (IR) is composed of the IR inner diameter dimension \times outer diameter dimension \times width dimension.

NTN

Needle Roller Bearings

NTN

Machined-ring needle roller bearings

with an inner ring

NA48 type NA49 type NA59 type NA69 type NK+IR type

NA49 · · R type NA59 type NK··R+IR type

d 85 ∼ 130mm

	Bound	lary o	dimer	nsions		Basic load	l rating	Fatigue Ioad	Allowabl	e speed	Number
		m	m			dynamic	static	limit	_ mir		
d	D	C	$r_{ m s~min}^{1}$) F	S ²⁾	$C_{ m r}$ N	C_{0r}	C_{11}	Grease lubrication	Oil Jubrication	
a	120	35	1.1	100	1	112 000	237 000	28 400	2 700	4 000	NA4917R
85	120	46	1.1	100	1.5	137 000	290 000	34 500	2 700	4 000	NA5917
	120	63	1.1	100	1	169 000	400 000	48 000	2 700	4 000	NA6917R
	120	26	1	100	1.5	73 500	137 000	16 400	2 700	4 000	NK100/26R+IR90×100×26
	120	36	1	100	1.5	107 000	223 000	26 700	2 700	4 000	NK100/36R+IR90×100×36
90	125	35	1.1	105	1	116 000	252 000	29 800	2 500	3 800	NA4918R
	125	46	1.1	105	1	143 000	310 000	37 000	2 500	3 800	NA5918
	125	63	1.1	105	1	175 000	425 000	50 500	2 500	3 800	NA6918R
	125	26	1	105	1.5	76 500	147 000	17 300	2 500	3 800	NK105/26R+IR95×105×26
	125	36	1	105	1.5	111 000	238 000	28 100	2 500	3 800	NK105/36R+IR95×105×36
95	130	35	1.1	110	1	118 000	260 000	30 500	2 400	3 600	NA4919R
	130	46	1.1	110	1	149 000	335 000	39 000	2 400	3 600	NA5919
	130	63	1.1	110	1	177 000	440 000	51 000	2 400	3 600	NA6919R
	130	30	1.1	110	1.5	97 500	204 000	23 800	2 400	3 600	NK110/30R+IR100×110×30
100	130	40	1.1	110	2	129 000	292 000	34 000	2 400	3 600	\mid NK110/40R $+$ IR100 $ imes$ 110 $ imes$ 40
100	140	40	1.1	115	2	127 000	260 000	29 900	2 300	3 500	NA4920
	140	54	1.1	115	2	182 000	395 000	45 500	2 300	3 500	NA5920
	140	30	1	120	8.0	95 000	214 000	24 400	2 200	3 300	NA4822
110	140	40	1.1	120	_	114 000	271 000	31 000	2 200	3 300	NK120/40+IR110×120×40
110	150	40	1.1	125	2	131 000	279 000	31 500	2 100	3 200	NA4922
	150	54	1.1	125	2	193 000	440 000	49 500	2 100	3 200	NA5922
	150	30	1	130	8.0	101 000	237 000	26 400	2 100	3 100	NA4824
120	150	40	1.1	130	_	117 000	287 000	32 000	2 100	3 100	$ NK130/40+IR120\times130\times40 $
120	165	45	1.1	135	2	180 000	380 000	41 500	2 000	3 000	NA4924
	165	60	1.1	135	2	246 000	530 000	57 500	2 000	3 000	NA5924
	165	35	1.1	145	1	120 000	310 000	33 000	1 900	2 800	NA4826
	170	32	1.5	145	_	111 000	238 000	25 600	1 900	2 800	NK145/32+IR130 \times 145 \times 32
130		42	1.5	145	_	153 000	360 000	38 500	1 900	2 800	NK145/42+IR130×145×42
	180	50	1.5	150	1.5	202 000	455 000	48 000	1 800	2 700	NA4926
1) Cr-	180			150		296 000	690 000	73 000	1 800	2 700	NA5926

Smallest	allowable	dimension	for	chamfer	dimension	17	

²⁾ Allowable axial movement amount of the inner ring with respect to the outer ring. 3) Largest allowable dimension for fillet radius $\it r_a$ of housing and shaft.

	s
ت ا	J

	ation-re		Mass
	mm		kg
$d_{ m a}$ Min.	$D_{ m a}$ Max.	r _{as ³)} Max.	(approx.)
91.5 91.5	113.5	1	1.24 1.76
91.5	104		2.25
		1.1	
95	115	1	0.781
95	115	1	1.09
96.5	118.5	1	1.84
96.5	118.5	1	2.44
96.5	109	1.1	2.37
100	120	1	0.819
100	120	1	1.15
101.5	123.5	1	1.36
101.5	123.5	1	1.98
101.5	123.5	1	2.63
106.5	123.5	1	0.990
106.5	123.5	1	1.34
106.5	133.5	1	1.93
106.5	133.5	1	2.85
115	135	1	1.11
116.5	133.5	1	1.49
116.5	143.5	1	2.08
116.5	143.5	1	2.98
125	145	1	1.17
126.5	143.5	1	1.57
126.5	158.5	1	2.84
126.5	158.5	1	3.92
136.5	158.5	1	1.60
138	162.5	1.5	1.90
138	162.5	1.5	2.54
138	172	1.5	3.90
138	172	1.5	5.60
Note: Th	ne numb	er of inn	er rings (IR

	ne IR inner diameter dimension ×	

NTN

Needle Roller Bearings

NTN

Machined-ring needle roller bearings

with an inner ring

NA48 type NA49 type NA59 type NA69 type NK+IR type

NA69···R type

NA48 type NA49···R type, NA49 type NA59 type

NK···R+IR type, NK+IR type NKS+IR type (ϕd \geq 100mm)

d 140 ∼ 280mm

		Boun	dary	dimer	sions		Basic loa	ad rating	Fatigue load	Allowabl	e speed	Number
		mm			dynamic	ynamic static N		min-1				
	d	D	C	$r_{ m smin}^{1}$	F	S ²⁾	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{f u}$	Grease lubrication	Oil lubrication	
		175	35	1.1	155	1	121 000	315 000	33 500	1 700	2 600	NA4828
		180	32	1.5	155	_	114 000	252 000	26 500	1 700	2 600	NK155/32+IR140 \times 155 \times 32
	140	180	42	1.5	155	-	156 000	380 000	40 000	1 700	2 600	$ NK155/42 + IR140 \times 155 \times 42 $
		190	50	1.5	160	1.5	209 000	485 000	50 500	1 700	2 500	NA4928
		190	67	1.5	160	1.5	315 000	760 000	79 000	1 700	2 500	NA5928
		190	32	1.5	165	_	117 000	265 000	27 500	1 600	2 400	NK165/32+IR150×165×32
	450	190	40	1.1	165	1.5	152 000	390 000	40 500	1 600	2 400	NA4830
	150	190	42	1.5	165	-	160 000	400 000	41 000	1 600	2 400	NK165/42+IR150×165×42
		210	60	2	170	1.5	261 000	610 000	62 500	1 600	2 400	NA4930
	400	200	40	1.1	175	1.5	160 000	425 000	43 500	1 500	2 300	NA4832
	160	220	60	2	180	1.5	270 000	650 000	65 500	1 500	2 200	NA4932
	470	215	45	1.1	185	1.5	185 000	495 000	49 500	1 500	2 200	NA4834
	170	230	60	2	190	1.5	279 000	690 000	68 500	1 400	2 100	NA4934
	400	225	45	1.1	195	1.5	195 000	540 000	53 500	1 400	2 100	NA4836
	180	250	69	2	205	1.5	375 000	890 000	86 000	1 300	2 000	NA4936
ı	400	240	50	1.5	210	1.5	227 000	680 000	65 500	1 300	1 900	NA4838
	190	260	69	2	215	1.5	390 000	945 000	90 500	1 300	1 900	NA4938
		250	50	1.5	220	1.5	231 000	705 000	67 000	1 200	1 800	NA4840
	200	280	80	2.1	225	1.5	505 000	1 180 000	111 000	1 200	1 800	NA4940
		270	50	1.5	240	1.5	244 000	780 000	72 500	1 100	1 700	NA4844
	220	300	80	2.1	245	1.5	525 000	1 270 000	116 000	1 100	1 600	NA4944
	040	300	60	2	265	2	365 000	1 090 000	98 500	1 000	1 500	NA4848
	240	320	80	2.1	265	2	540 000	1 350 000	121 000	1 000	1 500	NA4948
ı	000	320	60	2	285	2	375 000	1 170 000	103 000	950	1 400	NA4852
	260	360	100	2.1	290	2	810 000	1 920 000	166 000	950	1 400	NA4952
	200	350	69	2	305	2.5	455 000	1 300 000	112 000	850	1 300	NA4856

r_a	
	$\downarrow \int_{\phi d_a}$
ϕD_a	

	ation-re		Mass
d_{a}	$\stackrel{mm}{D_{a}}$	$r_{ m as}$ 3)	kg
Min.	Max.	Max.	(approx.)
146.5	168.5	1	1.82
148	172	1.5	2.04
148	172	1.5	2.69
148	182	1.5	4.05
148	182	1.5	6.18
158	182	1.5	2.32
156.5	183.5	1	2.72
158	182	1.5	2.84
159	201	2	5.33
166.5	193.5	1	2.90
169	211	2	5.60
176.5	208.5	1	3.99
179	221	2	5.87
186.5	218.5	1	4.19
189	241	2	8.58
198	232	1.5	5.62
199	251	2	8.68
208	242	1.5	5.84
211	269	2	12.2
228	262	1.5	6.37
231	289	2	13.5
249	291	2	10.0
251	309	2	14.7
269	311	2	10.8
271	349	2	25.9
289	341	2	15.5
291	369	2	27.5

380 100 2.1 310 2.5 840 000 2 050 000 175 000

850 1 300 **NA4956**

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Allowable axial movement amount of the inner ring with respect to the outer ring. 3) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

Machined-ring needle roller bearings

with an inner ring

NA48 type NA49 type NA59 type NK+IR type

d 300 ∼ 440mm

	Boun	dary	dimen	sions		Basic loa	nd rating	Fatigue load	Allowab	le speed	Number
		m	m			dynamic	static	limit N	min-1 Grease Oil		
d	D	C	$r_{ m s~min}^{1)}$	F	S ²⁾	$C_{\rm r}$	$C_{0\mathrm{r}}$	$\overset{ ext{N}}{C_{ ext{u}}}$	lubrication		
300	380	80	2.1	330	2	625 000	1 770 000	149 000	800	1 200	NA4860
000	420	118	3	340	2	1 080 000	2 640 000	219 000	800	1 200	NA4960
320	400	80	2.1	350	2	640 000	1 850 000	153 000	750	1 100	NA4864
320	440	118	3	360	2	1 120 000	2 820 000	230 000	750	1 100	NA4964
340	420	80	2.1	370	2	655 000	1 940 000	158 000	750	1 100	NA4868
340	460	118	3	380	2	1 160 000	3 000 000	242 000	750	1 100	NA4968
360	440	80	2.1	390	2	665 000	2 020 000	162 000	650	1 000	NA4872
300	480	118	3	400	2	1 200 000	3 200 000	253 000	650	1 000	NA4972
380	480	100	2.1	415	2	1 000 000	2 840 000	223 000	650	950	NA4876
300	520	140	4	430	2	1 400 000	3 750 000	292 000	650	950	NA4976
400	540	140	4	450	2.5	1 450 000	4 000 000	305 000	600	900	NA4980
420	560	140	4	470	2.5	1 500 000	4 250 000	320 000	550	850	NA4984
440	600	160	4	490	2.5	1 750 000	4 600 000	340 000	550	800	NA4988

	lation-r mensio		Mass
d_a	$\begin{array}{c} mm \\ D_{a} \end{array}$	$r_{\rm as}$ 3)	kg
Min.	Max.	Max.	(approx.)
311	369	2	22.0
313	407	2.5	42.5
331	389	2	23.2
333	427	2.5	45.2
351	409	2	24.1
353	447	2.5	47.3
371	429	2	25.7
373	467	2.5	49.0
391	469	2	44.5
396	504	3	73.6
416	524	3	76.6
436	544	3	89.8
456	584	3	123

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) Allowable axial movement amount of the inner ring with respect to the outer ring. 3) Largest allowable dimension for fillet radius $r_{\rm a}$ of housing and shaft.

NTN

Needle Roller Bearings

and cage assembly)

NTN

Thrust cylindrical roller bearings

811 type 812 type 893 type

(Bearing)

(Bearing)

K811 type, K812 type (Thrust cylindrical roller and cage assembly)

			Bou	ındar	y dime	nsions				Basic lo	oad rating	Fatigue load	Allowable speed	
d	D	d_1	D_1	T	$D_{ m c1}^{ m 2)}$ E11	$D_{ m c}$ a13	D _w - 0.010	<i>B</i> 1	$r_{ m s~min^{1)}}$	dynamic $C_{ m a}$	N Static C_{0a}	limit N Cu	mi Grease lubrication	Oil
1	0 2	4 24	10	9	10	24	3.5	2.75	0.3	10 300	20 100	2 450	3 400	13 000
1:	2 2	6 26	12	9	12	26	3.5	2.75	0.3	10 900	22 300	2 720	3 000	12 000
1:	5 2	8 28	16	9	15	28	3.5	2.75	0.3	12 200	26 800	3 250	2 800	11 000
1	7 3	0 30	18	9	17	30	3.5	2.75	0.3	12 700	29 000	3 550	2 500	10 000
2	0 3	5 35	21	10	20	35	4.5	2.75	0.3	20 200	46 500	5 650	2 100	8 500
2	5 4	2 42	26	11	25	42	5	3	0.6	27 300	68 000	8 250	1 800	7 000
3	4 0 5 6	2 52	32	11 16 18		47 52 60	5 7.5 5.5	3 4.25 6.25	0.6 0.6 1	27 800 53 000 54 000	72 500 129 000 166 000	8 850 15 700 20 200	1 500 1 500 1 300	6 000 6 000 5 000
3	5	2 52 2 62	37 37	12 18 20	35	52 62 68	5 7.5 6	3.5 5.25 7	0.6 1	31 000 54 500 66 500	87 000 139 000 214 000	10 600 17 000 26 100	1 400 1 200 1 200	5 500 4 900 4 600
4	6 0 6 7	8 68	42	13 19 22	40	60 68 78	6 9 7	3.5 5 7.5	0.6 1 1	43 000 74 500 85 000	121 000 190 000 277 000	14 800 23 200 34 000	1 200 1 100 1 000	4 800 4 400 4 000
4	6 5 7 8	3 73	47	14 20 24	45	65 73 85	6 9 7.5	4 5.5 8.25	0.6 1 1	45 500 82 000 102 000	135 000 222 000 345 000	16 500 27 000 42 000	1 100 1 000 900	4 400 4 100 3 600
5	7 0 7 9	8 78	52	14 22 27		70 78 95	6 9 8	4 6.5 9.5	0.6 1 1.1	48 500 85 000 125 000	150 000 238 000 445 000	18 300 29 000 54 000	1 000 950 800	4 000 3 800 3 200
5	7 5 9	0 90	57	16 25 30	55 55 55	78 90 105	6 11 9	5 7 10.5	0.6 1 1.1	62 500 121 000 158 000	215 000 340 000 570 000	26 200 41 500 69 500	900 830 730	3 600 3 300 2 900
6	8 0 9 11	5 95	62	17 26 30	60	85 95 110	7.5 11 9	4.75 7.5 10.5	1 1 1.1	69 000 126 000 162 000	215 000 365 000 600 000	26 200 44 500 73 500	830 780 680	3 300 3 100 2 700

	Nun	nber		dime	orox. ension	Installation-related dimensions mm			Ma kg (ap 811 K811			GS811
Bearing	Thrust cylindrical roller and cage assembly	Inner ring	Outer ring	$E_{ m b}$	$E_{\rm a}$	$d_{ m a}$ Min.	$D_{ m b}$ Max.	$r_{ m as}$ Max.		K812 K893	WS812 WS893	GS812 GS893
81100T2	K81100T2	WS81100	GS81100	13.5	21.3	21	14	0.3	0.020	0.0035	0.0081	0.0081
81101T2	K81101T2	WS81101	GS81101	15.5	23.3	23	16	0.3	0.022	0.0040	0.0090	0.0090
81102T2	K81102T2	WS81102	GS81102	17.2	25	25	18	0.3	0.024	0.0060	0.0095	0.0090
81103T2	K81103T2	WS81103	GS81103	19.2	27	27	20	0.3	0.028	0.0080	0.010	0.010
81104T2	K81104T2	WS81104	GS81104	22.4	32.3	32	23	0.3	0.039	0.012	0.014	0.013
81105T2	K81105T2	WS81105	GS81105	27.6	38.7	39	28	0.6	0.059	0.018	0.021	0.020
81106T2	K81106T2	WS81106	GS81106	33.1	43.9	44	33	0.6	0.066	0.020	0.024	0.022
81206T2	K81206T2	WS81206	GS81206	32.8	49	48	33	0.6	0.141	0.050	0.047	0.044
89306	K89306	WS89306	GS89306	34	56.4	56	34	1	0.249	0.046	0.104	0.099
81107T2	K81107T2	WS81107	GS81107	38	48.9	49	38	0.6	0.085	0.024	0.032	0.029
81207T2 89307	K81207T2 K89307	WS81207 WS89307	GS81207 GS89307	39.8 40	56 64.4	56 64	41	1	0.230	0.065 0.064	0.085 0.147	0.080 0.140
					•			•				
81108T2 81208T2	K81108T2 K81208T2	WS81108 WS81208	GS81108 GS81208	43.2 43.7	56.4 62.9	56 63	44 44	0.6	0.118	0.035	0.043	0.040
89308	K89308	WS89308	GS89308	46	74.4	74	46	1	0.507	0.100	0.093	0.200
81109T2	K81109T2	WS81109	GS81109	48.4	61.6	61	49	0.6	0.144	0.040	0.054	0.050
81209T2	K81209T2	WS81209	GS81209	48.8	68	68	49	1	0.318	0.100	0.112	0.106
89309	K89309	WS89309	GS89309	50.9	81.3	81	51	1	0.660	0.140	0.264	0.255
81110T2	K81110T2	WS81110	GS81110	53.2	66.4	66	54	0.6	0.158	0.045	0.059	0.054
81210T2	K81210T2	WS81210	GS81210	53.7	73.1	73	54	1	0.384	0.105	0.144	0.135
89310	K89310	WS89310	GS89310	58	90.4	90	58	1	0.932	0.180	0.382	0.370
81111T2	K81111T2	WS81111	GS81111	57.8	75.2	75	58	0.6	0.242	0.060	0.094	0.087
81211T2	K81211T2	WS81211	GS81211	60.1	83.4	83	61	1	0.618	0.190	0.219	0.209
89311	K89311	WS89311	GS89311	63.9	100.3	100	64	1	1.26	0.240	0.518	0.503
81112T2	K81112T2	WS81112	GS81112	63.7	80.1	80	65	1	0.288	0.083	0.106	0.099
81212T2	K81212T2	WS81212	GS81212	64.9	88.4	88	66	1	0.690	0.200	0.251	0.240
89312	K89312	WS89312	GS89312	68.9	105.3	105	69	1	1.33	0.250	0.550	0.534

E-56 E-57

¹⁾ Smallest allowable dimension for chamfer dimension r. 2) The tolerance of bearings with suffix code T2 is E12.

Thrust cylindrical roller bearings

811 type 812 type 893 type

K811 type, K812 type (Thrust cylindrical roller and cage assembly)

			Bou	ndary	/ dimer	Basic lo	oad rating	Fatigue load	Allowable speed					
d	D	d_1	D_1		mm $D_{{f c1}^{2)}}$ E11	$D_{f c}$ a13	$D_{ m w}$ – 0.010	<i>B</i> h11	$r_{ m s~min^{1)}}$	dynamic $C_{ m a}$	N static $C_{0\mathrm{a}}$	limit N Cu	mir Grease Iubrication I	Oil
	90	90	67	18	65	90	7.5	5.25	1	73 000	236 000	28 800	780	3 100
65	100	100	67	27	65	100	11	8	1	130 000	385 000	47 000	730	2 900
	115	115	67	30	65	115	9	10.5	1.1	167 000	635 000	77 500	650	2 600
	95	95	72	18	70	95	7.5	5.25	1	76 500	257 000	31 500	730	2 900
70	105	105	72	27	70	105	11	8	1	134 000	410 000	50 000	680	2 700
	125	125	72	34	70	125	10	12	1.1	205 000	790 000	96 500	600	2 400
	100	100	77	19	75	100	7.5	5.75	1	78 000	268 000	32 500	680	2 700
75	110	110	77	27	75	110	11	8	1	138 000	435 000	53 000	650	2 600
	135	135	77	36	75	135	11	12.5	1.5	239 000	920 000	110 000	550	2 200
	105	105	82	19	80	105	7.5	5.75	1	79 500	279 000	34 000	650	2 600
80	115	115	82	28	80	115	11	8.5	1	143 000	460 000	56 000	630	2 500
	140	140	82	36	80	140	11	12.5	1.5	246 000	970 000	114 000	530	2 100
	110	110	87	19	85	110	7.5	5.75	1	83 000	300 000	36 500	630	2 500
85	125	125	88	31	85	125	12	9.5	1	169 000	550 000	66 500	580	2 300
	150	150	88	39	85	150	12	13.5	1.5	281 000	1 100 000	128 000	500	2 000
	120	120	92	22	90	120	9	6.5	1	112 000	395 000	47 500	580	2 300
90	135	135	93	35	90	135	14	10.5	1.1	213 000	680 000	80 000	530	2 100
	155	155	93	39	90	155	12	13.5	1.5	289 000	1 160 000	132 000	480	1 900
	135	135	102	25	100	135	11	7	1	158 000	555 000	65 000	500	2 000
100	150	150	103	38	100	150	15	11.5	1.1	243 000	795 000	91 000	480	1 900
	170	170	103	42	100	170	13	14.5	1.5	335 000	1 370 000	153 000	430	1 700
	145	145	112	25	110	145	11	7	1	165 000	605 000	68 500	480	1 900
110	160	160	113	38	110	160	15	11.5	1.1	258 000	885 000	98 500	450	1 800
	190	190	113	48	110	190	15	16.5	2	430 000	1 770 000	190 000	400	1 600
120	155	155	122	25	120	155	11	7	1	172 000	655 000	72 500	450	1 800
120	170	170	123	39	120	170	15	12	1.1	264 000	930 000	101 000	430	1 700
100	170	170	132	30	130	170	12	9	1	197 000	755 000	81 500	400	1 600
130	190	187	133	45	130	190	19	13	1.5	360 000	1 210 000	128 000	380	1 500

1) Smallest allowable dimension for chamfer dimension
2) The tolerance of bearings with suffix code T2 is E12.

	Nun	nber			rox. nsion		ation-r mensio				ass oprox.)	
Bearing	Thrust cylindrical roller and cage assembly	Inner ring	Outer ring	$E_{ m b}$	m $E_{ m a}$	$d_{ m a}$ Min.	$\begin{array}{c} \text{mm} \\ D_{\text{b}} \\ \text{Max.} \end{array}$	$r_{ m as}$ Max.	811	K811 K812 K893	WS811 WS812 WS893	GS811 GS812 GS893
81113T2	K81113T2	WS81113	GS81113	68.8	85.2	85	70	1	0.332	0.090	0.125	0.117
81213T2	K81213T2	WS81213	GS81213	69.9	93.3	93	71	1	0.772	0.215	0.285	0.272
89313	K89313	WS89313	GS89313	73.9	110.3	110	74	1	1.41	0.260	0.583	0.566
81114T2	K81114T2	WS81114	GS81114	73.7	90.1	90	74	1	0.355	0.097	0.134	0.124
81214T2	K81214T2	WS81214	GS81214	75	98.4	98	76	1	0.815	0.225	0.302	0.288
89314	K89314	WS89314	GS89314	79.8	120.2	120	80	1	1.91	0.340	0.793	0.772
81115T2	K81115T2	WS81115	GS81115	78.7	95.1	95	80	1	0.414	0.115	0.155	0.144
81215T2	K81215T2	WS81215	GS81215	80.1	103.7	103	81	1	0.864	0.240	0.319	0.304
89315	K89315	WS89315	GS89315	84.7	129.2	129	85	1.5	2.39	0.470	0.971	0.948
81116T2	K81116T2	WS81116	GS81116	83.7	100.1	100	85	1	0.435	0.119	0.164	0.152
81216T2	K81216T2	WS81216	GS81216	84.8	108.4	106	86	1	0.948	0.250	0.358	0.341
89316	K89316	WS89316	GS89316	89.8	134.2	134	90	1.5	2.50	0.490	1.02	0.992
81117T2	K81117T2	WS81117	GS81117	88.7	105.3	105	89	1	0.458	0.125	0.173	0.161
81217	K81217	WS81217	GS81217	92.2	116.9	116	92	1	1.25	0.300	0.492	0.462
89317	K89317	WS89317	GS89317	95.8	144.2	144	96	1.5	3.09	0.590	1.27	1.23
81118T2	K81118T2	WS81118	GS81118	94.7	114.3	114	95	1	0.660	0.170	0.252	0.238
81218J	K81218J	WS81218	GS81218	97.9	126.7	126	97	1	1.82	0.540	0.655	0.620
89318	K89318	WS89318	GS89318	100.8	149.2	149	101	1.5	3.23	0.620	1.33	1.28
81120T2	K81120T2	WS81120	GS81120	105.1	128.7	128	106	1	0.993	0.300	0.355	0.338
81220	K81220	WS81220	GS81220	109.2	140	139	109	1	2.35	0.620	0.886	0.843
89320	K89320	WS89320	GS89320	110.6	163	163	110	1.5	4.13	0.810	1.69	1.64
81122T2	K81122T2	WS81122	GS81122	115	138.8	138	116	1	1.08	0.325	0.385	0.366
81222	K81222	WS81222	GS81222	119.2	150	149	119	1	2.55	0.685	0.957	0.910
89322	K89322	WS89322	GS89322	122.5	183	183	122	2	5.96	1.15	2.44	2.37
81124T2	K81124T2	WS81124	GS81124	125	148.8	148	126	1	1.15	0.340	0.415	0.395
81224	K81224	WS81224	GS81224	129.2	160	159	129	1	2.82	0.730	1.07	1.02
81126	K81126	WS81126	GS81126	137.7	162.4	162	137	1	1.72	0.415	0.666	0.637
81226	K81226	WS81226	GS81226	140.1	179	178	140	1.5	4.06	1.14	1.45	1.48

E-58 E-59

811 type 812 type (Bearing)

K811 type, K812 type (Thrust cylindrical roller and cage assembly)

d 140 ∼ 160mm

			Bou	ndary	/ dime	nsions				Basic le	oad rating	Fatigue	Allowabl	e speed
d	D	d_1	$egin{array}{cccccccccccccccccccccccccccccccccccc$		dynamic $C_{ m a}$	N static C_{0a}	load limit $N \ C_{ m u}$	mir Grease lubrication	Oil					
140	180 200	178 197	142 143	31 46	140 140	180 200	12 19	9.5 13.5	1 1.5	206 000 370 000	815 000 1 280 000	86 000 133 000	380 350	1 500 1 400
150	190	188	152	31	150	190	12	9.5	1	214 000	870 000	90 500	350	1 400
160	200	198	162	31	160	200	12	9.5	1	221 000	930 000	95 000	330	1 300

	Nun	nber			rox. nsion		lation-r mensio				ass oprox.)	
Bearing	Thrust cylindrical roller and cage assembly	nd cage assembly		$E_{ m b}$	m $E_{ m a}$	$d_{ m a}$ Min.	$\begin{array}{c} \text{mm} \\ D_{\mathrm{b}} \\ \text{Max.} \end{array}$	$r_{ m as}$ Max.	811	K811 K812 K893	WS811 WS812 WS893	GS811 GS812 GS893
81128	K81128	WS81128	GS81128	147.8	172.5	172	147	1	1.87	0.450	0.708	0.717
81228	K81228	WS81228	GS81228	150.1	189	188	150	1.5	4.43	1.20	1.60	1.63
81130	K81130	WS81130	GS81130	157.7	182.4	182	157	1	1.98	0.470	0.752	0.761
81132	K81132	WS81132	GS81132	167.8	192.5	192	167	1	2.10	0.500	0.797	0.806

E-60 E-61

NTN

Needle Roller Bearings

NTN

Thrust needle roller bearings

AXK11 type AS11 type WS811 type GS811 type

AS type raceway (Washer)

WS type raceway (Inner ring)

					Bou	ndary	dimer	nsions				Basic load	d rating	Fatigue load
							mm					dynamic	static	limit
D _{c1} E11	$D_{ m c}$ c12	D _w		$D_{\mathrm{p}1}$ F12	S ²⁾		d_1	D	D_1	В	$r_{\rm s min^{1)}}$	$C_{\rm a}$ N	C_{0a}	C_{n}
10	24	-0.010					04	24	10	$2.75_{-0.060}^{0}$	0.3	9 150	25 300	3 100
			24	10	1	10	24		10					
12	26	2	26	12	1	12	26	26	12	2.75 _0.060	0.3	9 850	28 900	3 500
15	28	2	28	15	1	15	28	28	16	2.75 _0.060	0.3	11 300	36 000	4 400
17	30	2	30	17	1	17	30	30	18	$2.75_{-0.060}^{0}$	0.3	11 900	39 500	4 800
20	35	2	35	20	1	20	35	35	21	$2.75_{-0.060}^{0}$	0.3	13 200	46 500	5 650
25	42	2	42	25	1	25	42	42	26	3 -0.060	0.6	14 600	58 000	7 050
30	47	2	47	30	1	30	47	47	32	3 -0.060	0.6	16 300	69 500	8 500
35	52	2	52	35	1	35	52	52	37	$3.5 \substack{0 \\ -0.075}$	0.6	17 800	81 500	9 900
40	60	3	60	40	1	40	60	60	42	$3.5 \substack{0 \\ -0.075}$	0.6	27 400	110 000	13 500
45	65	3	65	45	1	45	65	65	47	4 -0.075	0.6	29 800	128 000	15 600
50	70	3	70	50	1	50	70	70	52	$4 - {0 \atop -0.075}$	0.6	31 500	143 000	17 400
55	78	3	78	55	1	55	78	78	57	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6	38 000	186 000	22 700
60	85	3	85	60	1	60	85	85	62	$4.75_{-0.075}^{0}$	1	44 500	234 000	28 600
65	90	3	90	65	1	65	90	90	67	$5.25_{-0.075}^{0}$	1	46 500	254 000	31 000
70	95	4	95	70	1	70	95	95	72	$5.25^{+0.075}_{-0.075}$	1	53 500	253 000	31 000
75	100	4	100	75	1	75	100	100	77	$5.75^{+0.075}_{-0.075}$	1	55 000	266 000	32 500
80	105	4	105	80	1	80	105	105	82	$5.75_{-0.075}^{0}$	1	56 500	279 000	34 000
85	110	4	110	85	1	85	110	110	87	$5.75_{-0.075}^{$	1	57 500	291 000	35 500
90	120	4	120	90	1	90	120	120	92	6.5 -0.090	1	70 500	390 000	46 500
100	135	4	135	100	1	100	135	135	102	7 -0.090	1	90 000	550 000	64 000
110	145	4	145	110	1	110	145	145	112	7 -0.090	1	93 500	590 000	67 000
120	155	4	155	120	1	120	155	155	122	7 -0.090	1	99 000	650 000	72 000
130	170	5	170	130	1	130	170	170	132	9 -0.090	1	140 000	900 000	97 000
140	180	5	180			140	178	180	142	9.5 -0.090	1	145 000	960 000	102 000
	.00	U	.00				.,,	.00		J.U -0.090	•	. 10 000	220 000	. 52 555

	Allowab	le speed		Nur	mber		App dime	rox.		Ma kg(app		
	Grease	in-1 Oil Iubrication	Thrust needle roller and cage assembly	Washer	Inner ring	Outer ring	m $E_{\rm b}$		AXK11	AS11	WS811 WS812 WS893	GS811 GS812 GS893
	3 500	14 000	AXK1100	AS1100	WS81100	GS81100	12.3	21.7	0.0028	0.0029	0.0081	0.0081
	3 300	13 000	AXK1101	AS1101	WS81101	GS81101	14.3	23.7	0.0030	0.0033	0.0090	0.0090
	2 800	11 000	AXK1102	AS1102	WS81102	GS81102	17.2	26.5	0.0035	0.0034	0.0095	0.0090
	2 500	10 000	AXK1103	AS1103	WS81103	GS81103	19.2	28.5	0.0040	0.0038	0.010	0.010
	2 100	8 500	AXK1104	AS1104	WS81104	GS81104	21.3	31.3	0.0050	0.0051	0.014	0.013
	1 800	7 000	AXK1105	AS1105	WS81105	GS81105	29.5	39.4	0.0070	0.0070	0.021	0.020
	1 500	6 000	AXK1106	AS1106	WS81106	GS81106	34.5	44.4	0.0080	0.0081	0.024	0.022
	1 400	5 500	AXK1107	AS1107	WS81107	GS81107	39.5	49.4	0.010	0.0091	0.032	0.029
	1 200	4 700	AXK1108	AS1108	WS81108	GS81108	44.2	56.2	0.019	0.012	0.043	0.040
	1 100	4 300	AXK1109	AS1109	WS81109	GS81109	50.5	62.4	0.021	0.014	0.054	0.050
	1 000	3 900	AXK1110	AS1110	WS81110	GS81110	55.5	67.4	0.024	0.015	0.059	0.054
	900	3 500	AXK1111	AS1111	WS81111	GS81111	61.0	74.9	0.031	0.019	0.094	0.087
	800	3 200	AXK1112	AS1112	WS81112	GS81112	66.0	81.9	0.039	0.022	0.106	0.099
	750	3 000	AXK1113	AS1113	WS81113	GS81113	71.0	86.9	0.040	0.024	0.125	0.117
	750	2 900	AXK1114	AS1114	WS81114	GS81114	75.5	91.4	0.060	0.025	0.134	0.124
	700	2 700	AXK1115	AS1115	WS81115	GS81115	80.5	96.4	0.061	0.027	0.155	0.144
	650	2 600	AXK1116	AS1116	WS81116	GS81116	84.4	100.3	0.063	0.029	0.164	0.152
	600	2 400	AXK1117	AS1117	WS81117	GS81117	90.5	106.4	0.067	0.030	0.173	0.161
	600	2 300	AXK1118	AS1118	WS81118	GS81118	96.5	116.4	0.086	0.039	0.252	0.238
	500	2 000	AXK1120	AS1120	WS81120	GS81120	107.5	131.4	0.112	0.051	0.355	0.338
·	480	1 900	AXK1122	AS1122	WS81122	GS81122	115.5	139.4	0.122	0.055	0.385	0.366
	430	1 700	AXK1124	AS1124	WS81124	GS81124	125.5	149.4	0.131	0.059	0.415	0.395
	400	1 600	AXK1126	AS1126	WS81126	GS81126	136.0	164.0	0.205	0.074	0.666	0.637
	380	1 500	AXK1128	AS1128	WS81128	GS81128	146.0	174.0	0.219	0.079	0.708	0.717

E-62 E-63

GS type raceway (Outer ring)

¹⁾ Smallest allowable dimension for chamfer dimension $\it r$. 2) The measured thrust load is 2.04 N or above.

AXK11 type AS11 type WS811 type GS811 type

AS type raceway (Washer)

WS type raceway (Inner ring)

$D_{ m c1}$	150 -	~ 160ı	mm
-------------	-------	--------	----

					Bou	ındary	dimer	sions				Basic lo	ad rating	Fatigue load
$D_{ m c1}$ E11	<i>D</i> _c c12	D _w	<i>D</i> _p e13	$D_{ m p1}$ E12	S ²	$r_{ m smin^{1)}}$	dynamic $C_{ m a}$	static N $C_{0\mathrm{a}}$	limit N C _u					
150	190	5	190	150	1	150	188	190	152	$9.5 \begin{array}{c} -0.090 \end{array}$	1	149 000	1 020 000	106 000
160	200	5	200	160	1	160	198	200	162	$9.5 \substack{0 \\ -0.090}$	1	154 000	1 070 000	110 000

GS type raceway (Outer ring)

Allowal	ble speed		Nur	mber		App			Ma kg(ap		
Grease	min-1 Thrust needle roller Grease Oil and Washer Inner ring Outer ring		$E_{ m b}$		AXK11	AS11	WS811 WS812 WS893	GS811 GS812 GS893			
350	1 400	AXK1130	AS1130	WS81130	GS81130	156.0	184.2	0.232	0.084	0.752	0.761
330	1 300	AXK1132	AS1132	WS81132	GS81132	166.0	194.2	0.246	0.089	0.797	0.806

1) Smallest allowable dimension for chamfer dimension $\it r$. 2) The measured thrust load is 2.04 N or above.

E-64 E-65

Applied hexagonal nut

1M3×0.5~1M8×1.25

1M10×1.25

1M12×1.5~1M18×1.5

1M20×1.5~1M30×1.5

metric series

KR··H type KR··XH type

KR··LLH type

KR··XLLH type

D 10 ∼ 90mm

D I	0	901111	111															
Outer dia.1)							Di	mensions								Basic loa	d rating	Fatigue load
mm D								mm								dynamic		limit
0 -0.05		d_1	C	F	B	B_1	B_2	G	G_1	B_3	C_1	n	a	e	h	$C_{ m r}$	$C_{0\mathrm{r}}$	C_{u}
10	3	0 -0.010	7	4	8	17	9	M3×0.5	5	_	0.5	_	_	7	2.5	1 640	1 270	155
12	4	0 -0.012	8	4.8	9	20	11	M4×0.7	6	_	0.5	_	-	8.5	2.5	2 170	1 690	206
13	5	0 -0.012	9	5.75	10	23	13	M5×0.8	7.5	_	0.5	_	_	9.5	3	2 650	2 260	276
16	6	0 -0.012	11	8	12	28	16	M6×1	8	_	0.6	_	-	12	3	4 050	4 200	510
19	8	0 -0.015	11	10	12	32	20	M8×1.25	10	_	0.6	_	-	14	4	4 750	5 400	660
22	10	0 -0.015	12	12	13	36	23	M10×1.25	12	_	0.6	4	-	17	4	5 300	6 650	810
26	10	0 -0.015	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	4	5 300	6 650	810
30	12	0 -0.018	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	7 850	9 650	1 180
32	12	-0.018	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	7 850	9 650	1 180
35	16	0 -0.018	18	18	19.5	52	32.5	M16×1.5	17	8	0.8	6	3	27	6	12 200	17 900	2 180
40	18	0 -0.018	20	22	21.5	58	36.5	M18×1.5	19	8	8.0	6	3	32	6	14 000	22 800	2 790
47	20	0 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	8	20 700	33 500	4 100
52	20	0 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	8.0	8	4	37	8	20 700	33 500	4 100
62	24	0 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	8	28 900	55 000	6 700
72	24	0 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	8.0	8	4	44	8	28 900	55 000	6 700
80	30	0 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	45 000	88 500	10 800
85	30	0 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	45 000	88 500	10 800
90	30	0 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	45 000	88 500	10 800

¹⁾ The tolerance of outer ring outer diameter D of KR··XH type and KR··XLLH type having a cylindrical outer diameter surface is JIS 0 class. E-66

Needle Roller Bearings

Grease nipple

number

NIP-B4

NIP-B6

NIP-B8

Accessories

Applied bearing number

10~19

22~26

30~40

47~90

Plug

number

SEN4

SEN3, SEN6

SEN4, SEN8

KR··LLH type (Seal type with cage)

		(Sear t	ype with o	cage)			Grease f	itting	Plug H	Hexagon	nut
	1	d capacity	mi	e speed ²⁾	Maximum tightening		ut seal		ı seal	Mass	Stud dia.
		Cylindrical outer ring		Oil lubrication	torque N · m	Spherical outer ring	Cylindrical outer ring	Spherical outer ring	Cylindrical outer ring	kg (approx.)	mm
5	60	1 360	*27 000	*40 000	0.5	KR10T2H/3AS	KR10XT2H/3AS	KR10T2LLH/3AS	KR10XT2LLH/3AS	0.005	3
7:	25	1 790	*25 000	*36 000	1	KR12T2H/3AS	KR12XT2H/3AS	KR12T2LLH/3AS	KR12XT2LLH/3AS	0.008	4
8	05	2 220	*23 000	*33 000	2	KR13T2H/3AS	KR13XT2H/3AS	KR13T2LLH/3AS	KR13XT2LLH/3AS	0.010	5
1 0	80	3 400	*19 000	*25 000	3	KR16FDOH/L588	KR16FXDOH/L588	KR16FLLDOH/L588	KR16FXLLDOH/L588	0.019	6
1 3	80	4 050	*15 000	*20 000	8	KR19FDOH/L588	KR19FXDOH/L588	KR19FLLDOH/L588	KR19FXLLDOH/L588	0.031	8
1 6	90	5 150	*12 000	*16 000	14	KR22FH	KR22FXH	KR22FLLH/3AS	KR22FXLLH/3AS	0.046	10
2 1	20	6 100	*12 000	*16 000	14	KR26FH	KR26FXH	KR26FLLH/3AS	KR26FXLLH/3AS	0.059	10
2 6	20	7 700	10 000	*13 000	20	КВЗОН	KR30XH	KR30LLH/3AS	KR30XLLH/3AS	0.087	12
28	60	8 200	10 000	*13 000	20	KR32H	KR32XH	KR32LLH/3AS	KR32XLLH/3AS	0.097	12
3 2	00	11 900	8 000	*11 000	52	KR35H	KR35XH	KR35LLH/3AS	KR35XLLH/3AS	0.169	16
3 8	50	14 500	7 000	9 000	76	KR40H	KR40XH	KR40LLH/3AS	KR40XLLH/3AS	0.248	18
4 7	00	21 000	6 000	8 000	98	KR47H	KR47XH	KR47LLH/3AS	KR47XLLH/3AS	0.386	20
5 5	50	23 300	6 000	8 000	98	KR52H	KR52XH	KR52LLH/3AS	KR52XLLH/3AS	0.461	20
6 9	50	34 500	5 000	6 500	178	KR62H	KR62XH	KR62LLH/3AS	KR62XLLH/3AS	0.790	24
8 0	50	38 500	5 000	6 500	178	KR72H	KR72XH	KR72LLH/3AS	KR72XLLH/3AS	1.04	24
9 8	00	53 000	4 000	5 500	360	KR80H	KR80XH	KR80LLH/3AS	KR80XLLH/3AS	1.55	30
10 4	00	56 000	4 000	5 500	360	KR85H	KR85XH	KR85LLH/3AS	KR85XLLH/3AS	1.74	30
11 4	00	59 000	4 000	5 500	360	KR90H	KR90XH	KR90LLH/3AS	KR90XLLH/3AS	1.95	30

²⁾ The allowable speed of KR··LLH type and KR··XLLH type with a "*" mark seal is about 10 000 min⁻¹.

3) Bearings having T2 after the bearing number have a plastic cage, and the allowable temperature is 120°C and 100°C or below for continuous use.

KR type KR∵X type

KR··LL type KR··XLL type

D 16 ~ 90mm

D 16 ~ 90mm														0-7		
Outer dia. ¹⁾ mm D							ensions mm							Basic loa		Fatigue load limit N
0 -0.05	d_1	C	F	B	B_1	B_2	G	G_1	B_3	C_1	n	a	e	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$
16	6 -0.012	11	8	12	28	16	M6×1	8	_	0.6	4 ²⁾	_	12	4 050	4 200	510
19	8 -0.015	11	10	12	32	20	M8×1.25	10	_	0.6	4 ²⁾	_	14	4 750	5 400	660
22	10 $^{0}_{-0.015}$	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	5 300	6 650	810
26	10 -0.015	12	12	13	36	23	M10×1.25	12	-	0.6	4	_	17	5 300	6 650	810
30	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	7 850	9 650	1 180
32	12 -0.018	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	7 850	9 650	1 180
35	16 -0.018	18	18	19.5	52	32.5	M16×1.5	17	8	0.8	6	3	27	12 200	17 900	2 180
40	18 -0.018	20	22	21.5	58	36.5	M18×1.5	19	8	0.8	6	3	32	14 000	22 800	2 780
47	20 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	20 700	33 500	4 100
52	20 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	20 700	33 500	4 100
62	$24 \ _{-0.021}^{0}$	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	28 900	55 000	6 700
72	24 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	28 900	55 000	6 700
80	30 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	45 000	88 500	10 800
85	30 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	45 000	88 500	10 800
90	30 -0 021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	45 000	88 500	10 800

Needle Roller Bearings

Accessories

Applied bearing number	Grease nipple number	Plug number	Applied hexagonal nut
16~26	NIP-B4	SEN4	1M 6×1 ~1M10×1.25
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5

KR··LL type (Seal type with cage)

Grease fitting

Plug

Hexagon nut

	(Scar c	ype with c	uge)							
Spherical	d capacity N Cylindrical outer ring	mi Grease	•	Maximum tightening torque N · m	Spherical	•	Number Wi I Spherical outer ring	th seal Cylindrical outer ring	Mass kg (approx.)	Stud dia. mm
1 080	3 400	*19 000	*25 000	3	KR16F	KR16FX	KR16FLL/3AS	KR16FXLL/3AS	0.019	6
1 380	4 050	*15 000	*20 000	8	KR19F	KR19FX	KR19FLL/3AS	KR19FXLL/3AS	0.031	8
1 690	5 150	*12 000	*16 000	14	KR22F	KR22FX	KR22FLL/3AS	KR22FXLL/3AS	0.046	10
2 120	6 100	*12 000	*16 000	14	KR26F	KR26FX	KR26FLL/3AS	KR26FXLL/3AS	0.059	10
2 620	7 700	10 000	*13 000	20	KR30	KR30X	KR30LL/3AS	KR30XLL/3AS	0.087	12
2 860	8 200	10 000	*13 000	20	KR32	KR32X	KR32LL/3AS	KR32XLL/3AS	0.097	12
3 200	11 900	8 000	*11 000	52	KR35	KR35X	KR35LL/3AS	KR35XLL/3AS	0.169	16
3 850	14 500	7 000	9 000	76	KR40	KR40X	KR40LL/3AS	KR40XLL/3AS	0.248	18
4 700	21 000	6 000	8 000	98	KR47	KR47X	KR47LL/3AS	KR47XLL/3AS	0.386	20
5 550	23 300	6 000	8 000	98	KR52	KR52X	KR52LL/3AS	KR52XLL/3AS	0.461	20
6 950	34 500	5 000	6 500	178	KR62	KR62X	KR62LL/3AS	KR62XLL/3AS	0.790	24
8 050	38 500	5 000	6 500	178	KR72	KR72X	KR72LL/3AS	KR72XLL/3AS	1.04	24
9 800	53 000	4 000	5 500	360	KR80	KR80X	KR80LL/3AS	KR80XLL/3AS	1.55	30
10 400	56 000	4 000	5 500	360	KR85	KR85X	KR85LL/3AS	KR85XLL/3AS	1.74	30
11 400	59 000	4 000	5 500	360	KR90	KR90X	KR90LL/3AS	KR90XLL/3AS	1.95	30

¹⁾ The tolerance of outer ring outer diameter *D* of KR··X type and KR··XLL type having a cylindrical outer diameter surface is JIS 0 class.

²⁾ A grease filler hole is provided only on the front surface (left side in the above drawing).

³⁾ The allowable speed of KR··LL type and KR··XLL type with a "*" mark seal is about 10 000 min⁻¹.

metric series

KRV··H type KRV··XH type

KRV · · LLH type KRV…XLLH type

D 10) ~ 90mm														,		
Outer dia.1) mm						Di	mensions mm								dynamic	ad rating static	Fatigue load limit N
0 -0.05	d_1	C	F	B	B_1	B_2	G	G_1	B_3	C_1	n	a	e	h	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$
10	3 -0.010	, 7	4	8	17	9	M3×0.5	5	_	0.5	_	_	7	2.5	2 500	2 610	320
12	$4^{-0.012}$	8	4.8	9	20	11	M4×0.7	6	_	0.5	_	_	8.5	2.5	3 500	3 800	460
13	$5^{0}_{-0.012}$	9	5.75	10	23	13	M5×0.8	7.5	_	0.5	_	_	9.5	3	4 500	5 350	650
16	$6^{$	11	8	12	28	16	M6×1	8	_	0.6	_	-	12	3	6 500	9 350	1 140
19	8 ⁰ _{-0.015}	, 11	10	12	32	20	M8×1.25	10	_	0.6	_	_	14	4	7 450	11 700	1 430
22	10 -0.015	, 12	12	13	36	23	M10×1.25	12	_	0.6	4	-	17	4	8 200	14 000	1 700
26	10 -0.015	, 12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	4	8 200	14 000	1 700
30	12 -0.018	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	12 000	20 300	2 470
32	12 -0.018	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	6	12 000	20 300	2 470
35	16 -0.018	18	18	19.5	52	32.5	M16×1.5	17	8	8.0	6	3	27	6	17 600	34 000	4 150
40	18 -0.018	20	22	21.5	58	36.5	M18×1.5	19	8	8.0	6	3	32	6	19 400	42 000	5 100
47	20 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	8.0	8	4	37	8	28 800	61 000	7 450
52	$20 {}^{0}_{-0.021}$	24	25	25.5	66	40.5	M20×1.5	21	9	8.0	8	4	37	8	28 800	61 000	7 450
62	24 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	8	39 500	98 500	12 000
72	24 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	8	39 500	98 500	12 000
80	30 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	58 000	147 000	18 000
90	30 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	8	58 000	147 000	18 000

1) The tolerance of outer ring outer diameter D of KRV··XH type and KRV··XLLH type having a cylindrical outer diameter surface is JIS 0 class.

Needle Roller Bearings

KRV··LLH type (Full complement roller sealed type)

Accessories

Applied bearing number	Grease nipple number	Plug number	Applied hexagonal nut
10~19	_	_	1M3×0.5~1M8×1.25
22~26	NIP-B4	SEN4	1M10×1.25
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5

Grease fitting

Plug

Hexagon nut

		•		-			Grease	IIIIII S	riug i	iexagon	nat
	Spherical	d capacity N Cylindrical outer ring	mi Grease	e speed 2) n-1 Oil lubrication	Maximum tightening torque N · m	Witho Spherical outer ring	ut seal Cylindrical		n seal Cylindrical outer ring	kg (approx.)	Stud dia. mm
	560	1 360	*25 000	*32 000	0.5	KRV10H/3AS	KRV10XH/3AS	KRV10LLH/3AS	KRV10XLLH/3AS	0.005	3
	725	1 790	*20 000	*27 000	1	KRV12H/3AS	KRV12XH/3AS	KRV12LLH/3AS	KRV12XLLH/3AS	0.008	4
	805	2 220	*17 000	*22 000	2	KRV13H/3AS	KRV13XH/3AS	KRV13LLH/3AS	KRV13XLLH/3AS	0.011	5
	1 080	3 400	*13 000	*16 000	3	KRV16FDOH/L588	KRV16FXDOH/L588	KRV16FLLDOH/L588	KRV16FXLLDOH/L588	0.020	6
Ī	1 380	4 050	10 000	*13 000	8	KRV19FDOH/L588	KRV19FXDOH/L588	KRV19FLLDOH/L588	KRV19FXLLDOH/L588	0.032	8
	1 690	5 150	8 500	*11 000	14	KRV22FH/3AS	KRV22FXH/3AS	KRV22FLLH/3AS	KRV22FXLLH/3AS	0.047	10
Ī	2 120	6 100	8 500	*11 000	14	KRV26FH/3AS	KRV26FXH/3AS	KRV26FLLH/3AS	KRV26FXLLH/3AS	0.061	10
	2 620	7 700	6 500	8 500	20	KRV30H/3AS	KRV30XH/3AS	KRV30LLH/3AS	KRV30XLLH/3AS	0.089	12
Ī	2 860	8 200	6 500	8 500	20	KRV32H/3AS	KRV32XH/3AS	KRV32LLH/3AS	KRV32XLLH/3AS	0.100	12
	3 200	11 900	5 500	7 000	52	KRV35H/3AS	KRV35XH/3AS	KRV35LLH/3AS	KRV35XLLH/3AS	0.172	16
	3 850	14 500	4 500	6 000	76	KRV40H/3AS	KRV40XH/3AS	KRV40LLH/3AS	KRV40XLLH/3AS	0.252	18
	4 700	21 000	4 000	5 000	98	KRV47H/3AS	KRV47XH/3AS	KRV47LLH/3AS	KRV47XLLH/3AS	0.392	20
Ī	5 550	23 300	4 000	5 000	98	KRV52H/3AS	KRV52XH/3AS	KRV52LLH/3AS	KRV52XLLH/3AS	0.465	20
	6 950	34 500	3 300	4 500	178	KRV62H/3AS	KRV62XH/3AS	KRV62LLH/3AS	KRV62XLLH/3AS	0.800	24
ĺ	8 050	38 500	3 300	4 500	178	KRV72H/3AS	KRV72XH/3AS	KRV72LLH/3AS	KRV72XLLH/3AS	1.05	24
	9 800	53 000	2 600	3 500	360	KRV80H/3AS	KRV80XH/3AS	KRV80LLH/3AS	KRV80XLLH/3AS	1.56	30
	11 400	59 000	2 600	3 500	360	KRV90H/3AS	KRV90XH/3AS	KRV90LLH/3AS	KRV90XLLH/3AS	1.97	30

²⁾ The allowable speed of KRV·LLH type and KRV·XLLH type with a "*" mark seal is about 10 000 min⁻¹.

E-70 E-71 metric series

KRV type KRV · · X type KRV · · LL type KRV · · XLL type

(Full complement roller type)

$D = 16 \sim 90 \text{mm}$

D 10	5~ 90III	111														
Outer dia.1) mm							ensions mm							dynamic	ad rating static	Fatigue load limit
0 -0.05	d_1	C	F	B	B_1	B_2	G	G_1	B_3	C_1	n	a	e	$C_{ m r}$	C_{0r}	$C_{ m u}$
16	$6 {}^{0}_{-0.012}$	11	8	12	28	16	M6×1	8	_	0.6	4 ²⁾	_	12	6 500	9 350	1 140
19	8 -0.015	11	10	12	32	20	M8×1.25	10	_	0.6	4 ²⁾	-	14	7 450	11 700	1 430
22	10 -0.015	12	12	13	36	23	M10×1.25	12	_	0.6	4	_	17	8 200	14 000	1 700
26	10 -0.015	12	12	13	36	23	M10×1.25	12	_	0.6	4	-	17	8 200	14 000	1 700
30	12 -0.018	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	12 000	20 300	2 470
32	12 -0.018	14	15	15	40	25	M12×1.5	13	6	0.6	6	3	23	12 000	20 300	2 470
35	16 -0.018	18	18	19.5	52	32.5	M16×1.5	17	8	8.0	6	3	27	17 600	34 000	4 150
40	18 -0.018	20	22	21.5	58	36.5	M18×1.5	19	8	0.8	6	3	32	19 400	42 000	5 100
47	20 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	8.0	8	4	37	28 800	61 000	7 450
52	20 -0.021	24	25	25.5	66	40.5	M20×1.5	21	9	0.8	8	4	37	28 800	61 000	7 450
62	24 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	39 500	98 500	12 000
72	24 -0.021	29	30	30.5	80	49.5	M24×1.5	25	11	0.8	8	4	44	39 500	98 500	12 000
80	30 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	58 000	147 000	18 000
90	30 -0.021	35	38	37	100	63	M30×1.5	32	15	1	8	4	53	58 000	147 000	18 000

Needle Roller Bearings

Accessories

Applied bearing number	Grease nipple number	Plug number	Applied hexagonal nut
16~26	NIP-B4	SEN4	1M 6×1 ~1M10×1.25
30~40	NIP-B6	SEN3, SEN6	1M12×1.5~1M18×1.5
47~90	NIP-B8	SEN4, SEN8	1M20×1.5~1M30×1.5

Grease fitting

Plug

Hexagon nut

		Allowable	•				umber		Mass	Stud
	N Cylindrical	mi Grease	n-1 Oil	tightening torque	Withou Spherical	ıt seal Cylindrical	With Spherical	seal Cylindrical	kg	dia. mm
-	•	lubrication	lubrication		outer ring	outer ring	outer ring	outer ring	(approx.)	
1 080	3 400	*13 000	*16 000	3	KRV16F/3AS	KRV16FX/3AS	KRV16FLL/3AS	KRV16FXLL/3AS	0.020	6
1 380	4 050	10 000	*13 000	8	KRV19F/3AS	KRV19FX/3AS	KRV19FLL/3AS	KRV19FXLL/3AS	0.032	8
1 690	5 150	8 500	*11 000	14	KRV22F/3AS	KRV22FX/3AS	KRV22FLL/3AS	KRV22FXLL/3AS	0.047	10
2 120	6 100	8 500	*11 000	14	KRV26F/3AS	KRV26FX/3AS	KRV26FLL/3AS	KRV26FXLL/3AS	0.061	10
2 620	7 700	6 500	8 500	20	KRV30/3AS	KRV30X/3AS	KRV30LL/3AS	KRV30XLL/3AS	0.089	12
2 860	8 200	6 500	8 500	20	KRV32/3AS	KRV32X/3AS	KRV32LL/3AS	KRV32XLL/3AS	0.100	12
3 200	11 900	5 500	7 000	52	KRV35/3AS	KRV35X/3AS	KRV35LL/3AS	KRV35XLL/3AS	0.172	16
3 850	14 500	4 500	6 000	76	KRV40/3AS	KRV40X/3AS	KRV40LL/3AS	KRV40XLL/3AS	0.252	18
4 700	21 000	4 000	5 000	98	KRV47/3AS	KRV47X/3AS	KRV47LL/3AS	KRV47XLL/3AS	0.390	20
5 550	23 300	4 000	5 000	98	KRV52/3AS	KRV52X/3AS	KRV52LL/3AS	KRV52XLL/3AS	0.465	20
6 950	34 500	3 300	4 500	178	KRV62/3AS	KRV62X/3AS	KRV62LL/3AS	KRV62XLL/3AS	0.800	24
8 050	38 500	3 300	4 500	178	KRV72/3AS	KRV72X/3AS	KRV72LL/3AS	KRV72XLL/3AS	1.05	24
9 800	53 000	2 600	3 500	360	KRV80/3AS	KRV80X/3AS	KRV80LL/3AS	KRV80XLL/3AS	1.56	30
11 400	59 000	2 600	3 500	360	KRV90/3AS	KRV90X/3AS	KRV90LL/3AS	KRV90XLL/3AS	1.97	30

¹⁾ The tolerance of outer ring outer diameter D of KRV··X type and KRV··XLL type having a cylindrical outer diameter surface is

²⁾ A grease filler hole is provided only on the front surface (left side in the above drawing).

metric series

KRT type KRT··X type KRT··LL type KRT··XLL type

$D = 16 \sim 90 \text{mm}$

D 16	\sim 90mr	n												
Outer dia.1) mm						Di	mensions mm					Basic loa	static	Fatigue load limit
D 0 -0.05	d_1	C	F	B	B_1	B_2	G	G_1	C_1	m	e	$C_{ m r}$	$C_{0{ m r}}$	$C_{ m u}$
16	$6_{-0.012}^{$	11	8	12	28	16	M6×1	8	0.6	M4×0.7 ²⁾	12	4 050	4 200	510
19	$8_{-0.015}^{0}$	11	10	12	32	20	M8×1.25	10	0.6	M4×0.7 ²⁾	14	4 750	5 400	660
22	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	5 300	6 650	810
26	$10_{-0.015}^{$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	5 300	6 650	810
30	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	7 850	9 650	1 180
32	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	7 850	9 650	1 180
35	$16_{-0.018}^{$	18	18	19.5	52	32.5	M16×1.5	17	8.0	Rc ½	27	12 200	17 900	2 180
40	$18_{-0.018}^{$	20	22	21.5	58	36.5	M18×1.5	19	8.0	Rc ½	32	14 000	22 800	2 785
47	$20{}^{0}_{0.021}$	24	25	25.5	66	40.5	M20×1.5	21	8.0	Rc ½	37	20 700	33 500	4 100
52	$20{}^{0}_{0.021}$	24	25	25.5	66	40.5	M20×1.5	21	8.0	Rc ½	37	20 700	33 500	4 100
62	24 - 0.021	29	30	30.5	80	49.5	M24×1.5	25	8.0	Rc ½	44	28 900	55 000	6 700
72	$24{}^{0}_{-0.021}$	29	30	30.5	80	49.5	M24×1.5	25	8.0	Rc ½	44	28 900	55 000	6 700
80	$30_{-0.021}^{$	35	38	37	100	63	M30×1.5	32	1	Rc ¹ / ₈	53	45 000	88 500	10 800
85	$30_{-0.021}^{$	35	38	37	100	63	M30×1.5	32	1	Rc ½	53	45 000	88 500	10 800
90	$30_{-0.021}^{$	35	38	37	100	63	M30×1.5	32	1	Rc 1/8	53	45 000	88 500	10 800

Needle Roller Bearings

Accessor	ies				
Applied Number	Grease nipple number	Number of h socket screw	-		hexagonal nut lumber
16~26	NIP-X30	M4×0.7 >	<4 l	1M 6×1	~1M10×1.2
30~32	JIS 1 type (A-M6F)	M6×0.75 ×	6 l	1M12×1.	5
35~90	JIS 2 type (A-PT ¹ / ₈)	R ¹ /8 (PT ¹ /8) ×	<7 l	1M16×1.	5 ~ 1M30×1.5

(Seal type with cage)

Grease fitting Grease fitting

Hex socket

Hexagon nut

		7 1.				Ü		screw plug		
	d capacity	Allowabl mi	e speed 3) n-1	Maximum tightening	Witho	out seal	Number With	n seal	Mass	Stud dia.
	Cylindrical outer ring		Oil lubrication	torque N · m		•	Spherical outer ring	•	kg (approx.)	mm
1 080	3 400	*19 000	*25 000	3	KRT16	KRT16X	KRT16LL/3AS	KRT16XLL/3AS	0.019	6
1 380	4 050	*15 000	*20 000	8	KRT19	KRT19X	KRT19LL/3AS	KRT19XLL/3AS	0.031	8
1 690	5 150	*12 000	*16 000	14	KRT22	KRT22X	KRT22LL/3AS	KRT22XLL/3AS	0.046	10
2 120	6 100	*12 000	*16 000	14	KRT26	KRT26X	KRT26LL/3AS	KRT26XLL/3AS	0.059	10
2 620	7 700	10 000	*13 000	20	KRT30	KRT30X	KRT30LL/3AS	KRT30XLL/3AS	0.087	12
2 860	8 200	10 000	*13 000	20	KRT32	KRT32X	KRT32LL/3AS	KRT32XLL/3AS	0.097	12
3 200	11 900	8 000	*11 000	52	KRT35	KRT35X	KRT35LL/3AS	KRT35XLL/3AS	0.169	16
3 850	14 500	7 000	9 000	76	KRT40	KRT40X	KRT40LL/3AS	KRT40XLL/3AS	0.248	18
4 700	21 000	6 000	8 000	98	KRT47	KRT47X	KRT47LL/3AS	KRT47XLL/3AS	0.386	20
5 550	23 300	6 000	8 000	98	KRT52	KRT52X	KRT52LL/3AS	KRT52XLL/3AS	0.461	20
6 950	34 500	5 000	6 500	178	KRT62	KRT62X	KRT62LL/3AS	KRT62XLL/3AS	0.790	24
8 050	38 500	5 000	6 500	178	KRT72	KRT72X	KRT72LL/3AS	KRT72XLL/3AS	1.04	24
9 800	53 000	4 000	5 500	360	KRT80	KRT80X	KRT80LL/3AS	KRT80XLL/3AS	1.55	30
10 400	56 000	4 000	5 500	360	KRT85	KRT85X	KRT85LL/3AS	KRT85XLL/3AS	1.74	30
11 400	59 000	4 000	5 500	360	KRT90	KRT90X	KRT90LL/3AS	KRT90XLL/3AS	1.95	30

¹⁾ The tolerance of outer ring outer diameter D of KRT·X type and KRT·XLL type having a cylindrical outer diameter surface is JIS 0 class.

2) A tapped hole is provided only on the front surface (left side in the above drawing).

³⁾ The allowable speed of KRT··LL type and KRT··XLL type with a "*" mark seal is about 10 000 min⁻¹.

KRVT type

KRVT··X type KRVT··LL type KRVT · · XLL type

(Full complement roller type)

 $D = 16 \sim 90 \text{mm}$

D 16	\sim 90mn	n												
Outer dia. $^{\scriptscriptstyle (1)}$ mm D							ensions mm					dynamic	ad rating static	Fatigue load limit N
0 -0.05	d_1	C	F	B	B_1	B_2	G	G_1	C_1	m	e	$C_{ m r}$	C_{0r}	$C_{ m u}$
16	$6 {}^{0}_{-0.012}$	11	8	12	28	16	M6×1	8	0.6	$M4 \times 0.7^{2)}$	12	6 500	9 350	1 140
19	$8_{-0.015}^{$	11	10	12	32	20	M8×1.25	10	0.6	M4×0.7 ²⁾	14	7 450	11 700	1 430
22	$10 {}^{0}_{-0.015}$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	8 200	14 000	1 700
26	$10 {}^{0}_{-0.015}$	12	12	13	36	23	M10×1.25	12	0.6	M4×0.7	17	8 200	14 000	1 700
30	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	12 000	20 300	2 470
32	$12_{-0.018}^{$	14	15	15	40	25	M12×1.5	13	0.6	M6×0.75	23	12 000	20 300	2 470
35	$16 {}^{0}_{-0.018}$	18	18	19.5	52	32.5	M16×1.5	17	0.8	Rc ¹ / ₈	27	17 600	34 000	4 150
40	$18 {}^{0}_{-0.018}$	20	22	21.5	58	36.5	M18×1.5	19	0.8	Rc ¹ / ₈	32	19 400	42 000	5 100
47	$20\ _{-0.021}^{0}$	24	25	25.5	66	40.5	M20×1.5	21	0.8	Rc ½	37	28 800	61 000	7 450
52	$20\ _{-0.021}^{00000000000000000000000000000000000$	24	25	25.5	66	40.5	M20×1.5	21	0.8	Rc ½	37	28 800	61 000	7 450
62	$24\ _{-0.021}^{0}$	29	30	30.5	80	49.5	M24×1.5	25	0.8	Rc ½	44	39 500	98 500	12 000
72	24 -0.021	29	30	30.5	80	49.5	M24×1.5	25	0.8	Rc ½	44	39 500	98 500	12 000
80	30 -0.021	35	38	37	100	63	M30×1.5	32	1	Rc ½	53	58 000	147 000	18 000
90	30 -0.021	35	38	37	100	63	M30×1.5	32	1	Rc ½	53	58 000	147 000	18 000

Needle Roller Bearings

KRVT··LL type (Full complement roller sealed type)

Accessories

	recessories									
	Applied Number	Grease nipple number	Number of hex socket screw plug	Applied hexagonal nu Number						
	16~26	NIP-X30	M4×0.7 ×4 £	1M 6×1 ~1M10×1.25						
	30~32	JIS 1 type (A-M6F)	M6×0.75 ×6 l	1M12×1.5						
	35~90	JIS 2 type (A-PT ¹ / ₈)	R ¹ / ₈ (PT ¹ / ₈) ×7 <i>l</i>	1M16×1.5~1M30×1.5						

Grease fitting

Grease fitting

screw plu

)	
et ug	Hexagon nut

									50.011 p.u8		
supusing				Maximum tightening	Witho	Number Without seal With seal					
		Cylindrical outer ring		Oil lubrication	torque	Spherical outer ring	Cylindrical outer ring		Cylindrical outer ring	kg (approx.)	mm
	1 080	3 400	*13 000	*16 000	3	KRVT16/3AS	KRVT16X/3AS	KRVT16LL/3AS	KRVT16XLL/3AS	0.020	6
	1 380	4 050	10 000	*13 000	8	KRVT19/3AS	KRVT19X/3AS	KRVT19LL/3AS	KRVT19XLL/3AS	0.032	8
	1 690	5 150	8 500	*11 000	14	KRVT22/3AS	KRVT22X/3AS	KRVT22LL/3AS	KRVT22XLL/3AS	0.047	10
	2 120	6 100	8 500	*11 000	14	KRVT26/3AS	KRVT26X/3AS	KRVT26LL/3AS	KRVT26XLL/3AS	0.061	10
	2 620	7 700	6 500	8 500	20	KRVT30/3AS	KRVT30X/3AS	KRVT30LL/3AS	KRVT30XLL/3AS	0.089	12
	2 860	8 200	6 500	8 500	20	KRVT32/3AS	KRVT32X/3AS	KRVT32LL/3AS	KRVT32XLL/3AS	0.100	12
	3 200	11 900	5 500	7 000	52	KRVT35/3AS	KRVT35X/3AS	KRVT35LL/3AS	KRVT35XLL/3AS	0.172	16
	3 850	14 500	4 500	6 000	76	KRVT40/3AS	KRVT40X/3AS	KRVT40LL/3AS	KRVT40XLL/3AS	0.252	18
	4 700	21 000	4 000	5 000	98	KRVT47/3AS	KRVT47X/3AS	KRVT47LL/3AS	KRVT47XLL/3AS	0.390	20
	5 550	23 300	4 000	5 000	98	KRVT52/3AS	KRVT52X/3AS	KRVT52LL/3AS	KRVT52XLL/3AS	0.465	20
	6 950	34 500	3 300	4 500	178	KRVT62/3AS	KRVT62X/3AS	KRVT62LL/3AS	KRVT62XLL/3AS	0.800	24
	8 050	38 500	3 300	4 500	178	KRVT72/3AS	KRVT72X/3AS	KRVT72LL/3AS	KRVT72XLL/3AS	1.05	24
	9 800	53 000	2 600	3 500	360	KRVT80/3AS	KRVT80X/3AS	KRVT80LL/3AS	KRVT80XLL/3AS	1.56	30
	11 400	59 000	2 600	3 500	360	KRVT90/3AS	KRVT90X/3AS	KRVT90LL/3AS	KRVT90XLL/3AS	1.97	30

¹⁾ The tolerance of outer ring outer diameter D of KRVT·X type and KRVT·XLL type having a cylindrical outer diameter surface

²⁾ A tapped hole is provided only on the front surface (left side in the above drawing).

NTN

Cam follower stud type track roller metric series

NUKR · · H type NUKR··XH type

 $NUKR \cdot \cdot H \text{ type } (D < 100 \text{ mm})$ (Full complement double-row cylindrical roller bearings with shield)

D 30 ∼ 180mm

Outer dia.1) mm							Dimension mm	S								Fatigue load limit
D 0 -0.05	d_1	C	F	В	B_1	B_2	G	G_1	B_3	C_1	n	m	a	e	h	N Cu
30	$12_{-0.018}^{$	14	14.5	15	40	25	M12×1.5	13	6	0.6	6	_	3	15	6	1 650
35	16 ⁰ _{-0.018}	18	19	19.5	52	32.5	M16×1.5	17	8	0.8	6	_	3	21	6	3 150
40	18 _0_018	20	21.5	21.5	58	36.5	M18×1.5	19	8	0.8	6	_	3	23	6	3 550
47	20 _0.021	24	25.5	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	27	8	5 900
52	20 _0.021	24	30	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	31	8	7 000
62	24 -0.021	29	35	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	38	8	8 850
72	$24 \begin{array}{c} 0 \\ -0.021 \end{array}$	29	41.5	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	44	8	10 400
80	$30_{-0.021}^{$	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51	8	18 400
90	$30 {}^{0}_{-0.021}$	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51	8	18 400
100	$36 {}^{0}_{-0.025}$	43	48.5	46	120	74	M36×1.5	38	_	1.5	_	Rc ½	_	53	14	20 400
120	$42 {}^{0}_{-0.025}$	50	60.5	53	140	87	M42×1.5	44	_	1.5	_	Rc ½	_	66	14	32 400
140	$48 {}^{0}_{-0.025}$	57	65	60	160	100	M48×1.5	52	_	1.5	_	Rc ¹ / ₈	_	72.5	14	35 900
150	$52_{-0.030}^{$	60	75.5	63	170	107	M52×1.5	52	_	1.5	_	Rc ½	_	85.5	17	46 500
160	$56 \ ^{0}_{-0.030}$	63	80.5	67	180	113	M56×3	58	_	2	_	Rc ¹ /8	_	89.5	17	49 000
170	$60\ _{-0.030}^{0000000000000000000000000000000000$	66	86	70	190	120	M60×3	58	_	2	_	Rc ¹ /8	_	96.5	17	58 000
180	$64 - {0 \atop -0.030}$	72	91.5	76	200	124	M64×3	65	_	2	_	Rc ¹ /8	_	103.5	17	67 500

Needle Roller Bearings

Accessories Applied

Number

Applied hexagonal nut

NIP-B6 30~40 SEN3, SEN6 1M12×1.5~1M18×1.5 47~90 NIP-B8 SEN4, SEN8 1M20×1.5~1M30×1.5 JIS 2 type 100~180 1M36×1.5~1M64×3 (A-PT¹/₈)

Grease nipple

number

Grease fitting

Grease fitting

Plug

Plug Number

Hexagon nut

	ad rating		capacity	Allowable speed	Maximum	Nui	mber	Mass	Stud	
dynamic static N $C_{ m r}$ $C_{ m 0r}$		Spherical outer ring	N Cylindrical outer ring	min-1 Grease lubrication	tightening torque N · m	Spherical outer ring	Cylindrical outer ring	kg (approx.)	dia. mm	
13 300	13 500	2 620	7 700	6 900	20	NUKR30H/3AS	NUKR30XH/3AS	0.088	12	
22 300	25 700	3 200	11 900	5 500	52	NUKR35H/3AS	NUKR35XH/3AS	0.165	16	
24 100	29 100	3 850	14 500	4 700	76	NUKR40H/3AS	NUKR40XH/3AS	0.242	18	
38 500	48 000	4 700	21 000	4 000	98	NUKR47H/3AS	NUKR47XH/3AS	0.380	20	
42 500	57 500	5 550	23 300	3 300	98	NUKR52H/3AS	NUKR52XH/3AS	0.450	20	
56 500	72 500	6 950	34 500	2 900	178	NUKR62H/3AS	NUKR62XH/3AS	0.795	24	
62 000	85 500	8 050	38 500	2 400	178	NUKR72H/3AS	NUKR72XH/3AS	1.01	24	
101 000	151 000	9 800	53 000	2 100	360	NUKR80H/3AS	NUKR80XH/3AS	1.54	30	
101 000	151 000	11 400	59 000	2 100	360	NUKR90H/3AS	NUKR90XH/3AS	1.96	30	
119 000	167 000	13 000	79 000	2 000	630	NUKR100H/3AS	NUKR100XH/3AS	3.08	36	
172 000	266 000	16 400	113 000	1 700	1 020	NUKR120H/3AS	NUKR120XH/3AS	5.17	42	
201 000	294 000	20 000	152 000	1 500	1 540	NUKR140H/3AS	NUKR140XH/3AS	7.98	48	
258 000	380 000	22 000	173 000	1 300	1 950	NUKR150H/3AS	NUKR150XH/3AS	9.70	52	
274 000	400 000	24 000	194 000	1 200	2 480	NUKR160H/3AS	NUKR160XH/3AS	11.7	56	
320 000	475 000	26 000	218 000	1 100	3 030	NUKR170H/3AS	NUKR170XH/3AS	13.9	60	
365 000	555 000	27 900	253 000	1 000	3 670	NUKR180H/3AS	NUKR180XH/3AS	17.0	64	

E-78 E-79

¹⁾ The tolerance of outer ring outer diameter D of NUKR·XH type having a cylindrical outer diameter surface is JIS 0 class.

Needle Roller Bearings

NTN

Cam follower stud type track roller metric series

NUKR type NUKR··X type

NUKR type (D < 100 mm)
(Full complement double-row cylindrical roller bearings with shield)

D 30 ∼ 180mm

Outer dia.1)	Dimensions												Fatigue load		
mm D							mm								limit N
0 -0.05	d_1	C	F	B	B_1	B_2	G	G_1	B_3	C_1	n	m	a	e	$C_{ m u}$
30	12 _0.018	14	14.5	15	40	25	M12×1.5	13	6	0.6	6	_	3	15	1 650
35	16 ⁰ _{-0.018}	18	19	19.5	52	32.5	M16×1.5	17	8	0.8	6	_	3	21	3 150
40	18 -0.018	20	21.5	21.5	58	36.5	M18×1.5	19	8	0.8	6	_	3	23	3 550
47	20 -0.021	24	25.5	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	27	5 900
52	20 -0.021	24	30	25.5	66	40.5	M20×1.5	21	9	0.8	8	_	4	31	7 000
62	24 -0.021	29	35	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	38	8 850
72	24 -0.021	29	41.5	30.5	80	49.5	M24×1.5	25	11	0.8	8	_	4	44	10 400
80	30 -0.021	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51	18 400
90	30 -0.021	35	47.5	37	100	63	M30×1.5	32	15	1	8	_	4	51	18 400
100	36 -0.025	43	48.5	46	120	74	M36×1.5	38	_	1.5	8	Rc ¹ /8	_	53	20 400
120	$42 {}^{0}_{-0.025}$	50	60.5	53	140	87	M42×1.5	44	_	1.5	8	Rc ¹ /8	_	66	32 500
140	$48 ^{0}_{-0.025}$	57	65	60	160	100	M48×1.5	52	_	1.5	8	Rc ¹ /8	_	72.5	36 000
150	52 -0.030	60	75.5	63	170	107	M52×1.5	52	_	1.5	8	Rc ¹ /8	_	85.5	46 500
160	56 - _{0.030}	63	80.5	67	180	113	M56×3	58	_	2	8	Rc ¹ /8	_	89.5	49 000
170	60 -0.030	66	86	70	190	120	M60×3	58	_	2	8	Rc ¹ /8	_	96.5	58 000
180	64 -0.030	72	91.5	76	200	124	M64×3	65	_	2	8	Rc ¹ /8	_	103.5	67 500

Needle Roller Bearings

Accessories Grease nipple

number NIP-B6

NIP-B8

JIS 2 type

(A-PT¹/₈)

Applied hexagonal nut

1M20×1.5~1M30×1.5

1M36×1.5~1M64×3

SEN3, SEN6 1M12×1.5~1M18×1.5

0

Applied

Number

30~40

47~90

100~180

Plug Number

SEN4, SEN8

NUKR type ($D \ge 100 \text{ mm}$)

Grease fitting

Grease fitting

Plug

Hexagon nut

Basic loa dynamic	d rating static			Allowable speed min-1	Maximum tightening	Nur	mber	Mass	Stud dia.
$C_{ m r}$ N	$C_{0\mathrm{r}}$	Spherical outer ring	Cylindrical outer ring	Grease lubrication	torque N·m	Spherical outer ring	Cylindrical outer ring	kg (approx.)	mm
13 300	13 500	2 620	7 700	6 900	20	NUKR 30/3AS	NUKR 30X/3AS	0.088	12
22 300	25 700	3 200	11 900	5 500	52	NUKR 35/3AS	NUKR 35X/3AS	0.165	16
24 100	29 100	3 850	14 500	4 700	76	NUKR 40/3AS	NUKR 40X/3AS	0.242	18
38 500	48 000	4 700	21 000	4 000	98	NUKR 47/3AS	NUKR 47X/3AS	0.380	20
42 500	57 500	5 550	23 300	3 300	98	NUKR 52/3AS	NUKR 52X/3AS	0.450	20
56 500	72 500	6 950	34 500	2 900	178	NUKR 62/3AS	NUKR 62X/3AS	0.795	24
62 000	85 500	8 050	38 500	2 400	178	NUKR 72/3AS	NUKR 72X/3AS	1.01	24
101 000	151 000	9 800	53 000	2 100	360	NUKR 80/3AS	NUKR 80X/3AS	1.54	30
101 000	151 000	11 400	59 000	2 100	360	NUKR 90/3AS	NUKR 90X/3AS	1.96	30
119 000	167 000	13 000	79 000	2 000	630	NUKR 100/3AS	NUKR 100X/3AS	3.08	36
172 000	266 000	16 400	113 000	1 700	1 020	NUKR 120/3AS	NUKR 120X/3AS	5.17	42
201 000	294 000	20 000	152 000	1 500	1 540	NUKR 140/3AS	NUKR 140X/3AS	7.98	48
258 000	380 000	22 000	173 000	1 300	1 950	NUKR 150/3AS	NUKR 150X/3AS	9.70	52
274 000	400 000	24 000	194 000	1 200	2 480	NUKR 160/3AS	NUKR 160X/3AS	11.7	56
320 000	475 000	26 000	218 000	1 100	3 030	NUKR 170/3AS	NUKR 170X/3AS	13.9	60
365 000	555 000	27 900	253 000	1 000	3 670	NUKR 180/3AS	NUKR 180X/3AS	17.0	64
	dynamic N 13 300 22 300 24 100 38 500 42 500 56 500 62 000 101 000 119 000 172 000 201 000 274 000 320 000	Cr Cor 13 300 13 500 22 300 25 700 24 100 29 100 38 500 48 000 42 500 57 500 56 500 72 500 62 000 85 500 101 000 151 000 119 000 167 000 172 000 266 000 201 000 294 000 258 000 380 000 274 000 400 000 320 000 475 000	dynamic static Spherical outer ring 13 300 13 500 2 620 22 300 25 700 3 200 24 100 29 100 3 850 38 500 48 000 4 700 42 500 57 500 5 550 56 500 72 500 6 950 62 000 85 500 8 050 101 000 151 000 9 800 101 000 151 000 11 400 119 000 167 000 13 000 172 000 266 000 16 400 201 000 294 000 20 000 258 000 380 000 22 000 274 000 400 000 24 000 320 000 475 000 26 000	dynamic N Static N Colindrical outer ring outer ring Cylindrical outer ring outer ring 13 300 13 500 2 620 7 700 22 300 25 700 3 200 11 900 24 100 29 100 3 850 14 500 38 500 48 000 4 700 21 000 42 500 57 500 5 550 23 300 56 500 72 500 6 950 34 500 62 000 85 500 8 050 38 500 101 000 151 000 9 800 53 000 119 000 167 000 13 000 79 000 172 000 266 000 16 400 113 000 201 000 294 000 20 000 152 000 258 000 380 000 22 000 173 000 274 000 400 000 24 000 194 000 320 000 475 000 26 000 218 000	dynamic static Spherical outer ring Cylindrical outer ring min-1 Grease lubrication 13 300 13 500 2 620 7 700 6 900 22 300 25 700 3 200 11 900 5 500 24 100 29 100 3 850 14 500 4 700 38 500 48 000 4 700 21 000 4 000 42 500 57 500 5 550 23 300 3 300 56 500 72 500 6 950 34 500 2 900 62 000 85 500 8 050 38 500 2 400 101 000 151 000 9 800 53 000 2 100 119 000 167 000 13 000 79 000 2 000 172 000 266 000 16 400 113 000 1 500 258 000 380 000 22 000 173 000 1 300 274 000 400 000 24 000 194 000 1 200 320 000 475 000 26 000 218 000 1 100	dynamic static Spherical outer ring Cylindrical outer ring min-1 Grease lubrication tightening torque N ⋅ m 13 300 13 500 2 620 7 700 6 900 20 22 300 25 700 3 200 11 900 5 500 52 24 100 29 100 3 850 14 500 4 700 76 38 500 48 000 4 700 21 000 4 000 98 42 500 57 500 5 550 23 300 3 300 98 56 500 72 500 6 950 34 500 2 900 178 62 000 85 500 8 050 38 500 2 400 178 101 000 151 000 9 800 53 000 2 100 360 119 000 167 000 13 000 79 000 2 000 630 172 000 266 000 16 400 113 000 1 700 1 540 258 000 380 000 22 000 173 000 1 300 1 950 274 000 400 000	dynamic N Static Cor Spherical outer ring Cylindrical outer ring min-1 lubrication tightening torque N ⋅ m Spherical outer ring 13 300 13 500 2 620 7 700 6 900 20 NUKR 30/3AS 22 300 25 700 3 200 11 900 5 500 52 NUKR 35/3AS 24 100 29 100 3 850 14 500 4 700 76 NUKR 40/3AS 38 500 48 000 4 700 21 000 4 000 98 NUKR 47/3AS 42 500 57 500 5 550 23 300 3 300 98 NUKR 47/3AS 56 500 72 500 6 950 34 500 2 900 178 NUKR 62/3AS 101 000 151 000 9 800 53 000 2 100 360 NUKR 90/3AS 119 000 157 000 11 400 59 000 2 100 360 NUKR 90/3AS 119 000 167 000 13 000 79 000 2 000 630 NUKR 100/3AS 172 000 266 000 16	dynamic N Static Cor Spherical outer ring outer ring Cylindrical outer ring outer ring min-1 Grease lubrication forque lubrication outer ring Spherical outer ring outer ring Cylindrical outer ring outer ring 13 300 13 500 2 620 7 700 6 900 20 NUKR 30/3AS NUKR 30X/3AS 22 300 25 700 3 200 11 900 5 500 52 NUKR 35/3AS NUKR 40/3AS 24 100 29 100 3 850 14 500 4 700 76 NUKR 40/3AS NUKR 40X/3AS 38 500 48 000 4 700 21 000 4 000 98 NUKR 47/3AS NUKR 47X/3AS 42 500 57 500 5 550 23 300 3 300 98 NUKR 52/3AS NUKR 62X/3AS 56 500 72 500 6 950 34 500 2 900 178 NUKR 62/3AS NUKR 62X/3AS 101 000 151 000 9 800 53 000 2 100 360 NUKR 80/3AS NUKR 80X/3AS 119 000 167 000 13 000 79 000 2 000 630 NUK	dynamic Static Spherical outer ring Cylindrical outer ring min-1 Grease lubrication for ease lubrication toque N · m Spherical outer ring Cylindrical outer ring (approx.) kg (approx.) 13 300 13 500 2 620 7 700 6 900 20 NUKR 30/3AS NUKR 30X/3AS 0.088 22 300 25 700 3 200 11 900 5 500 52 NUKR 35/3AS NUKR 35X/3AS 0.165 24 100 29 100 3 850 14 500 4 700 76 NUKR 40/3AS NUKR 40X/3AS 0.242 38 500 48 000 4 700 21 000 4 000 98 NUKR 47/3AS NUKR 47X/3AS 0.380 42 500 57 500 5 550 23 300 3 300 98 NUKR 52/3AS NUKR 52X/3AS 0.450 56 500 72 500 6 950 34 500 2 900 178 NUKR 62/3AS NUKR 62X/3AS 0.795 62 000 85 500 8 050 38 500 2 100 360 NUKR 80/3AS NUKR 80X/3AS 1.54

E-80 E-81

¹⁾ The tolerance of outer ring outer diameter D of NUKR \cdot X type having a cylindrical outer diameter surface is JIS 0 class.

Needle Roller Bearings

-NTN

Cam follower stud type track roller metric series

NUKRT type NUKRT··X type

NUKRT type (Full complement double-row cylindrical roller bearings with shield)

D 30 ∼ 180mm

Outer dia.1)		Dimensions										Basic load rating		Fatigue load
mm D						mn	n					dynamic	static	limit N
0 -0.05	d_1	C	F	B	B_1	B_2	G	G_1	C_1	m	e	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m u}$
30	$12 {}^{0}_{-0.018}$	14	14.5	15	40	25	M12×1.5	13	0.6	M6×0.75	15	13 300	13 500	1 650
35	$16 {}^{0}_{-0.018}$	18	19	19.5	52	32.5	M16×1.5	17	0.8	Rc 1/8	21	22 300	25 700	3 150
40	18 $^{0}_{-0.018}$	20	21.5	21.5	58	36.5	M18×1.5	19	0.8	Rc ¹ /8	23	24 100	29 100	3 550
47	20 $^0_{-0.021}$	24	25.5	25.5	66	40.5	M20×1.5	21	0.8	Rc ¹ /8	27	38 500	48 000	5 900
52	20 $^0_{-0.021}$	24	30	25.5	66	40.5	M20×1.5	21	0.8	Rc ¹ /8	31	42 500	57 500	7 000
62	24 $^0_{-0.021}$	29	35	30.5	80	49.5	M24×1.5	25	0.8	Rc ¹ / ₈	38	56 500	72 500	8 850
72	24 $^{0}_{-0.021}$	29	41.5	30.5	80	49.5	M24×1.5	25	0.8	Rc ¹ /8	44	62 000	85 500	10 400
80	30 _0.021	35	47.5	37	100	63	M30×1.5	32	1	Rc ¹ / ₈	51	101 000	151 000	18 400
90	30 -0.021	35	47.5	37	100	63	M30×1.5	32	1	Rc ¹ /8	51	101 000	151 000	18 400
100	36 -0.025	43	48.5	46	120	74	M36×1.5	38	1.5	Rc ¹ /8	53	119 000	167 000	20 400
120	42 $^0_{-0.025}$	50	60.5	53	140	87	M42×1.5	44	1.5	Rc ¹ /8	66	172 000	266 000	32 500
140	48 -0.025	57	65	60	160	100	M48×1.5	52	1.5	Rc ¹ /8	72.5	201 000	294 000	36 000
150	52 $^{0}_{-0.030}$	60	75.5	63	170	107	M52×1.5	52	1.5	Rc ¹ /8	85.5	258 000	380 000	46 500
160	56 - _{0.030}	63	80.5	67	180	113	M56×3	58	2	Rc ¹ /8	89.5	274 000	400 000	49 000
170	60 -0.030	66	86	70	190	120	M60×3	58	2	Rc ¹ /8	96.5	320 000	475 000	58 000
180	64 -0.030	72	91.5	76	200	124	M64×3	65	2	Rc 1/8	103.5	365 000	555 000	67 500

Needle Roller Bearings

Accessories

Applied Number	Grease nipple number	Number of hex socket screw plug	Applied hexagonal nut
30	JIS 1 type (A-M6F)	M6×0.75×6 &	1M12×1.5
35~180	JIS 2 type (A-PT ¹ / ₈)	R½(PT¹/s)×7 l	1M16×1.5~1M64×3

Grease fitting

Hex socket screw plug

Hexagon nut

Track load	d capacity	Allowable speed	Maximum	Nive	mber	Mass	Stud
	u capacity √	min-1	tightening	Nui	ilibei	IVIdSS	dia.
Spherical outer ring	Cylindrical outer ring	Grease lubrication	torque N·m	Spherical outer ring	Cylindrical outer ring	kg (approx.)	mm
2 620	7 700	6 900	20	NUKRT 30/3AS	NUKRT 30X/3AS	0.088	12
3 200	11 900	5 500	52	NUKRT 35/3AS	NUKRT 35X/3AS	0.165	16
3 850	14 500	4 700	76	NUKRT 40/3AS	NUKRT 40X/3AS	0.242	18
4 700	21 000	4 000	98	NUKRT 47/3AS	NUKRT 47X/3AS	0.380	20
5 550	23 300	3 300	98	NUKRT 52/3AS	NUKRT 52X/3AS	0.450	20
6 950	34 500	2 900	178	NUKRT 62/3AS	NUKRT 62X/3AS	0.795	24
8 050	38 500	2 400	178	NUKRT 72/3AS	NUKRT 72X/3AS	1.01	24
9 800	53 000	2 100	360	NUKRT 80/3AS	NUKRT 80X/3AS	1.54	30
11 400	59 000	2 100	360	NUKRT 90/3AS	NUKRT 90X/3AS	1.96	30
13 000	79 000	2 000	630	NUKRT 100/3AS	NUKRT 100X/3AS	3.08	36
16 400	113 000	1 700	1 020	NUKRT 120/3AS	NUKRT 120X/3AS	5.17	42
20 000	152 000	1 500	1 540	NUKRT 140/3AS	NUKRT 140X/3AS	7.98	48
22 000	173 000	1 300	1 950	NUKRT 150/3AS	NUKRT 150X/3AS	9.70	52
24 000	194 000	1 200	2 480	NUKRT 160/3AS	NUKRT 160X/3AS	11.7	56
26 000	218 000	1 100	3 030	NUKRT 170/3AS	NUKRT 170X/3AS	13.9	60
27 900	253 000	1 000	3 670	NUKRT 180/3AS	NUKRT 180X/3AS	17.0	64

E-82 E-83

¹⁾ The tolerance of outer ring outer diameter D of NUKRT··X type having a cylindrical outer diameter surface is JIS 0 class.

Roller follower yoke type track roller

metric series

NATR type NATR··X type NATR··LL type NATR··XLL type

φd φF φe

NATR type (With cage)

NATR··LL type (Seal type with cage)

D 16 ∼ 90mm

2 10		•								
Outer dia.1) mm			nsions nm			dynamic	ad rating static N		d capacity N Cvlindrical	Fatigue load limit N
0 -0.05	d	B	C	e	F	$C_{ m r}$	$C_{0\mathrm{r}}$	outer ring	outer ring	$C_{ m u}$
16	5	$12 \begin{array}{c} 0 \\ -0.180 \end{array}$	11	12	8	4 050	4 200	1 080	3 400	510
19	6	$12 \begin{array}{c} 0 \\ -0.180 \end{array}$	11	14	10	4 750	5 400	1 380	4 050	660
24	8	$15 \begin{array}{c} 0 \\ -0.180 \end{array}$	14	19	12	6 900	7 700	1 900	6 650	940
30	10	$15 \ _{-0.180}^{0}$	14	23	15	7 850	9 650	2 620	7 700	1 180
32	12	$15 \ _{-0.180}^{0}$	14	25	17	8 400	10 900	2 860	8 200	1 330
35	15	$19 \ _{-0.210}^{0}$	18	27	20	13 300	20 800	3 200	11 900	2 530
40	17	$21 \begin{array}{c} 0 \\ -0.210 \end{array}$	20	32	22	14 000	22 800	3 850	14 500	2 790
47	20	$25 \begin{array}{c} 0 \\ -0.210 \end{array}$	24	37	25	20 700	33 500	4 700	21 000	4 100
52	25	$25 \begin{array}{c} 0 \\ -0.210 \end{array}$	24	42	30	22 800	40 500	5 500	23 300	4 950
62	30	$29 \ _{-0.210}^{0}$	28	51	38	36 000	66 000	6 950	33 000	8 100
72	35	$29 \ _{-0.210}^{0}$	28	58	44.5	39 000	77 000	8 050	37 000	9 400
80	40	$32 \begin{array}{c} 0 \\ -0.250 \end{array}$	30	66	50	49 500	92 500	9 800	44 500	11 300
85	45	32 _0_0.250	30	71	55	51 500	100 000	10 400	47 000	12 200
90	50	$32 \begin{array}{c} 0 \\ -0.250 \end{array}$	30	76	60	53 000	108 000	11 400	50 000	13 200

Allowabl	le speed 2)				Mass	Outer dia.1)	
m Grease Iubrication	in-1 Oil Iubrication	Withou Spherical outer ring	ut seal Cylindrical outer ring	With Spherical outer ring	n seal Cylindrical outer ring	kg (approx.)	mm D -0.05
*19 000	*25 000	NATR5	NATR5X	NATR5LL/3AS	NATR5XLL/3AS	0.018	16
*15 000	*20 000	NATR6	NATR6X	NATR6LL/3AS	NATR6XLL/3AS	0.025	19
*12 000	*16 000	NATR8	NATR8X	NATR8LL/3AS	NATR8XLL/3AS	0.042	24
10 000	*13 000	NATR10	NATR10X	NATR10LL/3AS	NATR10XLL/3AS	0.061	30
9 000	*12 000	NATR12CT	NATR12XCT	NATR12CLLT/3AS	NATR12CXLLT/3AS	0.069	32
7 500	10 000	NATR15	NATR15X	NATR15LL/3AS	NATR15XLL/3AS	0.098	35
7 000	9 000	NATR17	NATR17X	NATR17LL/3AS	NATR17XLL/3AS	0.140	40
6 000	8 000	NATR20	NATR20X	NATR20LL/3AS	NATR20XLL/3AS	0.246	47
5 000	6 500	NATR25	NATR25X	NATR25LL/3AS	NATR25XLL/3AS	0.275	52
4 000	5 500	NATR30	NATR30X	NATR30LL/3AS	NATR30XLL/3AS	0.470	62
3 300	4 500	NATR35	NATR35X	NATR35LL/3AS	NATR35XLL/3AS	0.635	72
3 000	4 000	NATR40	NATR40X	NATR40LL/3AS	NATR40XLL/3AS	0.875	80
2 700	3 600	NATR45	NATR45X	NATR45LL/3AS	NATR45XLL/3AS	0.910	85
2 500	3 300	NATR50	NATR50X	NATR50LL/3AS	NATR50XLL/3AS	0.960	90

E-84 E-85

¹⁾ The tolerance of outer ring outer diameter D of NATR··X type and NATR··XLL type having a cylindrical outer diameter surface is JIS 0 class.

²⁾ The allowable speed of bearings with a "*" mark seal is about 10 000 min⁻¹.

Roller follower yoke type track roller

metric series

NATV type NATV··X type NATV··LL type NATV··XLL type

(Full complement roller type)

NATV··LL type (Full complement roller sealed type)

D 16 ∼ 90mm

Outer dia.1)			ensions				ad rating		d capacity	Fatigue load
mm D -0.05	d	n B	nm $$	e	F	dynamic $C_{ m r}$	static N $C_{0{ m r}}$	Spherical outer ring	N Cylindrical outer ring	$egin{array}{c} ext{limit} & & & & & & & & & & & & & & & & & & &$
16	5	$12 \begin{array}{c} 0 \\ -0.180 \end{array}$	11	12	8	6 500	9 350	1 080	3 400	1 140
19	6	12 _0_180	11	14	10	7 450	11 700	1 380	4 050	1 430
24	8	$15 \begin{array}{c} 0 \\ -0.180 \end{array}$	14	19	12	10 700	16 200	1 900	6 650	1 980
30	10	$15 \begin{array}{c} 0 \\ -0.180 \end{array}$	14	23	15	12 000	20 300	2 620	7 700	2 470
32	12	$15 \begin{array}{c} 0 \\ -0.180 \end{array}$	14	25	17	13 000	23 000	2 860	8 200	2 810
35	15	$19 \ _{-0.210}^{0}$	18	27	20	18 400	38 000	3 200	11 900	4 650
40	17	$21 \begin{array}{c} 0 \\ -0.210 \end{array}$	20	32	22	19 400	42 000	3 850	14 500	5 100
47	20	$25 \begin{array}{c} 0 \\ -0.210 \end{array}$	24	37	25	28 800	61 000	4 700	21 000	7 450
52	25	$25 \begin{array}{c} 0 \\ -0.210 \end{array}$	24	42	30	31 500	73 500	5 500	23 300	8 950
62	30	$29 \begin{array}{c} 0 \\ -0.210 \end{array}$	28	51	38	47 500	115 000	6 950	33 000	14 000
72	35	$29 \begin{array}{c} 0 \\ -0.210 \end{array}$	28	58	44.5	52 000	134 000	8 050	37 000	16 300
80	40	$32 \begin{array}{c} 0 \\ -0.250 \end{array}$	30	66	50	68 500	171 000	9 800	44 500	20 900
90	50	$32 \begin{array}{c} 0 \\ -0.250 \end{array}$	30	76	60	76 000	205 000	11 400	50 000	25 000

Allowabl	e speed 2)		Nu	ımber		Mass	Outer dia.1)
Grease	in-1 Oil lubrication	Witho Spherical outer ring	out seal Cylindrical outer ring	With Spherical outer ring	n seal Cylindrical outer ring	kg (approx.)	mm D 0 -0.05
*13 000	*16 000	NATV5/3AS	NATV5X/3AS	NATV5LL/3AS	NATV5XLL/3AS	0.020	16
10 000	*13 000	NATV6/3AS	NATV6X/3AS	NATV6LL/3AS	NATV6XLL/3AS	0.027	19
8 500	*11 000	NATV8/3AS	NATV8X/3AS	NATV8LL/3AS	NATV8XLL/3AS	0.044	24
6 500	8 500	NATV10/3AS	NATV10X/3AS	NATV10LL/3AS	NATV10XLL/3AS	0.065	30
6 000	7 500	NATV12/3AS	NATV12X/3AS	NATV12LL/3AS	NATV12XLL/3AS	0.074	32
5 000	6 500	NATV15/3AS	NATV15X/3AS	NATV15LL/3AS	NATV15XLL/3AS	0.102	35
4 500	6 000	NATV17/3AS	NATV17X/3AS	NATV17LL/3AS	NATV17XLL/3AS	0.145	40
4 000	5 000	NATV20/3AS	NATV20X/3AS	NATV20LL/3AS	NATV20XLL/3AS	0.254	47
3 300	4 500	NATV25/3AS	NATV25X/3AS	NATV25LL/3AS	NATV25XLL/3AS	0.285	52
2 600	3 500	NATV30/3AS	NATV30X/3AS	NATV30LL/3AS	NATV30XLL/3AS	0.481	62
2 200	2 900	NATV35/3AS	NATV35X/3AS	NATV35LL/3AS	NATV35XLL/3AS	0.647	72
2 000	2 600	NATV40/3AS	NATV40X/3AS	NATV40LL/3AS	NATV40XLL/3AS	0.890	80
1 600	2 100	NATV50/3AS	NATV50X/3AS	NATV50LL/3AS	NATV50XLL/3AS	0.990	90

2) The allowable speed of bearings with a "*" mark seal is about 10 000 min⁻¹.

E-86

E-87

¹⁾ The tolerance of outer ring outer diameter D of NATV ·· X type and NATV ·· XLL type having a cylindrical outer diameter surface is JIS 0 class.

Roller follower yoke type track roller metric series

NUTR2 type NUTR2··X type NUTR3 type NUTR3 · · X type

NUTR3 type

D 35 ~ 110mm											
Outer dia.1) mm		Di	mensio mm	ns			Basic loa dynamic	static	Track load	١ ,	Fatigue load limit
D 0 -0.05	d	В	C	e	F	rs min ²⁾	$C_{ m r}$	$C_{0\mathrm{r}}$	Spherical outer ring	Cylindrical outer ring	$C_{ m u}$
35	15	$19 \begin{array}{c} 0 \\ -0.210 \end{array}$	18	20	19	0.3	22 300	25 700	3 200	11 900	3 150
40	17	$21 \begin{array}{c} 0 \\ -0.210 \end{array}$	20	22	21.5	0.3	24 100	29 100	3 850	14 500	3 550
42	15	$19 \ _{-0.210}^{0}$	18	20	19	0.3	22 300	25 700	4 100	14 300	3 150
47	17 20	21 ₀ 25 ^{-0.210}	20 24	22 27	21.5 25.5	0.3 0.3	24 100 38 500	29 100 48 000	4 700 4 700	17 000 21 000	3 550 5 900
52	20 25	25 ₀ 25 ^{-0.210}	24 24	27 31	25.5 30	0.3 0.3	38 500 42 500	48 000 57 500	5 550 5 550	23 300 23 300	5 900 7 000
62	25 30	25 ₀ 29 ^{-0.210}	24 28	31 38	30 35	0.3 0.3	42 500 56 500	57 500 72 500	6 950 6 950	27 800 33 000	7 000 8 850
72	30 35	29 ₀ 29 ^{-0.210}	28 28	38 44	35 41.5	0.3 0.6	56 500 62 000	72 500 85 500	8 050 8 050	38 500 37 000	8 850 10 400
80	35 40	$\begin{array}{ccc} 29 & {\overset{0}{-0.210}} \\ 32 & {\overset{0}{-0.250}} \end{array}$	28 30	44 51	41.5 47.5	0.6 0.6	62 000 87 000	85 500 125 000	9 800 9 800	41 000 44 500	10 400 15 200
85	45	$32 \begin{array}{c} 0 \\ -0.250 \end{array}$	30	55	52.5	0.6	92 000	137 000	10 400	47 000	16 700
90	40 50	32 ₀ 32 ^{-0.250}	30 30	51 60	47.5 57	0.6 0.6	87 000 96 500	125 000 150 000	11 400 11 400	50 000 50 000	15 200 18 300
100	45	32 _0_0	30	55	52.5	0.6	92 000	137 000	13 000	55 500	16 700
110	50	$32 \begin{array}{c} 0 \\ -0.250 \end{array}$	30	60	57	0.6	96 500	150 000	14 700	61 000	18 300

Allowable speed	Nun	nber	Mass	Outer dia. ¹⁾
min-1 Grease Iubrication	Spherical outer ring	Cylindrical outer ring	kg (approx.)	mm D -0.05
5 500	NUTR202/3AS	NUTR202X/3AS	0.100	35
4 700	NUTR203/3AS	NUTR203X/3AS	0.147	40
5 500	NUTR302/3AS	NUTR302X/3AS	0.160	42
4 700 4 000	NUTR303/3AS NUTR204/3AS	NUTR303X/3AS NUTR204X/3AS	0.222 0.245	47
4 000 3 300	NUTR304/3AS NUTR205/3AS	NUTR304X/3AS NUTR205X/3AS	0.321 0.281	52
3 300 2 900	NUTR305/3AS NUTR206/3AS	NUTR305X/3AS NUTR206X/3AS	0.450 0.466	62
2 900 2 400	NUTR306/3AS NUTR207/3AS	NUTR306X/3AS NUTR207X/3AS	0.697 0.630	72
2 400 2 100	NUTR307/3AS NUTR208/3AS	NUTR307X/3AS NUTR208X/3AS	0.840 0.817	80
1 900	NUTR209/3AS	NUTR209X/3AS	0.883	85
2 100 1 800	NUTR308/3AS NUTR210/3AS	NUTR308X/3AS NUTR210X/3AS	1.13 0.950	90
1 900	NUTR309/3AS	NUTR309X/3AS	1.40	100
1 800	NUTR310/3AS	NUTR310X/3AS	1.69	110

E-89

¹⁾ The tolerance of outer ring outer diameter D of NUTR2 ·· X type and NUTR3 ·· X type having a cylindrical outer diameter surface is JIS 0 class.
2) Smallest allowable dimension for chamfer dimension r.

Roller follower yoke type track roller metric series

NUTW2 type NUTW · · X type

NUTW2 type

D 35 ∼ 90mm

Outer dia.1)		Di	mensio	ns			Basic loa	Ŭ		d capacity	Fatigue load
mm D -0.05	d	В	mm C	e	F	$r_{ m s~min^{2)}}$	dynamic N $C_{ m r}$	static $ ho_{ m C0r}$	Spherical outer ring	N Cylindrical outer ring	$\begin{matrix} \textbf{limit} \\ \textbf{N} \\ C_{\textbf{u}} \end{matrix}$
35	15	$22 \begin{array}{c} 0 \\ -0.210 \end{array}$	21	20	19	0.3	24 100	28 300	3 200	14 200	3 450
40	17	$24 \begin{array}{c} 0 \\ -0.210 \end{array}$	23	22	21.5	0.3	26 000	32 000	3 850	17 100	3 900
47	20	$29 \begin{array}{c} 0 \\ -0.210 \end{array}$	28	27	25.5	0.3	40 500	51 500	4 700	25 100	6 300
52	25	$29 \ _{-0.210}^{0}$	28	31	30	0.3	45 000	61 500	5 550	27 700	7 500
62	30	$35 \begin{array}{c} 0 \\ -0.210 \end{array}$	34	38	35	0.3	59 500	77 000	6 950	41 000	9 400
72	35	$35 \begin{array}{c} 0 \\ -0.210 \end{array}$	34	44	41.5	0.6	65 000	91 000	8 050	46 000	11 100
80	40	$38 \begin{array}{c} 0 \\ -0.250 \end{array}$	36	51	47.5	0.6	90 500	131 000	9 800	54 500	16 000
85	45	$38 \begin{array}{c} 0 \\ -0.250 \end{array}$	36	55	52.5	0.6	95 500	144 000	10 400	58 000	17 600
90	50	$38 \begin{array}{c} 0 \\ -0.250 \end{array}$	36	60	57	0.6	100 000	158 000	11 400	61 500	19 200

Allowable speed	Nun	nber	Mass	Outer dia.1)
min-1 Grease Iubrication	Spherical outer ring	Cylindrical outer ring	kg (approx.)	mm D 0 -0.05
5 500	NUTW202/3AS	NUTW202X/3AS	0.115	35
4 700	NUTW203/3AS	NUTW203X/3AS	0.167	40
4 000	NUTW204/3AS	NUTW204X/3AS	0.280	47
3 300	NUTW205/3AS	NUTW205X/3AS	0.322	52
2 900	NUTW206/3AS	NUTW206X/3AS	0.549	62
2 400	NUTW207/3AS	NUTW207X/3AS	0.747	72
2 100	NUTW208/3AS	NUTW208X/3AS	0.953	80
1 900	NUTW209/3AS	NUTW209X/3AS	1.03	85
1 800	NUTW210/3AS	NUTW210X/3AS	1.11	90

For bearings having a cylindrical outer ring surface, code "X" is added after the bearing number. In this case, the tolerance of outer ring outer diameter D of cylindrical bearings is JIS 0 class. Example: NUTW203X
 Smallest allowable dimension for chamfer dimension r.

Bearing Units Contents

3	Searing units ······	F-	2
	Cast iron pillow blocks ······	F-1	L4
	Cast iron square flanged unit	F-2	24
	Round flange with cast iron spigot joint	F-2	28
	Cast iron rhombus flanged unit	F-3	32
	Cast iron take-up unit ······	F-3	36

Bearing Units

1. Design features and characteristics of bearing unit

The **NTN** bearing unit is a combination of a radial ball bearing with seals and a cast iron or steel housing of various shapes. The bearing outer diameter surface and the housing inner diameter surface are spherical and have a selfaligning design.

The internal construction of the ball bearing for units uses the same steel ball and cage as the bearing series 62 and 63 of the **NTN** deep groove ball bearings. Seals consisting of an oil resistant synthetic rubber, and a **NTN** unique slinger (also referred to as a flinger) is provided on both sides.

The included bearings for units are factory filled with grease and sealed, but can be re-lubricated from the grease fitting. See section "11. Lubrication" for greases used.

The ball bearings for units have a wide inner ring which depending on the type, fit to the shaft in the following ways:

- 1. The inner ring is fastened to the shaft in two places by ball point setscrews.
- 2. The inner ring has a tapered bore and is fitted to the shaft by means of an adapter.
- The inner ring is fastened to the shaft by an eccentric locking collar system by means of eccentric groves on the side of the inner ring and a collar.
- 4. The inner ring is fastened to the shaft by providing an interference fit.

For the details of **NTN** bearing units, see the special catalog "**Bearing units (CAT. No. 2400/E)**."

F-2

NTN bearing unit with grease fitting

NTN bearing unit without grease fitting

2. Bearing unit types

Table 1 Main types of ball bearings for bearing units

rable 1 Main types of b	all bearings for bearing ur	1115
UC (S) type Cylindrical bore type Setscrew type	(F-)UC type	UCS type
UEL (S) type Cylindrical bore type Eccentric collar type	UEL type	UELS type
AEL (S) type Cylindrical bore type Eccentric collar type	AEL type	AELS type
UK (S) type Tapered bore type Adapter type	UK type	UKS type
AS (S) type Cylindrical bore type Setscrew type	AS type	ASS type
CS type Cylindrical bore type Tight fit type	CSLLU type	

Table 2 (1) List of cast iron pillow bearing unit types

					Bearing ty	/pe		
Housing type		Cover						
			UC	UEL	UK;H	AS	AEL	CS
Cast iron		None	UCP	UELP	UKP	ASP	AELP	_
pillow type		Steel	S(M)-UCP	_	S(M)-UKP	S(M)-ASP	_	_
pillow type		Cast iron	C(M)-UCP	C(M)E-UELP	C(M)-UKP	C(M)-ASP	-	_
Cast iron		None	UCIP	UELIP	UKIP	_	_	_
thick pillow type		Steel	S(M)-UCIP	-	S(M)-UKIP	-	-	_
trick pillow type		Cast iron	C(M)-UCIP	C(M)E-UELIP	C(M)-UKIP	-	-	_
Cast iron	(in)	None	UCHP	UELHP	UKHP	ASHP	AELHP	_
center height pillow type		Steel	S(M)-UCHP	-	S(M)-UKHP	S(M)-ASHP	-	_
Cast iron		None	UCUP	UELUP	UKUP	ASUP	AELUP	_
narrow width pillow type		Steel	S(M)-UCUP	-	S(M)-UKUP	S(M)-ASUP	-	_
Lightweight cast iron pillow type	Q	None	_	_	_	ASPB	AELPB	CSPB
Cast iron low center height pillow type	QL	None	UCPL	UELPL	UKPL	ASPL	AELPL	_

Note: 1. Type code S- is given for steel covers that open on both sides, and type code SM- is given for steel covers that close on one side.

Table 2 (2) List of cast iron flange bearing unit types

					Bearing type			
Housing type		Cover	UC	UEL	UK;H	AS	AEL	cs
Cast iron	0-0	None	UCF	UELF	UKF	ASF	AELF	_
square flange		Steel	S(M)-UCF	_	S(M)-UKF	S(M)-ASF	_	_
square nange		Cast iron	C(M)-UCF	C(M)E-UELF	C(M)-UKF	C(M)-ASF	_	_
Square flange with	1	None	UCFS	UELFS	UKFS	_	_	_
cast iron spigot joint		Cast iron	C(M)-UCFS	C(M)E-UELFS	C(M)-UKFS	_	-	_
D I (I		None	UCFC	UELFC	UKFC	ASFC	AELFC	_
Round flange with cast iron spigot joint		Steel	S(M)-UCFC	_	S(M)-UKFC	S(M)-ASFC	_	_
cast non spigot joint		Cast iron	C(M)-UCFC	C(M)E-UELFC	C(M)-UKFC	C(M)-ASFC	_	_
Cast iron		None	UCFL	UELFL	UKFL	ASFL	AELFL	_
rhombic flange	O	Steel	S(M)-UCFL	-	S(M)-UKFL	S(M)-ASFL	-	_
momble hange		Cast iron	C(M)-UCFL	C(M)E-UELFL	C(M)-UKFL	C(M)-ASFL	-	_
Cast iron square flange		None	UCFU	UELFU	UKFU	ASFU	AELFU	_
Cast iron rhombic flange	O	None	UCFLU	UELFLU	UKFLU	ASFLU	AELFLU	-
Cast iron		None	UCFA	UELFA	UKFA	ASFA	AELFA	_
deformed rhombic flange		Steel	S(M)-UCFA	-	S(M)-UKFA	S(M)-ASFA	-	_
Lightweight cast iron rhombic flange		None	_	-	-	ASFB	AELFB	CSFB
Lightweight cast iron rhombic flange	(O)	None	_	_	-	ASFD	AELFD	_
Cast iron deformed flange		None	UCFH	UELFH	UKFH	ASFH	AELFH	_

Note: 1. Type code S- is given for steel opening covers, and type code SM- is given for steel closing covers.

- 2. Type code C- is given for cast iron opening covers, and type code CM- is given for cast iron closing covers.

 However, in the case of cast iron covers combined with eccentric locking ring bearings, type code CE- is given for covers that open on both sides, and type code CME- is given for covers that close on one side.
- 3. The housing type of F and FU types, FL and FLU types, and FB and FD types are the same but have different attachment part dimensions.

^{2.} Type code C- is given for cast iron covers that open on both sides, and type code CM- is given for cast iron covers that close on one side. However, in the case of cast iron covers combined with eccentric locking ring bearings, type code CE- is given for covers that open on both sides, and type code CME- is given for covers that close on one side.

Table 2 (3) List of other cast iron bearing unit types

					Bearing type			
Housing type		Cover	UC	UEL	UK;H	AS	AEL	cs
Calling		None	UCT	UELT	UKT	AST	AELT	-
Cast iron take-up type		Steel	S(M)-UCT	_	S(M)-UKT	S(M)-AST	_	_
take up type		Cast iron	C(M)-UCT	C(M)E-UELT	C(M)-UKT	C(M)-AST	_	_
Cast iron cartridge type	Ô	None	UCC	UELC	UKC	ASC	AELC	_
Cast iron hanger type	Ô	None	UCHB	UELHB	UKHB	ASHB	AELHB	-

Note: 1. Type code S- is given for steel covers that open on both sides, and type code SM- is given for steel covers that close on one side.

2. Type code CAL is given for cast iron covers that open on both sides, and type code CAL is given for cast iron covers that close on one side.

Type code C- is given for cast iron covers that open on both sides, and type code CM- is given for cast iron covers that close on one side.
 However, in the case of cast iron covers combined with eccentric locking ring bearings, type code CE- is given for covers that open on both sides, and type code CME- is given for covers that close on one side.

Table 2 (4) List of spherical graphite cast iron bearing unit types (ductile series)

				Bearing type								
Housing type		Cover										
		UC	UEL	UK;H	AS	AEL	CS					
Spherical graphite cast iron pillow type		None	UCPE	UELPE	UKPE	ASPE	AELPE	_				
Spherical graphite cast iron rhombic flange	O	None	UCFE	UELFE	UKFE	ASFE	AELFE	_				

Table 2 (5) List of structural rolled steel bearing unit types (steel series)

					Bearing type			
Housing type		Cover	UC	UEL	UK;H	AS	AEL	cs
	_	None	UCPG	UELPG	UKPG	ASPG	AELPG	_
Structural rolled steel		Steel	S(M)-UCPG	_	S(M)-UKPG	S(M)-ASPG	_	_
pillow type	کاسے	Cast iron	C(M)-UCPG	C(M)E-UELPG	C(M)-UKPG	C(M)-ASPG	_	_
	₽	None	UCIPG	UELIPG	UKIPG	` ´-	_	_
Structural rolled steel		Steel	S(M)-UCIPG	_	S(M)-UKIPG	_	_	_
thick pillow type	حت ا	Cast iron	C(M)-UCIPG	C(M)E-UELIPG	C(M)-UKIPG	-	_	-
Structural rolled steel	0=0	None	UCFG	UELFG	UKFG	ASFG	AELFG	_
		Steel	S(M)-UCFG	_	S(M)-UKFG	S(M)-ASFG	_	_
square flange		Cast iron	C(M)-UCFG	C(M)E-UELFG			_	-
Structural rolled steel	(000)	None	UCFSG	UELFSG	UKFSG	-	-	_
square flange with spigot joint		Cast iron	C(M)-UCFSG	C(M)E-UELFSG	C(M)-UKFSG	_	_	_
Structural rolled steel		None	UCFCG	UELFCG	UKFCG	ASFCG	AELFCG	
round flange with		Steel	S(M)-UCFCG	_	S(M)-UKFCG	S(M)-ASFCG	-	_
spigot joint		Cast iron	C(M)-UCFCG	C(M)E-UELFCG	C(M)-UKFCG	C(M)-ASFCG	-	_
Structural rolled steel		None	UCFLG	UELFLG	UKFLG	ASFLG	AELFLG	_
rhombic flange		Steel	S(M)-UCFLG	_	S(M)-UKFLG	S(M)-ASFLG	_	
mombie nange		Cast iron	C(M)-UCFLG	C(M)E-UELFLG	C(M)-UKFLG	C(M)-ASFLG	-	_
Structural rolled steel		None	UCTG	UELTG	UKTG	ASTG	AELTG	
take-up type		Steel	S(M)-UCTG	_	S(M)-UKTG	S(M)-ASTG		
cance up cype		Cast iron	C(M)-UCTG	C(M)E-UELTG	C(M)-UKTG	C(M)-ASTG	_	

Note: 1. Type code S- is given for steel covers that open on both sides, and type code SM- is given for steel covers that close on one side.

2. Type code C- is given for cast iron covers that open on both sides, and type code CM- is given for cast iron covers that close on one side. However, in the case of cast iron covers combined with eccentric locking ring bearings, type code CE- is given for covers that open on both sides, and type code CME- is given for covers that close on one side.

Table 2 (6) List of stainless steel bearing unit types (stainless steel series)

				Bearing type								
Housing type	Cover											
			UC	UEL	UK;H	AS	AEL	CS				
Cast iron	\bigcirc	None	F-UCPM	-	-	-	-	_				
take-up type	44	Stainless steel	F-FS(M)-UCPM	_	_	_	_	_				
Stainless steel cast iron	1	None	F-UCQFM	_	_	-	-	_				
square flange		Stainless steel	F-FS(M)-UCQFM	_	_	_	_	_				
Stainless steel cast iron		None	F-UCFM	_	_	_	_	_				
rhombic flange		Stainless steel	F-FS(M)-UCFM	-	_	_	_	_				

Note: Type code F- FSM- is given for stainless steel covers that close on one side.

Table 2 (7) List of glass-fiber reinforced resin bearing unit types (plastic series)

Housing type			Bearing type							
		Cover	UC	UEL	UK;H	AS	AEL	cs		
Glass-fiber reinforced resin		None	F-UCPR	-	-	_	_			
pillow type		Resin	F-RM-UCPR	_	_	_	_	_		
Glass-fiber reinforced resin		None	F-UCFLR	-	_	_	_	_		
rhombic flange		Resin	F-RM-UCFLR	-	_	_	-			

Note: The resin cover is only on one side.

Bearing Units

Table 2 (8) List of steel bearing unit types

					Bearing type)		
Housing type		Cover	UC	UEL	UK;H	AS	AEL	CS
Steel pillow type		None	_	_	_	ASPP	AELPP	CSPP
Steel pillow type with rubber ring		None	_	_	_	ASRPP	AELRPP	CSRPP
Steel round flange type		None	_	_	_	ASPF	AELPF	CSPF
Steel round flange type with rubber ring		None	_	_	-	ASRPF	AELRPF	CSRPF
Steel rhombic flange	0	None	_	_	_	ASPFL	AELPFL	CSPFL
Steel rhombic flange type with rubber ring	0	None	_	_	_	ASRPFL	AELRPFL	CSRPFL

Table 2 (9) List of stretcher[®] unit types

				E	Bearing type		
Housing typ	e	Cover	UC	UEL	UK;H	AS	AEL
Stretcher steel mini type			-	-	=	ASPT	AELPT
Stretcher	0 0 0	None	UCT-00	UELT-00	UKT-00	AST-00	AELT-00
protrusion steel frame		Steel	S(M)-UCT-00	-	S(M)-UKT-00	S(M)-AST-00	_
protrusion steer nume	6 0 0 1	Cast iron	C(M)-UCT-00	C(M)E-UELT-00	C(M)-UKT-00	C(M)-AST-00	_
Stretcher	•	None	UCL-00	UELL-00	UKL-00	ASL-00	AELL-00
light groove steel frame		Steel	S(M)-UCL-00	-	S(M)-UKL-00	S(M)-ASL-00	_
ngite groove steer frame		Cast iron	C(M)-UCL-00	C(M)E-UELL-00	C(M)-UKL-00	C(M)-ASL-00	_
Stretcher	4	None	UCM-00	UELM-00	UKM-00	ASM-00	AELM-00
groove steel frame		Steel	S(M)-UCM-00	_	S(M)-UKM-00	S(M)-ASM-00	_
groove seed frame		Cast iron	C(M)-UCM-00	C(M)E-UELM-00	C(M)-UKM-00	C(M)-ASM-00	-

Note: 1. Type code S- is given for steel covers that open on both sides, and type code SM- is given for steel covers that close on one side.

2. Type code C- is given for cast iron covers that open on both sides, and type code CM- is given for cast iron covers that close on one side. However, in the case of cast iron covers combined with eccentric locking ring bearings, type code CE- is given for covers that open on both sides, and type code CME- is given for covers that close on one side.

3. Accuracy

The accuracy of **NTN** bearing units conform to JIS B1558 (Roller bearings: insert bearings and eccentric locking rings) and JIS B1559 (Roller bearings: insert bearings and steel housings).

3.1 Accuracy of ball bearings for units

Tables 3 and **4** show the accuracy of ball bearings for units.

Table 3 Tolerance values for inner rings

iubic 5	·	unice ve	ilucs ioi	miner migs										
Nomina					Cy	lindrical bo	ore bearings							
bearing bo			Bea	aring bore diame	ter		Dimensional	tolerance of	Dimer	sional	Radial			
diamete		All m	odels exce	pt CS type	CS t	уре	eccentricity	amount of	tolera	nce of	runout			
d		Mean		Bore diameter		bore	eccentric surfa		inner rir	ng width				
mm		diameter	deviation	variation	diameter	deviation	collar type	bearings	Δ	Kia				
	Δ_{dmp}		V_{dsp}	Δa	lmp	Δ	Hs .	(app	rox.)	(approx.)				
Over In	ıcl.	Upper	Lower	Max.	Upper	Lower	Upper	Lower	Upper	Lower	Max.			
10 18	8	+15	0	10	0	- 8	+100	-100	0	-120	15			
18 ¹⁾ 31	1.75	+18	0	12	0	-10	+100	-100	0	-120	18			
31.75 50	0.8	+21	0	14	0	-12	+100	-100	0	-120	20			
50.8 80	0	+24	0	16	0	-15	+100	-100	0	-150	25			
80 120	0	+28	0	19	0	-20	+100	-100	0	-200	30			
120 180	0	+33	0	22	0	-25	+100	-100	0	-250	35			

^{1) 10} mm is included in this dimensional division.

Table 4 Tolerance values for outer rings Unit: //m

				6 - Oπ. μπ
Nominal outer di I	ameter	diameter	outside deviation Dm ¹⁾	Radial runout Kea (approx.)
Over	Incl.	Upper	Lower	Max.
30	50	0	-11	20
50	80	0	-13	25
80	120	0	-15	35
120	150	0	-18	40
150	180	0	-25	45
180	250	0	-30	50
250	315	0	-35	60

The lower value of the dimensional tolerance of the average outer diameter specified in the table does not apply to the distance of 1/4 of the width dimension of the outer ring side surface to the outer ring.

3.2 Accuracy of housings for units

Table 5 shows the spherical bearing seating (spherical surface inner diameter) of housings for units. For other dimensional accuracy, see the special catalog "Bearing units (CAT. No. 2400/E)."

Table 5 Dimensional tolerance of inner diameter of cast iron housings

	alaili	Jeci o	cust		iousiii	5 (nıt: μm
Nomina diam of sph	eter erical				f average nerical be nam		
bearing D	la .	Toler class			ance s K7		
Over	(mm) Over Incl.		Lower	Upper	Lower	Upper	Lower
30 50	50 80	+25 +30	0	+14 +18	-11 -12	+7 +9	-18 -21
80 120	120 180	+35 +40	0	+22 +26	-13 -14	_	_
180	250	+46	0	+30	-16	-	_
250	315	+52	0	+36	-16	_	_

Spherical bearing seatings with an inner diameter of 52 mm or below is finished in the tolerance class K7, 53 mm to 180 mm is finished in the tolerance class J7, and 181 mm or above is finished in the tolerance class H7.

3.3 Bearing internal clearance

The standard internal clearance of ball bearings used in bearing units is CN (see Technical Explanation 8 **Table 8.8**). However, for the values of CN clearance of tapered bore type bearings, the values of C3 clearance of deep groove ball bearings is applied.

4. Allowable speed

The allowable speed of bearings for units that allows safe long operation is restricted by the bearing dimensions, loads, and circumferential speed of the seal contact lip. **Fig. 1** shows the allowable speed that considers these factors. When higher speed is necessary, use a bearing unit that uses a non-contact type shield. Consult with **NTN** Engineering for additional details.

Fig. 1 Allowable speed of ball bearings for units

²⁾ See the section of "6. Bearing tolerance" for the tolerance and tolerance values for tapered bores.

The casting indication of "J" is being abolished since 2000.

5. Lubrication

NTN bearing units are factory filled with an appropriate amount of grease.

The grease amount necessary for lubrication is very small in general, and the grease amount of **NTN** bearing units is about 1/2 to 1/3 of the bearing internal free space.

The grease must be filled until a small amount of grease is discharged to the entire circumference between the bearing outer ring inner diameter and the slinger outer diameter.

Rough standard of the amount of pressure required to insert grease: 1 to 3 MPa

6. Housing strength

The static breaking strength of housings for units differs depending on the housing type and load characteristics. The pillow block type unit is originally designed based on the use of a downward load. For other types of loading, please consult **NTN** Engineering.

Table 6 and **Figs. 2** and **3** show approximate values of average static breaking loads by the load direction of pillow unit housings. Consult **NTN** Engineering for the strength of other types of housings.

The allowable load of unit housings can be obtained from the static breaking load and the safety factor S_0 shown in **Table 7** from the formula below.

 $P_0 = \frac{P_{st}}{S_0}$

 P_0 : Allowable load of housing, N

 $\mathit{P}_{st}\ :$ Static breaking strength of housing, N

So : Safety factor

Table 6 Static breaking load of pillow type housing

Number	Downward load kN	Number	Downward load kN
P203 P204 P205 P206 P207 P208 P209 P210 P211 P212 P213 P214 P215 P216 P217 P218	75 80 95 130 160 170 180 200 210 280 290 320 330 360 450	P305 P306 P307 P308 P309 P310 P311 P312 P313 P314 P315 P316 P317 P318 P319 P320	160 180 200 220 270 340 360 320 370 400 430 490 500 550 600 700
PE203 PE204 PE205 PE206 PE207 PE208 PE209 PE210 PE211 PE212	90 100 118 137 160 186 215 255 350 400	P321 P322 P324 P326 P328	700 830 900 1 150 1 200

Table 7 Safety factor of housing

	Material	Static	Repea	ted load	Impact
	Material	load	Pulsating	Alternating	load
SS400	Structural steel	3	5	8	12
FC200	Gray cast iron	4	6	10	15
FCD450	Ductile cast iron	4	6	10	15

Fig. 2 Static breaking load of P2 type

Fig. 3 Static breaking load of P3 type

7. Alignment allowance

The alignment allowance between the housing attachment surface and the shaft must be within 1/30 (1/60 for the narrow width outer ring type) due to grease channel alignment considerations. The alignment allowance of units with a cover differs depending on the cover seal, so please consult **NTN** Engineering.

8. Recommended bearing fits

Shafts used for **NTN** bearing units are not required to be highly precise, but it is desirable that the shaft is not bent or damaged.

When a bearing unit of a set screw type is to be used under a general use condition, the fitting between the inner ring and the shaft normally should be a loose fit for the assembly convenience. The appropriate values of the dimensional tolerance of the shaft are shown in **Fig. 4**.

In the case of the adapter sleeve type, since the shaft is fastened with a sleeve, the dimensional tolerance of the shaft can be h9 under a general use condition.

As with the set screw type, for the eccentric color type under a general use condition, a loose fit is generally used for the fitting between the inner ring and the shaft for the assembly convenience. For the dimensional tolerance of the shaft, values indicated in Fig. 5 are appropriate.

According to the use condition, when a tight fit is to be adopted, proper installation methods shall be used and the inner ring side face shall not be struck directly to facilitate installation.

Fig. 4 Dimensional tolerance of setscrew type shaft

Fig. 5 Dimensional tolerance of eccentric collar type shaft

9. Recommended torque of setscrew

When bearing units of the set screw type or a eccentric collar type are to be attached to a shaft, the fastening torque shown in **Tables 8** and **9** is used as a rough standard. For fastening, the two setscrews are alternately and uniformly fastened. For the details of unit attachment, see the special catalog "Bearing units (CAT. No. 2400/E)."

Table 8 Recommended fastening torque of setscrews

			Setscrew nom	inal dimension	Recommended setscrew		
A	pplied unit bearing n	number	Inner diameter milli series	Inner diameter inch series	fastening torque N·m		
AS201~203	_	_	MSS5	S8W4.826×32×7	3.4		
UC201~205 AS204~205	_	_	MSS5	S8W4.826×32×7	3.9		
UC206 AS206	_	UC305~306	MSS6	S8W1/4×28×8	4.9		
UC207 AS207	UCX05	_	MSS6	S8W1/4×28×8	5.8		
UC208~210 AS208~210	_	_	MSS8	S8W5/16×24×10	7.8		
UC211	UCX06~X08	UC307	MSS8	S8W5/16×24×10	9.8		
UC212	UCX09	_	MSS10	S8W3/8×24×12	16.6		
UC213~215	_	UC308~309	MSS10	S8W3/8×24×12	19.6		
UC216	UCX10	_	MSS10	S8W3/8×24×12	22.5		
_	UCX11~X12	_	MSS10	S8W3/8×24×12	24.5		
UC217~218	UCX13~X15	UC310~314	MSS12	S8W1/2×20×13	29.4		
_	UCX16~X17	_	MSS12	S8W1/2×20×13	34.3		
_	UCX18	UC315~316	MSS14	S8W9/16×18×15	34.3		
_	UCX20	UC317~319	MSS16	S8W5/8×18×18	53.9		
		UC320~324	MSS18	S8W3/4×16×25	58.8		
_	_	UC326~328	MSS20	_	78.4		

Note: Fastening setscrews excessively may cause inner ring cracks. Loose fastening may cause the shaft to slide.

Table 9 Recommended fastening torque of eccentric collar setscrews

Setscrew nominal dimension Percommended setscrew											
		Setscrew nom	inal dimension	Recommended setscrew							
Applied unit b	earing number	Inner diameter milli series	Inner diameter inch series	fastening torque N∙m							
UEL204~205 AEL201~205	_	MSS6	S8W1/4×28×8	7.8							
UEL206 AEL206	UEL305~307	MSS8	S8W5/16×24×10	9.8							
UEL207 AEL207	_	MSS10	S8W3/8×24×12	11.7							
UEL208~210 AEL208~210	_	MSS10	S8W3/8×24×12	15.6							
UEL211 AEL211	_	MSS10	S8W3/8×24×12	19.6							
UEL212~215 AEL212	UEL308~312	MSS10	S8W3/8×24×12	29.4							
_	UEL313~314	MSS12	S8W1/2×20×13	34.3							
_	UEL315~317	MSS16	S8W5/8×18×18	53.9							
_	UEL318~322	MSS20	S8W3/4×16×25	78.4							

Shaft diameter: 12 to 50 mm

Jilai	Calainet			, 0 1111	• •												
Shaft dia.	Unit number 1) 2)					Dir	nens mm						Fixing bolt	Number	Bearin Basic loa dynamic	ad rating	Fatigue load limit
mm		Н	L	J	A	N	N_1	H_1	H_2	L_1	B	S			$C_{ m r}$	kN C_{0r}	$C_{ m u}$
12	UCP201	30.2	127	95	38	13	16	14	62	42	31	12.7	M10	UC201D1	14.2	6.65	0.505
15	UCP202	30.2	127	95	38	13	16	14	62	42	31	12.7	M10	UC202D1	14.2	6.65	0.505
17	UCP203	30.2	127	95	38	13	16	14	62	42	31	12.7	M10	UC203D1	14.2	6.65	0.505
20	UCP204	33.3	127	95	38	13	16	14	65	42	31	12.7	M10	UC204D1	14.2	6.65	0.505
25	UCP205 UCPX05 UCP305	36.5 44.4 45	140 159 175	105 119 132	38 51 45	13 17 17	16 20 20	15 18 15	71 85 85	42 50 54	34.1 38.1 38	14.3 15.9 15	M10 M14 M14	UC205D1 UCX05D1 UC305D1	15.5 21.6 23.5	7.85 11.3 10.9	0.55 0.795 0.855
30	UCP206 UCPX06 UCP306	42.9 47.6 50	165 175 180	121 127 140	48 57 50	17 17 17	20 20 20	17 20 18	83 93 95	54 54 54	38.1 42.9 43	15.9 17.5 17	M14 M14 M14	UC206D1 UCX06D1 UC306D1	21.6 28.4 29.5	11.3 15.3 15.0	0.795 1.09 1.14
35	UCP207 UCPX07 UCP307	47.6 54 56	167 203 210	127 144 160	48 57 56	17 17 17	20 20 25	18 21 20	93 105 106	54 60 60	42.9 49.2 48	17.5 19 19	M14 M14 M14	UC207D1 UCX07D1 UC307D1	28.4 32.5 37.0	15.3 17.8 19.1	1.09 1.24 1.47
40	UCP208 UCPX08 UCP308	49.2 58.7 60	184 222 220	137 156 170	54 67 60	17 20 17	20 23 27	18 26 22	98 111 116	52 65 60	49.2 49.2 52	19 19 19	M14 M16 M14	UC208D1 UCX08D1 UC308D1	32.5 36.0 45.0	17.8 20.4 24.0	1.24 1.60 1.83
45	UCP209 UCPX09 UCP309	54 58.7 67	190 222 245	146 156 190	54 67 67	17 20 20	20 23 30	20 26 24	106 116 129	60 65 65	49.2 51.6 57	19 19 22	M14 M16 M16	UC209D1 UCX09D1 UC309D1	36.0 39.0 58.5	20.4 23.2 32.0	1.60 1.82 2.50
50	UCP210 UCPX10 UCP310	57.2 63.5 75	206 241 275	159 171 212	60 73 75	20 20 20	23 23 35	21 27 27	114 126 143	65 70 75	51.6 55.6 61	19 22.2 22	M16 M16 M16	UC210D1 UCX10D1 UC310D1	39.0 48.0 68.5	23.2 29.2 38.5	1.82 2.29 2.99

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCP320N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Bearing Units

With one-side steel closing cover

With one-side steel closing cover

Standard	Number of unit	with steel cover	Number of unit w	vith cast iron cover		Di	men	sions		Unit	nașs (a	pprox.)
housing number	Double-side rubber sealed cover	One-side closing cover	Double-side rubber sealed cover	One-side closing cover	t_1	t_2	mn A_4	n H_3	A_5	Standard	kg With steel cover	With cast iron cover
P203	S-UCP201	SM-UCP201	C-UCP201	CM-UCP201	5	8	51	67	62	0.7	0.7	0.9
P203	S-UCP202	SM-UCP202	C-UCP202	CM-UCP202	5	8	51	67	62	0.7	0.7	0.9
P203	S-UCP203	SM-UCP203	C-UCP203	CM-UCP203	5	8	51	67	62	0.7	0.7	0.9
P204	S-UCP204	SM-UCP204	C-UCP204	CM-UCP204	5	8	51	70	62	0.7	0.7	0.9
P205 PX05	S-UCP205 S-UCPX05	SM-UCP205 SM-UCPX05	C-UCP205 C-UCPX05	CM-UCP205 CM-UCPX05	7	11 11	57 62	76 89	70 75	0.8 1.4	0.9 1.5	1.1 1.8
P305	- -	- -	C-UCP305	CM-UCP305	-	12	-	91	80	1.4	-	1.8
P206 PX06	S-UCP206 S-UCPX06	SM-UCP206 SM-UCPX06	C-UCP206 C-UCPX06	CM-UCP206 CM-UCPX06	7	11 10	62 72	88 99	75 80	1.4 1.8	1.4 2	1.7 2.4
P306	- -	- -	C-UCP306	CM-UCP306	-	11	-	105	85	1.8	_	2.5
P207	S-UCP207 S-UCPX07	SM-UCP207 SM-UCPX07	C-UCP207 C-UCPX07	CM-UCP207 CM-UCPX07	8	10 9	72 82	99 110	80 90	1.6 2.4	1.7 2.6	2 3.3
P307	- -	-	C-UCP307	CM-UCP307	-	13	-	115	95	2.4	-	3.2
P208 PX08	S-UCP208 S-UCPX08	SM-UCP208 SM-UCPX08	C-UCP208 C-UCPX08	CM-UCP208 CM-UCPX08	8	9 12	82 82	105 118	90 95	1.9 2.9	2.1 3.1	2.7 3.8
P308	-	- -	C-UCP308	CM-UCP308	-	13	-	125	105	3	-	4.1
P209 PX09	S-UCP209 S-UCPX09	SM-UCP209 SM-UCPX09	C-UCP209 C-UCPX09	CM-UCP209 CM-UCPX09	8	12 12	82 87	113 120	95 100	2.2 3.2	2.4 3.5	3 4.2
P309	- -	- -	C-UCPX09	CM-UCP309	-	14	-	140	110	4.1	- -	5.5
P210 PX10	S-UCP210 S-UCPX10	SM-UCP210 SM-UCPX10	C-UCP210 C-UCPX10	CM-UCP210 CM-UCPX10	8 10	12 11	87 92	119	100 100	2.7 4.1	2.8	3.6
P310	5-UCPX10	-	C-UCPX10	CM-UCP310	-	15	92	130 156	120	5.6	4.5 -	5.4 7.1

Shaft diameter: 55 to 90 mm

Jiiui	. Glairict		,	, 0 111													
Shaft dia.	Unit number 1) 2)					Din	nens						Fixing bolt	Number		ad rating	Fatigue
mm		Н	L	J	A	N	mm N_1	H_1	H_2	L_1	B	S			dynamic $C_{ m r}$	static kN $C_{0\mathrm{r}}$	load limit $C_{ m u}$
55	UCP211 UCPX11 UCP311	63.5 69.8 80	219 260 310	171 184 236	60 79 80	20 25 20	23 28 38	23 30 30	126 137 154	65 75 85	55.6 65.1 66	22.2 25.4 25	M16 M20 M16	UC211D1 UCX11D1 UC311D1	48.0 58.0 79.5	29.2 36.0 45.0	2.29 2.83 3.50
60	UCP212 UCPX12 UCP312	69.8 76.2 85	241 286 330	184 203 250	70 83 85	20 25 25	23 28 38	25 33 32	138 151 165	70 80 95	65.1 65.1 71	25.4 25.4 26	M16 M20 M20	UC212D1 UCX12D1 UC312D1	58.0 63.5 90.5	36.0 40.0 52.0	2.83 3.15 4.10
65	UCP213 UCPX13 UCP313	76.2 76.2 90	265 286 340	203 203 260	70 83 90	25 25 25	28 28 38	27 33 33	151 154 176	77 80 105	65.1 74.6 75	25.4 30.2 30	M20 M20 M20	UC213D1 UCX13D1 UC313D1	63.5 69.0 103	40.0 44.0 60.0	3.15 3.45 4.60
70	UCP214 UCPX14 UCP314	79.4 88.9 95	266 330 360	210 229 280	72 89 90	25 27 27	28 30 40	27 35 35	157 170 187	77 95 105	74.6 77.8 78	30.2 33.3 33	M20 M22 M22	UC214D1 UCX14D1 UC314D1	69.0 73.5 115	44.0 49.5 68.0	3.45 3.80 5.10
75	UCP215 UCPX15 UCP315	82.6 88.9 100	275 330 380	217 229 290	74 89 100	25 27 27	28 30 40	28 35 35	163 175 198	80 95 110	77.8 82.6 82	33.3 33.3 32	M20 M22 M22	UC215D1 UCX15D1 UC315D1	73.5 80.5 126	49.5 53.0 77.0	3.80 3.95 5.55
80		88.9 101.6 106	292 381 400	232 283 300	78 102 110	25 27 27	28 30 40	30 40 40	175 194 210	85 110 110	82.6 85.7 86	33.3 34.1 34	M20 M22 M22	UC216D1 UCX16D1 UC316D1	80.5 92.0 136	53.0 64.0 86.5	3.95 4.60 6.05
85		95.2 101.6 112	310 381 420	247 283 320	83 102 110	25 27 33	28 30 45	32 40 40	187 200 220	85 110 120	85.7 96 96	34.1 39.7 40	M20 M22 M27	UC217D1 UCX17D1 UC317D1	92.0 106 147	64.0 71.5 97.0	4.60 5.00 6.55
90	UCPX18	101.6 101.6 118	327 381 430	262 283 330	88 111 110	27 27 33	30 30 45	33 40 45	200 206 235	90 110 120	96 104 96	39.7 42.9 40	M22 M22 M27	UC218D1 UCX18D1 UC318D1	106 121 158	71.5 82.0 107	5.00 5.55 7.10

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCP320N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Standard housing	Number of unit	with steel cover	Number of unit w	vith cast iron cover		D	imens	sions		Unit	mass (a	pprox.)
number	Double-side rubber sealed cover	One-side closing cover	Double-side rubber sealed cover	One-side closing cover	t_1	t_2	mn A_4	H_3	A_5	Standard	kg With steel cover	With cast iron cover
P211 PX11 P311	S-UCP211 S-UCPX11	SM-UCP211 SM-UCPX11 -	C-UCP211 C-UCPX11 C-UCP311	CM-UCP211 CM-UCPX11 CM-UCP311	10 8 -	11 12 15	92 102 –	130 144 166	100 115 125	3.4 5.4 7.3	3.6 5.8 -	4.4 6.9 8.9
P212 PX12 P312	S-UCP212 S-UCPX12	SM-UCP212 SM-UCPX12 -		CM-UCP212 CM-UCPX12 CM-UCP312	8 11 -		102 107 –	143 155 179	115 120 135	4.7 6.8 9.4	5 7.3 –	6 8.6 11
P213 PX13 P313	S-UCP213 - -	SM-UCP213 - -	C-UCP213 C-UCPX13 C-UCP313	CM-UCP213 CM-UCPX13 CM-UCP313	11 - -	15 17 19	107 - -	155 159 190	120 135 140	5.6 7.1 10	5.8 - -	7.2 9.4 13
P214 PX14 P314	- - -	- - -	C-UCP214 C-UCPX14 C-UCP314	CM-UCP214 CM-UCPX14 CM-UCP314	1 1 1	17 17 19	- - -	175	135 135 140	6.5 9.3 12	- - -	8.4 12 14
P215 PX15 P315	- - -	- - -	C-UCP215 C-UCPX15 C-UCP315	CM-UCP215 CM-UCPX15 CM-UCP315	1 1 1	17 17 19	- - -	168 181 210	135 145 150	7.2 10 14	_ _ _	9.3 13 17
P216 PX16 P316	- - -	- - -	C-UCP216 C-UCPX16 C-UCP316	CM-UCP216 CM-UCPX16 CM-UCP316	1 1 1	17 19 18	- - -	181 198 221	145 155 155	8.7 14 17	- - -	11 17 21
P217 PX17 P317	- - -	- - -	C-UCP217 C-UCPX17 C-UCP317	CM-UCP217 CM-UCPX17 CM-UCP317	1 1 1	19 20 21	- - -	191 204 235	155 165 170	11 15 19	- - -	13 19 24
P218 PX18 P318	- - -	- - -	C-UCP218 C-UCPX18 C-UCP318	CM-UCP218 CM-UCPX18 CM-UCP318		20 22 21	- - -	204 208 246	180	13 16 22	_ _ _	16 21 27

F-16 F-17

Shaft diameter: 95 to 140 mm

Shaft dia.	Unit number 1) 2)					Din	nensi	ions					Fixing bolt	Number	Beari Basic l	ng bad rating	
mm		H	L	J	A	N	mm N_1	H_1	H_2	L_1	В	S			dynami $C_{ m r}$	c static kN $C_{0\mathrm{r}}$	load limit $C_{ m u}$
95	UCP319	125	470	360	120	36	50	45	250	125	103	41	M30	UC319D1	169	119	7.65
100	UCP320 UCPX20	140 127	490 432	380 337	120 121	36 33	50 36	50 45	275 244	130 125	108 117.5	42 49.2	M30 M27	UC320D1 UCX20D1	192 147	141 105	8.75 6.75
105	UCP321	140	490	380	120	36	50	50	280	130	112	44	M30	UC321D1	204	153	9.35
110	UCP322	150	520	400	140	40	55	55	300	135	117	46	M33	UC322D1	227	179	10.5
120	UCP324	160	570	450	140	40	55	65	320	140	126	51	M33	UC324D1	229	185	10.5
130	UCP326	180	600	480	140	40	55	75	355	140	135	54	M33	UC326D1	254	214	11.7
140	UCP328	200	620	500	140	40	55	75	390	140	145	59	M33	UC328D1	280	246	13.0

Bearing Units

With one-side steel closing cover

Standard housing	Number of unit w	rith steel cover	Number of unit wi	th cast iron cover		Di	mens	sions		Unit	mass (a	pprox.)
number	Double-side rubber sealed cover	One-side closing cover	Double-side rubber sealed cover	One-side closing cover	t_1	t_2	mn A_4	H_3	A_5	Standard	With steel cover	With cast iron cover
P319	-	-	C-UCP319	CM-UCP319	-	20	-	258	180	26	-	32
P320 PX20	-	- -		CM-UCP320 CM-UCPX20	-	20 23	- -	283 244		33 25	- -	39 29
P321	-	-	C-UCP321	CM-UCP321	-	20	-	290	195	35	-	42
P322	-	-	C-UCP322	CM-UCP322	-	20	-	313	200	43	-	52
P324	-	-	C-UCP324	CM-UCP324	-	22	-	335	215	50	-	67
P326	-	-	C-UCP326	CM-UCP326	-	21	-	375	225	69	-	85
P328	_	-	C-UCP328	CM-UCP328	_	21	_	407	235	84	_	100

With one-side steel closing cover

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCP320N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Shaft diameter: 20 to 55 mm

Silai	t diameter: 20	10 5	וווו כ	11												
Shaft dia.	Unit number 1) 2) 3)				Din	nens mm						Fixing bolt	Bea Number	ring Basic loa dynamic		Fatigue load limit
mm		Н	L	J	A	N	N_1	H_1	H_2	B_1	L_1			$C_{ m r}$	KN C_{0r}	C_{u}
20	UKP205;H2305X UKPX05;H2305X UKP305;H2305X	36.5 44.4 45		105 119 132	38 51 45	13 17 17	20	15 18 15	71 85 85	35 35 35	42 50 54	M10 M14 M14	UK205D1;H2305X UKX05D1;H2305X UK305D1;H2305X	15.5 21.6 23.5	7.85 11.3 10.9	0.55 0.795 0.855
25	UKP206;H2306X UKPX06;H2306X UKP306;H2306X	42.9 47.6 50		121 127 140	48 57 50	17 17 17	20 20 20	17 20 18	83 93 95	38 38 38	54 54 54	M14 M14 M14	UK206D1;H2306X UKX06D1;H2306X UK306D1;H2306X	21.6 28.4 29.5	11.3 15.3 15.0	0.795 1.09 1.14
30	UKP207;H2307X UKPX07;H2307X UKP307;H2307X	47.6 54 56	167 203 210	127 144 160	48 57 56	17 17 17	20 20 25	18 21 20	93 105 106	43 43 43	54 60 60	M14 M14 M14	UK207D1;H2307X UKX07D1;H2307X UK307D1;H2307X	28.4 32.5 37.0	15.3 17.8 19.1	1.09 1.24 1.47
35	UKP208;H2308X UKPX08;H2308X UKP308;H2308X	49.2 58.7 60		137 156 170	54 67 60	17 20 17	20 23 27	18 26 22	98 111 116	46 46 46	52 65 60	M14 M16 M14	UK208D1;H2308X UKX08D1;H2308X UK308D1;H2308X	32.5 36.0 45.0	17.8 20.4 24.0	1.24 1.60 1.83
40	UKP209;H2309X UKPX09;H2309X UKP309;H2309X	54 58.7 67	190 222 245	146 156 190	54 67 67	17 20 20	20 23 30	20 26 24	106 116 129	50 50 50	60 65 65	M14 M16 M16	UK209D1;H2309X UKX09D1;H2309X UK309D1;H2309X	36.0 39.0 58.5	20.4 23.2 32.0	1.60 1.82 2.50
45	UKP210;H2310X UKPX10;H2310X UKP310;H2310X	57.2 63.5 75		159 171 212	60 73 75	20 20 20	23 23 35	21 27 27	114 126 143	55 55 55	65 70 75	M16 M16 M16	UK210D1;H2310X UKX10D1;H2310X UK310D1;H2310X	39.0 48.0 68.5	23.2 29.2 38.5	1.82 2.29 2.99
50	UKP211;H2311X UKPX11;H2311X UKP311;H2311X	63.5 69.8 80		171 184 236	60 79 80	20 25 20	23 28 38	23 30 30	126 137 154	59 59 59	65 75 85	M16 M20 M16	UK211D1;H2311X UKX11D1;H2311X UK311D1;H2311X	48.0 58.0 79.5	29.2 36.0 45.0	2.29 2.83 3.50
55	UKP212;H2312X UKPX12;H2312X UKP312;H2312X	69.8 76.2 85		184 203 250	70 83 85	20 25 25	23 28 38	25 33 32	138 151 165	62 62 62	70 80 95	M16 M20 M20	UK212D1;H2312X UKX12D1;H2312X UK312D1;H2312X	58.0 63.5 90.5	36.0 40.0 52.0	2.83 3.15 4.10

F-20

Bearing Units

With one-side steel closing cover

With one-side steel closing cover

Standard housing	Number of unit	t with steel cover	Number of unit w	ith cast iron cover		Di	men	sion	S	Unit	mass (a kg	pprox.)
number	Double-side rubber sealed cover	One-side closing cover	Double-side rubber sealed cover	One-side closing cover	t_1	t_2	mr A_4	n H_3	A_5	Standard	With steel cover	With cast iron cover
P205 PX05	S-UKP205;H2305X	SM-UKP205;H2305X -	C-UKPX05;H2305X	CM-UKP205;H2305X CM-UKPX05;H2305X	-	11 12	-	76 89	70 75	0.8	0.9	1.2 1.8
P305	-	_	C-UKP305;H2305X	CM-UKP305;H2305X	-	14	-	91	80	1.4	-	1.8
P206 PX06	S-UKP206;H2306X	SM-UKP206;H2306X		CM-UKP206;H2306X CM-UKPX06;H2306X	-	12 13	62	88 99	75 80	1.4 1.7	1.4	1.8 2.2
P306	-	=	C-UKP306;H2306X	CM-UKP306;H2306X	-	15	-	105	85	1.8	-	2.6
P207 PX07	S-UKP207;H2307X	SM-UKP207;H2307X		CM-UKP207;H2307X CM-UKPX07;H2307X	10	12 15	72 –	99 110	80 90	1.7 2.4	1.8	2.1 3.3
P307	-	-		CM-UKP307;H2307X		17	-	115	95	2.6	-	3.2
P208	S-UKP208;H2308X	SM-UKP208;H2308X	C-UKP208;H2308X	CM-UKP208;H2308X	13	14	82	105	90	2	2.2	2.8
PX08 P308	-	<u>-</u> -		CM-UKPX08;H2308X CM-UKP308;H2308X	-	17 19	-	118 125	95 105	3.2	-	4.1 4.2
Door	O LUCTORO LIGOROV	ALL LUCBOOK LIGOROV	O LUCTORO LIGOROV	211 11/2000 110000V					0.5			
P209 PX09	S-UKP209;H2309X	SM-UKP209;H2309X		CM-UKP209;H2309X CM-UKPX09;H2309X	12	16	82	113 120	95	2.3	2.5	3.2 4.3
P309	-	-		CM-UKP309;H2309X	-	19	-	140	110	4.1	-	5.5
P210	S-UKP210;H2310X	SM-UKP210;H2310X		CM-UKP210;H2310X	13		87	119	100	2.9	3	3.8
PX10 P310	-	- -		CM-UKPX10;H2310X CM-UKP310;H2310X	-	15 21		130 156		4.2 5.6	-	5.4 7.2
P211	S-UKP211:H2311X	SM-UKP211;H2311X	C-UKP211:H2311X	CM-UKP211;H2311X	14	15	92	130	100	3.6	3.7	4.7
PX11	-	-	C-UKPX11;H2311X	CM-UKPX11;H2311X		21		144	115	5.3	-	6.8
P311	-	_	C-UKP311;H2311X	CM-UKP311;H2311X	-	22	-	166	125	7.3	-	9
P212	S-UKP212;H2312X	SM-UKP212;H2312X		CM-UKP212;H2312X					115	4.7	5.1	6.1
PX12 P312	-	_		CM-UKPX12;H2312X CM-UKP312;H2312X		22 25		155 179	120	6.8 9.3	-	8.6
1012	_	-	0-0AF312,112312A	OM-OKF312,112312A	_	20	_	113	100	9.0	_	- 11

3) The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Shaft diameter: 60 to 125 mm

	· · a ·	diameter. 00															
	Shaft dia.	Unit number 1) 2) 3)				Din	nens	ions	3				Fixing bolt	Bea Number		ad rating	
							mm	1							dynamic		load limit
-	mm				,		3.7	3.7		**	n	,				kN	~
			H	L	J	A	IV	N_1	H_1	H_2	B_1	L_1			$C_{\rm r}$	C_{0r}	C_{u}
		UKP213;H2313X	76.2	265	203	70	25	28	27	151	65	77	M20	UK213D1;H2313X	63.5	40.0	3.15
	60	UKPX13:H2313X			203	83	25			154	65	80	M20	UKX13D1;H2313X	69.0		3.45
	OU	UKP313:H2313X	90	340		90	25	38		176		105	M20	UK313D1;H2313X	103	60.0	
		UKP313,FIZ313A	90	340	200	90	25	30	33	170	03	105	IVIZU	טאטוטטו,חבטוטא	103	00.0	4.00
		UKP215:H2315X	82.6	275	217	74	25	28	28	163	73	80	M20	UK215D1;H2315X	73.5	49.5	3.80
	65	UKPX15:H2315X			229	89	27	30	35	175	73	95	M22	UKX15D1;H2315X	80.5		3.95
	03	UKP315;H2315X		380	290	100	27	40	35	198		110	M22	UK315D1;H2315X	126	77.0	5.55
		UKF313,112313X	100	300	290	100	21	40	33	190	73	110	IVIZZ	UN313D1,112313A	120	11.0	3.33
		UKP216:H2316X	88.9	202	232	78	25	28	30	175	78	85	M20	UK216D1:H2316X	80.5	53.0	3.95
	70	UKPX16:H2316X				102	27		40	194		110	M22	UKX16D1;H2316X	92.0		4.60
	,,	UKP316:H2316X		400	300	110	27	40	40	210		110	M22	UK316D1;H2316X	136	86.5	6.05
		OKI OTO, ITZOTOX	100	400	000	110		70	70	210	70	110	IVIZZ	OROTODT, FIZOTOX	100	00.0	0.00
		UKP217:H2317X	95.2	310	247	83	25	28	32	187	82	85	M20	UK217D1:H2317X	92.0	64.0	4.60
	75	UKPX17:H2317X					27	30	40	200		110	M22	UKX17D1;H2317X	106	71.5	5.00
		UKP317:H2317X		420	320	110	33	45	40	220		120	M27	UK317D1;H2317X	147	97.0	6.55
		C10 C11,112C1170		0	0_0		-					0	/	01101121,11201177		07.0	0.00
		UKP218:H2318X	101.6	327	262	88	27	30	33	200	86	90	M22	UK218D1;H2318X	106	71.5	5.00
	80	UKPX18;H2318X			283	111	27	30	40	206		110	M22	UKX18D1:H2318X	121	82.0	5.55
		UKP318:H2318X		430		110	33	45	45	235		120	M27	UK318D1:H2318X	158	107	7.10
_																	
	85	UKP319;H2319X	125	470	360	120	36	50	45	250	90	125	M30	UK319D1;H2319X	169	119	7.65
		,												<u> </u>			
	00	UKPX20;H2320X	127	432	337	121	33	36	45	244	97	125	M27	UKX20D1;H2320X	147	105	6.75
	90	UKP320;H2320X	140	490	380	120	36	50	50	275	97	130	M30	UK320D1;H2320X	192	141	8.75
		,												<u> </u>			
1	100	UKP322;H2322X	150	520	400	140	40	55	55	300	105	135	M33	UK322D1;H2322X	227	179	10.5
_																	
1	110	UKP324;H2324X	160	570	450	140	40	55	65	320	112	140	M33	UK324D1;H2324X	229	185	10.5
1	115	UKP326;H2326	180	600	480	140	40	55	75	355	121	140	M33	UK326D1;H2326	254	214	11.7
		LUCBOOO LIGOOO	000	000	=00		40			000			1400	LU(000D / LI0000	000	0.40	40.0
1	125	UKP328;H2328	200	620	500	140	40	55	/5	390	131	140	M33	UK328D1;H2328	280	246	13.0

¹⁾ Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UKP310N1; H2310X

Bearing Units

With one-side steel closing cover

With one-side steel closing cover

NTN

Standard housing	Number of unit	with steel cover	Number of unit v	vith cast iron cover		Di	men	sion	s	Unit	mass (a kg	pprox.)
number	Double-side rubber sealed	One-side closing	Double-side rubber sealed	One-side closing			mr			Standard	With steel	With cast iron
	cover	cover	cover	cover	t_1	t_2	A_4	H_3	A_5		cover	cover
P213	S-UKP213;H2313X	SM-UKP213;H2313X	C-UKP213;H2313X	CM-UKP213;H2313X	17	21	107	155	120	5.6	5.9	7.4
PX13	-	-	C-UKPX13;H2313X	CM-UKPX13;H2313X	-	26	-	159	135	7	-	9.2
P313	-	-	C-UKP313;H2313X	CM-UKP313;H2313X	-	25	-	190	140	10	-	13
P215	_	-	C-UKP215;H2315X	CM-UKP215;H2315X	_	24	_	168	135	7.6	_	9.9
PX15	-	-	C-UKPX15;H2315X	CM-UKPX15;H2315X	-	29	-	181	145	10	-	13
P315	-	-	C-UKP315;H2315X	CM-UKP315;H2315X	-	26	-	210	150	14	-	18
P216	_	_	C-UKP216;H2316X	CM-UKP216;H2316X	_	27	_	181	145	9.2	_	12
PX16	-	-	C-UKPX16;H2316X	CM-UKPX16;H2316X	-	31	_	198	155	14	-	17
P316	-	-	C-UKP316;H2316X	CM-UKP316;H2316X	-	24	-	221	155	17	-	21
P217	-	-	C-UKP217;H2317X	CM-UKP217;H2317X	_	30	_	191	155	11	_	14
PX17	-	-	C-UKPX17;H2317X	CM-UKPX17;H2317X	-	35	-	204	165	15	-	18
P317	-	-	C-UKP317;H2317X	CM-UKP317;H2317X	-	29	-	235	170	19	-	24
P218	_	_	C-UKP218;H2318X	CM-UKP218;H2318X	_	35	_	204	165	13	_	16
PX18	-	-	C-UKPX18;H2318X	CM-UKPX18;H2318X	-	41	-	208	180	16	-	20
P318	_	-	C-UKP318;H2318X	CM-UKP318;H2318X	-	27	-	246	170	22	-	28
P319	-	-	C-UKP319;H2319X	CM-UKP319;H2319X	-	29	-	258	180	27	-	33
PX20	_	_	C-UKPX20:H2320X	CM-UKPX20;H2320X	_	43	_	244	195	24	_	28
P320	-	-	C-UKP320;H2320X	CM-UKP320;H2320X	-	29	-	283	190	33	-	39
P322	-	-	C-UKP322;H2322X	CM-UKP322;H2322X	-	30	-	313	200	43	-	54
P324	-	-	C-UKP324;H2324X	CM-UKP324;H2324X	-	32	-	335	215	50	-	67
P326	-	-	C-UKP326;H2326	CM-UKP326;H2326	-	34	-	375	225	69	-	86
P328	-	-	C-UKP328;H2328	CM-UKP328;H2328	-	36	-	407	235	84	-	101

²⁾ Unit numbers with the suffix "X" signify narrow slit type adapters, and use washers with straight inner tabs.
3) The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Cast iron square flanged unit UCF type / cylindrical bore type, setscrew type

With steel closing cover

Shaft diameter: 12 to 60 mm

2	IIdi	t diamete	21. IZ	2 10 6	ou mi	m										
	Shaft dia.	Unit number ^{1) 2)}				ı	Dimens mm					Fixing bolt	Number	Bearin Basic loa dynamic	ng ad rating static	Fatigue load limit
	mm						111111							uynanic	kN	IUdu IIIIII
			L	J	A_2	A_1	A	N	A_0	B	S			$C_{\rm r}$	C_{0r}	C_{u}
	12	UCF201	86	64	15	11	25.5	12	33.3	31	12.7	M10	UC201D1	14.2	6.65	0.505
	15	UCF202	86	64	15	11	25.5	12	33.3	31	12.7	M10	UC202D1	14.2	6.65	0.505
	17	UCF203	86	64	15	11	25.5	12	33.3	31	12.7	M10	UC203D1	14.2	6.65	0.505
	20	UCF204	86	64	15	11	25.5	12	33.3	31	12.7	M10	UC204D1	14.2	6.65	0.505
		UCF205	95	70	16	13	27	12	35.8	34.1	14.3	M10	UC205D1	15.5	7.85	0.55
	25	UCFX05 UCF305	108 110	83 80	18 16	13 13	30 29	12 16	40.2 39	38.1 38	15.9 15	M10 M14	UCX05D1 UC305D1	21.6 23.5	11.3 10.9	0.795 0.855
Ī	30	UCF206 UCFX06	108 117	83 92	18 19	13 14	31 34	12 16	40.2 44.4	38.1 42.9	15.9 17.5	M10 M14	UC206D1 UCX06D1	21.6 28.4	11.3 15.3	0.795 1.09
	50	UCF306	125	95	18	15	32	16	44	43	17.5	M14	UC306D1	29.5	15.0	1.14
	35	UCF207 UCFX07	117 130	92 102	19 21	15 14	34 38	14 16	44.4 51.2	42.9 49.2	17.5 19	M12 M14	UC207D1 UCX07D1	28.4 32.5	15.3 17.8	1.09 1.24
		UCF307	135	100	20	16	36	19	49	48	19	M16	UC307D1	37.0	19.1	1.47
	40	UCF208 UCFX08	130 137	102 105	21 22	15 14	36 40	16 19	51.2 52.2	49.2 49.2	19 19	M14 M16	UC208D1 UCX08D1	32.5 36.0	17.8 20.4	1.24 1.60
	40	UCF308	150	112	23	17	40	19	56	52	19	M16	UC308D1	45.0	24.0	1.83
		UCF209	137	105	22	16	38	16	52.2	49.2	19	M14	UC209D1	36.0	20.4	1.60
	45	UCFX09 UCF309	143 160	111 125	23 25	14 18	40 44	19 19	55.6 60	51.6 57	19 22	M16 M16	UCX09D1 UC309D1	39.0 58.5	23.2 32.0	1.82 2.50
		UCF210	143	111	22	16	40	16	54.6	51.6	19	M14	UC210D1	39.0	23.2	1.82
	50	UCFX10 UCF310	162 175	130 132	26 28	20 19	44 48	19 23	59.4 67	55.6 61	22.2 22	M16 M20	UCX10D1 UC310D1	48.0 68.5	29.2 38.5	2.29 2.99
		UCF211	162	130	25	18	43	19	58.4	55.6	22.2	M16	UC211D1	48.0	29.2	2.29
	55	UCFX11 UCF311	175 185	143 140	29 30	20 20	49 52	19 23	68.7 71	65.1 66	25.4 25	M16 M20	UCX11D1 UC311D1	58.0 79.5	36.0 45.0	2.83 3.50
		UCF212	175	143	29	18	48	19	68.7	65.1	25.4	M16	UC212D1	58.0	36.0	2.83
	60	UCFX12	187	149	34	21	59	19	73.7	65.1	25.4	M16	UCX12D1	63.5	40.0	3.15
		UCF312	195	150	33	22	56	23	78	71	26	M20	UC312D1	90.5	52.0	4.10

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCF210N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

With cast iron closing cover

Standard housing	Number of unit	with steel cover	Number of unit w	rith cast iron cover		Dim	ensio	าร	Unit n	nass (ap	oprox.)
number							mm		Standard	With	With
	Rubber sealed cover	Closing cover	Rubber sealed cover	Closing cover	t_1	t_2	A_4	A_5		steel cover	cast iron cover
F204	S-UCF201	SM-UCF201	C-UCF201	CM-UCF201	5	8	40.5	46	0.6	0.6	0.8
F204	S-UCF202	SM-UCF202	C-UCF202	CM-UCF202	5	8	40.5	46	0.6	0.6	0.8
F204	S-UCF203	SM-UCF203	C-UCF203	CM-UCF203	5	8	40.5	46	0.6	0.6	0.8
F204	S-UCF204	SM-UCF204	C-UCF204	CM-UCF204	5	8	40.5	46	0.6	0.6	0.7
F205	S-UCF205	SM-UCF205	C-UCF205	CM-UCF205	7	11	44.5	51	0.8	0.8	0.9
FX05	-	-	C-UCFX05	CM-UCFX05	7		49	56	1.1	1.2	1.3
F305	_	-	C-UCF305	CM-UCF305	-	12	-	56	1.1	-	1.4
F206	S-UCF206	SM-UCF206	C-UCF206	CM-UCF206	7	11	49	56	1.1	1.1	1.3
FX06	_	-	C-UCFX06	CM-UCFX06	8		55	59	1.6	1.8	1.9
F306	-	-	C-UCF306	CM-UCF306	-	11	-	60	1.6	-	2.1
F207	S-UCF207	SM-UCF207	C-UCF207	CM-UCF207	8	10	55	59	1.5	1.5	1.8
FX07	S-UCFX07	SM-UCFX07	C-UCFX07	CM-UCFX07	8	9	62	66	2.1	2.2	2.5
F307	-	-	C-UCF307	CM-UCF307	-	14	-	68	2.1	-	2.6
F208	S-UCF208	SM-UCF208	C-UCF208	CM-UCF208	8	9	62	66	1.7	1.8	2.2
FX08	S-UCFX08	SM-UCFX08	C-UCFX08	CM-UCFX08	8		63	70	2.3	2.4	2.7
F308	-	-	C-UCF308	CM-UCF308	-	14	-	76	2.7	-	3.4
F209	S-UCF209	SM-UCF209	C-UCF209	CM-UCF209	8		63	70	2.1	2.2	2.6
FX09	S-UCFX09	SM-UCFX09	C-UCFX09	CM-UCFX09	7		65.5	73	2.5	2.6	3
F309	-	-	C-UCF309	CM-UCF309	-	14	-	80	3.4	-	4.3
F210	S-UCF210	SM-UCF210	C-UCF210	CM-UCF210	8	12	65.5	72	2.5	2.5	3
FX10	S-UCFX10	SM-UCFX10	C-UCFX10	CM-UCFX10	9	11	71	76	3.8	3.9	4.3
F310	-	-	C-UCF310	CM-UCF310	-	15	-	88	4.5	-	5.8
F211	S-UCF211	SM-UCF211	C-UCF211	CM-UCF211	10		71	75	3.3	3.4	4
FX11	S-UCFX11	SM-UCFX11	C-UCFX11	CM-UCFX11	8		80	86	4.8	5	5.5
F311	-	-	C-UCF311	CM-UCF311	-	15	_	92	5.3	-	6.7
F212	S-UCF212	SM-UCF212	C-UCF212	CM-UCF212	8		80	86	3.9	4.1	4.8
FX12	S-UCFX12	SM-UCFX12	C-UCFX12	CM-UCFX12	7		83.5	94	6.4	6.6	7.3
F312	-	-	C-UCF312	CM-UCF312	-	16	-	100	6.3	-	7.8
	l		1		ı				1 1		1

Cast iron square flanged unit UCF type / cylindrical bore type, setscrew type

Shaft diameter: 65 to 140 mm

-	onai	t diamete	er. 03	3 10 1	40 11	1111										
	Shaft dia.	Unit number ^{1) 2)}					Dimen mr					Fixing bolt	Number	Beari Basic lo dynamic	ng ad rating static	Fatigue load limit
	mm		L	J	A_2	A_1	A	N	A_0	В	S			$C_{ m r}$	kN C_{0r}	$C_{ m u}$
	65	UCF213 UCFX13 UCF313	187 187 208	149 149 166	30 34 33	22 21 22	50 59 58	19 19 23	69.7 78.4 78	65.1 74.6 75	25.4 30.2 30	M16 M16 M20	UC213D1 UCX13D1 UC313D1	63.5 69.0 103	40.0 44.0 60.0	3.15 3.45 4.60
	70	UCF214 UCFX14 UCF314		152 152 178	31 37 36	22 24 25	54 60 61	19 23 25	75.4 81.5 81	74.6 77.8 78	30.2 33.3 33	M16 M20 M22	UC214D1 UCX14D1 UC314D1	69.0 73.5 115	44.0 49.5 68.0	3.45 3.80 5.10
	75	UCF215 UCFX15 UCF315		159 152 184	34 40 39	22 24 25	56 68 66	19 23 25	78.5 89.3 89	77.8 82.6 82	33.3 33.3 32	M16 M20 M22	UC215D1 UCX15D1 UC315D1	73.5 80.5 126	49.5 53.0 77.0	3.80 3.95 5.55
	80	UCF216 UCFX16 UCF316		165 171 196	34 40 38	22 24 27	58 70 68	23 23 31	83.3 91.6 90	82.6 85.7 86	33.3 34.1 34	M20 M20 M27	UC216D1 UCX16D1 UC316D1	80.5 92.0 136	53.0 64.0 86.5	3.95 4.60 6.05
	85	UCF217 UCFX17 UCF317		175 171 204	36 40 44	24 24 27	63 70 74	23 23 31	87.6 96.3 100	85.7 96 96	34.1 39.7 40	M20 M20 M27	UC217D1 UCX17D1 UC317D1	92.0 106 147	64.0 71.5 97.0	4.60 5.00 6.55
	90	UCF218 UCFX18 UCF318	214	187 171 216	40 45 44	24 24 30	68 76 76		96.3 106.1 100	96 104 96	39.7 42.9 40	M20 M20 M30	UC218D1 UCX18D1 UC318D1	106 121 158	71.5 82.0 107	5.00 5.55 7.10
	95	UCF319	290	228	59	30	94	35	121	103	41	M30	UC319D1	169	119	7.65
	100	UCFX20 UCF320	268 310	211 242	59 ³⁾ 59	31 32	97 94		127.3 125	117.5 108	49.2 42	M27 M33	UCX20D1 UC320D1	147 192	105 141	6.75 8.75
	105	UCF321	310	242	59	32	94	38	127	112	44	M33	UC321D1	204	153	9.35
	110	UCF322	340	266	60	35	96	41	131	117	46	M36	UC322D1	227	179	10.5
	120	UCF324	370	290	65	40	110	41	140	126	51	M36	UC324D1	229	185	10.5
	130	UCF326	410	320	65	45	115	41	146	135	54	M36	UC326D1	254	214	11.7
	140	UCF328	450	350	75	55	125	41	161	145	59	M36	UC328D1	280	246	13.0

With cast iron closing cover

Standard housing	Number of unit	with steel cover	Number of unit w	vith cast iron cover		Dim	ensic	ons	Unit n	nass (ap	oprox.)
number	Rubber sealed cover	Closing cover	Rubber sealed	Closing	t_1	t_2	mm A_4	A_5	Standard	With steel	With cast iron cover
	cover	cover	5515	cover	υı	_	-	Ü		COVE	COVE
F213	S-UCF213	SM-UCF213	C-UCF213	CM-UCF213	11		83.5		5.5	5.6	6.4
FX13 F313	_	_	C-UCFX13 C-UCF313	CM-UCFX13 CM-UCF313	_	16 19	_	101 103	6.6 8	_	7.8 9.7
гото	_		C-UCF313	CIVI-UCF313	_	19		103	0	_	9.7
F214	-	-	C-UCF214	CM-UCF214	-	16	-	98	6.3	-	7.4
FX14	-	-	C-UCFX14	CM-UCFX14	-	17	-	105	7.1	-	8.3
F314	-	-	C-UCF314	CM-UCF314	-	19	-	106	9.4	_	11
F215	_	_	C-UCF215	CM-UCF215	-	17	_	102	6.6	_	7.8
FX15	_	-	C-UCFX15	CM-UCFX15	_	16	_	112	8.6	_	9.9
F315	-	-	C-UCF315	CM-UCF315	-	19	-	114	11	-	13
F216	_	_	C-UCF216	CM-UCF216	_	16	_	106	7.9	_	9.2
FX16	_	_	C-UCFX16	CM-UCFX16	_	20	_	118	11	_	12
F316	_	_	C-UCF316	CM-UCF316	_	19	_	116	14	_	16
1010			0 00.0.0	CIII CC1 C1C				110	•		
F217	-	_	C-UCF217	CM-UCF217	-	20	_	114	9.8	_	12
FX17	-	_	C-UCFX17	CM-UCFX17	-	19	-	122	12	-	14
F317	-	_	C-UCF317	CM-UCF317	-	21	-	129	15	-	19
F218	_	_	C-UCF218	CM-UCF218	_	19	_	122	12	_	13
FX18	_	_	C-UCFX18	CM-UCFX18	_	22	_	135	13	_	15
F318	-	-	C-UCF318	CM-UCF318	-	21	-	129	19	-	23
F319	-	-	C-UCF319	CM-UCF319	-	20	-	149	22	-	25
FX20	_	_	C-UCFX20	CM-UCFX20	_	23	_	146.5	21	_	23
F320	-	-	C-UCF320	CM-UCF320	-	20	-	154	27	-	32
F321	-	-	C-UCF321	CM-UCF321	_	20	-	156	26	-	32
F322	-	-	C-UCF322	CM-UCF322	-	20	-	160	34	-	40
F324	-	-	C-UCF324	CM-UCF324	-	22	-	172	48	-	56
F326	-	-	C-UCF326	CM-UCF326	-	22	-	178	63	-	73
F328	-	-	C-UCF328	CM-UCF328	-	21	-	192	90	-	100

Bearing Units

Sha	ift diame	ter:	12 1	to 70	m	m														
Sha dia	ft Unit number ¹	12)					S	itandared,	ensio mm With cast iron	ns						Fixing bolt	Number	Bearin Basic load dynamic	d ratings	
mr	n	L	J	(J_1)	A_2	N		teel cover	cover	A	H_3	A_0	В	S	F (Min.)			$C_{ m r}$	kN $C_{0\mathrm{r}}$	$C_{ m u}$
12	UCFC20	1 100	78	55.2	10	12	5	20.5	20.5	25.5	62	33.3	31	12.7	-	M10	UC201D1	14.2	6.65	0.505
15	UCFC20	100	78	55.2	10	12	5	20.5	20.5	25.5	62	33.3	31	12.7	-	M10	UC202D1	14.2	6.65	0.505
17	UCFC20	100	78	55.2	10	12	5	20.5	20.5	25.5	62	33.3	31	12.7	-	M10	UC203D1	14.2	6.65	0.505
20	UCFC20	100	78	55.2	10	12	5	20.5	20.5	25.5	62	33.3	31	12.7	-	M10	UC204D1	14.2	6.65	0.505
25	UCFC20						6	21 24	22	27 30	70 76	35.8 38.2		14.3 15.9	- 46		UC205D1 UCX05D1	15.5 21.6		0.55 0.795
30	UCFC20						8 9.5	23 22.5	24.5 -	31 32	80 85	40.2 42.9		15.9 17.5	- 52		UC206D1 UCX06D1	21.6 28.4		0.795 1.09
35	UCFC20			77.8 78.5			8 11	26 26	26 -	34 37	90 92		42.9 49.2		- 59		UC207D1 UCX07D1	28.4 32.5		1.09 1.24
40	UCFC20			84.9 78.5			10 11	26 26	27.5 –	36 37	100 92	51.2 50.2	49.2 49.2		- 63		UC208D1 UCX08D1	32.5 36.0		1.24 1.60
45	UCFC20						12 12	26 25	28 -	38 37	105 108	52.2 52.6	49.2 51.6		- 68		UC209D1 UCX09D1	36.0 39.0		1.60 1.82
50	UCFC21			97.6 96.2			12 16	28 25	29 –	40 41	110 118	54.6 56.4	51.6 55.6	19 22.2	- 75		UC210D1 UCX10D1	39.0 48.0	23.2 29.2	1.82 2.29
55	UCFC21						12 22	31 26	32.5 -	43 48	125 127	58.4 65.7		22.2 25.4	- 83		UC211D1 UCX11D1		29.2 36.0	2.29 2.83
60	UCFC21: UCFCX1						12 20	36 33	38 -	48 53	135 140	68.7 70.7		25.4 25.4	-		UC212D1 UCX12D1	58.0 63.5		2.83 3.15
65	UCFC21						14 20	36 33	38	50 53	145 140	69.7 75.4		25.4 30.2	94		UC213D1 UCX13D1	63.5 69.0		3.15 3.45
70	UCFC21	_					14 20	40 36	39.5 –	54 56	150 164	75.4 78.5	74.6 77.8				UC214D1 UCX14D1	69.0 73.5		3.45 3.80

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCFC210N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

										,	,
Standard housing	Number of unit	with steel cover	Number of unit w	vith cast iron cover		Dim	ension	IS	Unit r	nass (ap kg	oprox.)
number	Rubber sealed cover	Closing cover	Rubber sealed cover	Closing cover	t_1		mm A_4		Standard		With cast iron cover
FC204	S-UCFC201	SM-UCFC201	C-UCFC201	CM-UCFC201	5	8	40.5	46	0.8	0.8	0.9
FC204	S-UCFC202	SM-UCFC202	C-UCFC202	CM-UCFC202	5	8	40.5	46	0.8	0.8	0.9
FC204	S-UCFC203	SM-UCFC203	C-UCFC203	CM-UCFC203	5	8	40.5	46	0.8	0.8	0.9
FC204	S-UCFC204	SM-UCFC204	C-UCFC204	CM-UCFC204	5	8	40.5	46	0.7	0.7	0.9
FC205 FCX05	S-UCFC205		C-UCFC205		7 -	11 –	44.5 –	51 –	1 1.2	1 –	1.2
FC206 FCX06	S-UCFC206	SM-UCFC206	C-UCFC206	CM-UCFC206	7	11 -	49 –	56 –	1.3 1.5	1.4 -	1.6 -
FC207 FCX07	S-UCFC207	SM-UCFC207	C-UCFC207	CM-UCFC207	8	10 –	55 –	59 –	1.6 1.9	1.7 -	1.9 -
FC208 FCX08	S-UCFC208	SM-UCFC208	C-UCFC208	CM-UCFC208	8	9	62 -	66 –	2	2.1 -	2.4 -
FC209 FCX09		SM-UCFC209	C-UCFC209	CM-UCFC209	8	12 -	63 -	70 –	2.7 2.6	2.7 -	3.2
FC210 FCX10	S-UCFC210	SM-UCFC210	C-UCFC210	CM-UCFC210	8	12 –	65.5 –	72 –	3 3.1	3.1 -	3.6 -
FC211 FCX11	S-UCFC211 -	SM-UCFC211 -	C-UCFC211	CM-UCFC211 -	10 –	11 –	71 –	75 –	4 4.2	4.2 -	4.8
FC212 FCX12	S-UCFC212	SM-UCFC212	C-UCFC212	CM-UCFC212 -	8	12 –	80 -	86 -	4.9 5.5	5.1 -	5.9 -
FC213 FCX13	S-UCFC213	SM-UCFC213	C-UCFC213	CM-UCFC213		14 –		89.5 –	5.8 5.7	6 -	6.8
FC214 FCX14	<u> </u>	- -	C-UCFC214	CM-UCFC214	_	16 –	- -	98 –	7 7.3	_	8 –
			1		ı						I

Shaft diameter: 75 to 100 mm

Jilai	t ulaillet	C1.	, ,	10 10	0 1															
Shaft dia. mm	Unit number ¹⁾²⁾	L	J	(J_1)	A_2	N		tandared,	cast iron	ons A	H_3	A_0	В	S	$F_{(\mathrm{Min.})}$	Fixing bolt	Number	Bearir Basic loa dynamic $C_{ m r}$	d ratings	Fatigue load limit $C_{ m u}$
75	UCFC215 UCFCX15	-					16 22	40 35	43 -	56 57	160 164	78.5 83.3		33.3 33.3			UC215D1 UCX15D1		49.5 53.0	3.80 3.95
80	UCFC216 UCFCX16	-					16 25	42 36	43 -	58 61	170 186	83.3 86.6		33.3 34.1			UC216D1 UCX16D1		53.0 64.0	3.95 4.60
85	UCFC217 UCFCX17						18 25	45 36	45.5 -	63 61	180 186	87.6 91.3	85.7 96	34.1 39.7	_	M20 M20	UC217D1 UCX17D1	92.0 106	64.0 71.5	4.60 5.00
90	UCFC218 UCFCX18						18 28	50 43	50 -	68 71	190 186	96.3 101.1	96 104	39.7 42.9		M20 M20	UC218D1 UCX18D1	106 121	71.5 82.0	5.00 5.55
100	UCFCX20	276	238	168.3	22	23	28	66	-	94	206	118.3	117.5	49.2	139	M20	UCX20D1	147	105	6.75

Bearing Units

rubber sealed cast iron cover	With cast iron

Standard housing	Number of unit w	ith steel cover	Number of unit w	vith cast iron cover		Dime	nsion	ıs	Unit r	nass (ap	oprox.)
number	Rubber sealed cover	Closing cover	Rubber sealed cover	Closing cover	t_1	t_2	M_{4}		Standard	With steel cover	With cast iron cover
FC215 FCX15	<u>-</u>	- -	C-UCFC215	CM-UCFC215	_	17 –	-	102 –	7.4 8	_ _	8.8
FC216 FCX16	-	-	C-UCFC216	CM-UCFC216 -	-	16 –	- -	106 –	9.1 12	- -	10 -
FC217 FCX17	-	- -	C-UCFC217	CM-UCFC217	_	20 –	- -	114 –	11 12	- -	12 -
FC218 FCX18	-	- -	C-UCFC218	CM-UCFC218	-	19 –	- -	122 –	13 12	- -	15 –
FCX20	-	-	-	-	-	_	-	_	18	_	_

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCFC218N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Cast iron rhombus flanged unit UCFL type / cylindrical bore type, setscrew type

Shaf	t diamete	er: 1	2 to	60 n	nm											
Shaft dia.	Unit number ^{1) 2)}					Dim	ensio mm	ns				Fixing bolt	Number	Bearin Basic load dynamic	d ratings static	Fatigue load limit
mm		Н	J	A_2	A_1	A	N	L	A_0	B	S			$C_{\rm r}$	KN $C_{0\mathbf{r}}$	C_{u}
12	UCFL201	113	90	15	11	25.5	12	60	33.3	31	12.7	M10	UC201D1	14.2	6.65	0.505
15	UCFL202	113	90	15	11	25.5	12	60	33.3	31	12.7	M10	UC202D1	14.2	6.65	0.505
17	UCFL203	113	90	15	11	25.5	12	60	33.3	31	12.7	M10	UC203D1	14.2	6.65	0.505
20	UCFL204	113	90	15	11	25.5	12	60	33.3	31	12.7	M10	UC204D1	14.2	6.65	0.505
25	UCFL205	130	99	16	13	27	16	68	35.8	34.1	14.3	M14	UC205D1	15.5	7.85	0.55
	UCFLX05	141	117	18	13	30	12	83	40.2	38.1	15.9	M10	UCX05D1	21.6	11.3	0.795
	UCFL305	150	113	16	13	29	19	80	39	38	15	M16	UC305D1	23.5	10.9	0.855
30	UCFL206	148	117	18	13	31	16	80	40.2	38.1	15.9	M14	UC206D1	21.6	11.3	0.795
	UCFLX06	156	130	19	15	34	16	95	44.4	42.9	17.5	M14	UCX06D1	28.4	15.3	1.09
	UCFL306	180	134	18	15	32	23	90	44	43	17	M20	UC306D1	29.5	15.0	1.14
35	UCFL207	161	130	19	15	34	16	90	44.4	42.9	17.5	M14	UC207D1	28.4	15.3	1.09
	UCFLX07	171	144	21	16	38	16	105	51.2	49.2	19	M14	UCX07D1	32.5	17.8	1.24
	UCFL307	185	141	20	16	36	23	100	49	48	19	M20	UC307D1	37.0	19.1	1.47
40	UCFL208	175	144	21	15	36	16	100	51.2	49.2	19	M14	UC208D1	32.5	17.8	1.24
	UCFLX08	179	148	22	16	40	16	111	52.2	49.2	19	M14	UCX08D1	36.0	20.4	1.60
	UCFL308	200	158	23	17	40	23	112	56	52	19	M20	UC308D1	45.0	24.0	1.83
45	UCFL209	188	148	22	16	38	19	108	52.2	49.2	19	M16	UC209D1	36.0	20.4	1.60
	UCFLX09	189	157	23	16	40	16	116	55.6	51.6	19	M14	UCX09D1	39.0	23.2	1.82
	UCFL309	230	177	25	18	44	25	125	60	57	22	M22	UC309D1	58.5	32.0	2.50
50	UCFL210	197	157	22	16	40	19	115	54.6	51.6	19	M16	UC210D1	39.0	23.2	1.82
	UCFLX10	216	184	26	18	44	19	133	59.4	55.6	22.2	M16	UCX10D1	48.0	29.2	2.29
	UCFL310	240	187	28	19	48	25	140	67	61	22	M22	UC310D1	68.5	38.5	2.99
55	UCFL211	224	184	25	18	43	19	130	58.4	55.6	22.2	M16	UC211D1	48.0	29.2	2.29
	UCFL311	250	198	30	20	52	25	150	71	66	25	M22	UC311D1	79.5	45.0	3.50
60	UCFL212	250	202	29	18	48	23	140	68.7	65.1	25.4	M20	UC212D1	58.0	36.0	2.83
	UCFL312	270	212	33	22	56	31	160	78	71	26	M27	UC312D1	90.5	52.0	4.10

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCFL210N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

With cast iron closing cover

Standard housing	Number of unit w	vith steel cover	Number of unit v	vith cast iron cover			Dim	ensi	ons		Unit	nass (a kg	pprox.)
number	Rubber sealed cover	Closing cover	Rubber sealed cover	Closing cover	t_1	t_2	A_4	mm A_5	L_1	L_2	Standard	With steel cover	With cast iron cover
FL204	S-UCFL201 S	SM-UCFL201	C-UCFL201	CM-UCFL201	5	8	40.5	46	67	30	0.5	0.5	0.6
FL204	S-UCFL202 S	M-UCFL202	C-UCFL202	CM-UCFL202	5	8	40.5	46	67	30	0.5	0.5	0.6
FL204	S-UCFL203 S	M-UCFL203	C-UCFL203	CM-UCFL203	5	8	40.5	46	67	30	0.5	0.5	0.6
FL204	S-UCFL204 S	M-UCFL204	C-UCFL204	CM-UCFL204	5	8	40.5	46	67	30	0.4	0.4	0.6
FL205 FLX05	S-UCFL205 S S-UCFLX05 S		C-UCFLX05	CM-UCFL205 CM-UCFLX05	7	11		51 56	74 86	34 41.5	0.6	0.6 1	0.8
FL305	S-UCFL206 S	- SM-UCFL 206		CM-UCFL305		12		56 56	86 85	40	0.9	0.9	1.2
FLX06 FL306	S-UCFLX06 S		C-UCFLX06	CM-UCFLX06 CM-UCFL306	8	10		59 60	98.5 101		1.4	1.6	1.8
FL207 FLX07 FL307	S-UCFL207 S S-UCFLX07 S		C-UCFLX07	CM-UCFL207 CM-UCFLX07 CM-UCFL307	8	10 9 14	62	59 66 68	97 108.5 110	45 52.5 50	1.2 1.8 1.7	1.2 1.9	1.4 2.2 2.1
FL208 FLX08 FL308	S-UCFL208 S S-UCFLX08 S		C-UCFLX08	CM-UCFL208 CM-UCFLX08 CM-UCFL308	_	9 12 14		66 70 76	106 114.5 122	50 55.5 56	1.5 2 2.2	1.5 2.1 -	1.9 2.4 2.9
FL209 FLX09 FL309	S-UCFL209 S S-UCFLX09 S		C-UCFLX09	CM-UCFL209 CM-UCFLX09 CM-UCFL309	7	12 12 14	65.5	70 73 80	113 119.5 135	54 58 62	1.8 2.2 3	1.9 2.3	2.3 2.7 3.8
FL210 FLX10 FL310	S-UCFL210 S S-UCFLX10 S		C-UCFLX10	CM-UCFL210 CM-UCFLX10 CM-UCFL310	9	12 11 15	71	72 76 88	120 133.5 152	58 66.5 70	2 3 4.1	2.1 3.2 -	2.7 3.6 5
FL211 FL311	S-UCFL211 S	6M-UCFL211 -		CM-UCFL211 CM-UCFL311		11 15		75 92	133 162	65 75	2.9 4.6	3 –	3.4 5.9
FL212 FL312	S-UCFL212 S	SM-UCFL212 -		CM-UCFL212 CM-UCFL312	_	12 16		86 100	144 175	70 80	3.8 5.7	4 –	4.6 7.7

F-32 F-33

Cast iron rhombus flanged unit UCFL type / cylindrical bore type, setscrew type

Shaf	t diamete	er: 6	5 to	140	mm	1										
Shaft dia.	Unit number ^{1) 2)}					Dim	n ensio mm	ns				Fixing bolt	Number	Bearin Basic loa dynamic	d ratings static	Fatigue load limit
mm		Н	J	A_2	A_1	A	N	L	A_0	В	S			$C_{ m r}$	$KN \ C_{0{ m r}}$	C_{u}
65	UCFL213 UCFL313	258 295	210 240	30 33	22 25	50 58	23 31	155 175	69.7 78	65.1 75	25.4 30	M20 M27	UC213D1 UC313D1	63.5 103	40.0 60.0	3.15 4.60
70	UCFL214 UCFL314	265 315	216 250	31 36	22 28	54 61	23 35	160 185	75.4 81	74.6 78	30.2 33	M20 M30	UC214D1 UC314D1	69.0 115	44.0 68.0	3.45 5.10
75	UCFL215 UCFL315	275 320	225 260	34 39	22 30	56 66	23 35	165 195	78.5 89	77.8 82	33.3 32	M20 M30	UC215D1 UC315D1	73.5 126	49.5 77.0	3.80 5.55
80	UCFL216 UCFL316	290 355	233 285	34 38	22 32	58 68	25 38	180 210	83.3 90	82.6 86	33.3 34	M22 M33	UC216D1 UC316D1	80.5 136	53.0 86.5	3.95 6.05
85	UCFL217 UCFL317	305 370	248 300	36 44	24 32	63 74	25 38	190 220	87.6 100	85.7 96	34.1 40	M22 M33	UC217D1 UC317D1	92.0 147	64.0 97.0	4.60 6.55
90	UCFL218 UCFL318	320 385	265 315	40 44	24 36	68 76	25 38	205 235	96.3 100	96 96	39.7 40	M22 M33	UC218D1 UC318D1	106 158	71.5 107	5.00 7.10
95	UCFL319	405	330	59	40	94	41	250	121	103	41	M36	UC319D1	169	119	7.65
100	UCFL320	440	360	59	40	94	44	270	125	108	42	M39	UC320D1	192	141	8.75
105	UCFL321	440	360	59	40	94	44	270	127	112	44	M39	UC321D1	204	153	9.35
110	UCFL322	470	390	60	42	96	44	300	131	117	46	M39	UC322D1	227	179	10.5
120	UCFL324	520	430	65	48	110	47	330	140	126	51	M42	UC324D1	229	185	10.5
130	UCFL326	550	460	65	50	115	47	360	146	135	54	M42	UC326D1	254	214	11.7
140	UCFL328	600	500	75	60	125	51	400	161	145	59	M45	UC328D1	280	246	13.0

With cast iron closing cover

	Fixing bolt	Number	Bearin Basic load		Fatigue	Standard housing	Number of unit w	ith steel cover	Number of unit w	ith cast iron cover			Din	nensi	ons		Unit	mass (a	
S	Boil	rvumber	dynamic $C_{\rm r}$		load limit $C_{ m u}$	number	Rubber sealed cover	Closing cover	Rubber sealed cover	Closing cover	t_1	t_2	A_4	mm A_5	L_1	L_2	Standard	With steel cover	
25.4 80	M20 M27	UC213D1 UC313D1	63.5	40.0 60.0	3.15 4.60	FL213 FL313	S-UCFL213 S		C-UCFL213		11	15 8	3.5	90	157	78 88	4.8 7.5	4.9	
30.2 33	M20 M30	UC214D1 UC314D1	69.0 115	44.0 68.0	3.45 5.10	FL214 FL314	- -	-		CM-UCFL214 CM-UCFL314		16 19		98 106	164 198	80 92	5.4 8.6	-	
33.3 32	M20 M30	UC215D1 UC315D1	73.5 126	49.5 77.0	3.80 5.55	FL215 FL315	- -	- -		CM-UCFL215 CM-UCFL315				102 114		82 98	6 9.8	- -	
33.3 34	M22 M33	UC216D1 UC316D1	80.5 136	53.0 86.5	3.95 6.05	FL216 FL316	- -	-		CM-UCFL216 CM-UCFL316				106 116	183 222	90 105	7.4 13	-	
34.1 10	M22 M33	UC217D1 UC317D1	92.0 147	64.0 97.0	4.60 6.55	FL217 FL317	- -	-		CM-UCFL217 CM-UCFL317	1				192 234	95 110	8.8 15	- -	
89.7 10	M22 M33	UC218D1 UC318D1	106 158	71.5 107	5.00 7.10	FL218 FL318	- -	-		CM-UCFL218 CM-UCFL318	1				205 247		11 17	- -	
! 1	M36	UC319D1	169	119	7.65	FL319	-	-	C-UCFL319	CM-UCFL319	-	20	-	149	260	125	23	-	
12	M39	UC320D1	192	141	8.75	FL320	-	-	C-UCFL320	CM-UCFL320	-	20	-	154	280	135	26	-	
14	M39	UC321D1	204	153	9.35	FL321	-	-		CM-UCFL321					287		27	-	
i6 51	M39 M42	UC322D1 UC324D1	227	179	10.5	FL322 FL324				CM-UCFL322 CM-UCFL324					315 342		34 48	_	1
54	M42	UC326D1	254	214	11.7			-		CM-UCFL324					376		58	_	
59	M45	UC328D1	280	246	13.0	FL328	-	-	C-UCFL328	CM-UCFL328	-	21	_	192	410	200	81	-	ļ

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCFL215N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Cast iron take-up unit UCT type / cylindrical bore type, setscrew type

Shaft diameter: 12 to 50 mm

Snat	t diame	ter	: 1.	z tc	50	mr	n														
Shaft dia.	Unit number ¹⁾²⁾								Din	n ensi mm	ons							Number	Bearin Basic load dynamic	d ratings static	Fatigue load limit
mm		N_1	L_2	H_2	N_2	N	L_3	A_1	H_1	Н	L	A_2	A	r	L_1	В	S		$C_{ m r}$	$KN \over C_{0{ m r}}$	C_{u}
12	UCT201	16	12	51	32	19	51	12	76	89	94	21	32	33	61	31	12.7	UC201D1	14.2	6.65	0.505
15	UCT202	16	12	51	32	19	51	12	76	89	94	21	32	33	61	31	12.7	UC202D1	14.2	6.65	0.505
17	UCT203	16	12	51	32	19	51	12	76	89	94	21	32	33	61	31	12.7	UC203D1	14.2	6.65	0.505
20	UCT204	16	12	51	32	19	51	12	76	89	94	21	32	33	61	31	12.7	UC204D1	14.2	6.65	0.505
25	UCT205 UCTX05 UCT305	16	12	51 56 62	37	19 22 26	51 57 65	12	76 89 80	89 102 89		24 28 26	32 37 36	35 43 46	70	34.1 38.1 38		UC205D1 UCX05D1 UC305D1	15.5 21.6 23.5	7.85 11.3 10.9	0.55 0.795 0.855
30	UCT206 UCTX06 UCT306	16	15	56 64 70	37	22 22 28	57 64 74	12	89	102 102 100	129	28 30 28	37 37 41	43 51 52	78	38.1 42.9 43	15.9 17.5 17	UC206D1 UCX06D1 UC306D1	21.6 28.4 29.5	11.3 15.3 15.0	0.795 1.09 1.14
35	UCT207 UCTX07 UCT307	19	17	64 83 75	49	22 29 30	64 83 80	16	89 102 100	102 114 111	144	30 36 32	37 49 45	51 56 56		42.9 49.2 48		UC207D1 UCX07D1 UC307D1	28.4 32.5 37.0	15.3 17.8 19.1	1.09 1.24 1.47
40	UCT208 UCTX08 UCT308	19	17	83 83 83	49	29 29 32	83 83 89	16	102 102 112	117	144	33 36 34	49 49 50	56 57 62	87	49.2 49.2 52		UC208D1 UCX08D1 UC308D1	32.5 36.0 45.0	17.8 20.4 24.0	1.24 1.60 1.83
45	UCT209 UCTX09 UCT309	19	18	83 83 90	49	29 29 34	83 86 97	16	102 102 125	117	151	35 38 38	49 49 55	57 59 68		49.2 51.6 57		UC209D1 UCX09D1 UC309D1	36.0 39.0 58.5	20.4 23.2 32.0	1.60 1.82 2.50
50	UCT210 UCTX10 UCT310	25	21		64	29 35 37	86 95 106	22	102 130 140	146	171	37 42 40	49 64 61	59 65 74		51.6 55.6 61		UC210D1 UCX10D1 UC310D1		23.2 29.2 38.5	1.82 2.29 2.99

¹⁾ Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the number. Example: UCT210N1

Bearing Units

With one-side steel closing cover

Standard housing	Number of unit	t with steel cover	Number of unit v	vith cast iron cover		D	imer	sions		Unit	mass (ap	prox.)
number	Double-side rubber sealed cover	One-side closing cover	Double-side rubber sealed cover	One-side closing cover	t_1	t_2	$_{A_4}$	m L_4	A_5	Standard	With steel cover	With cast iron cover
T204	S-UCT201	SM-UCT201	C-UCT201	CM-UCT201	5	8	51	97	62	0.6	0.8	1.1
T204	S-UCT202	SM-UCT202	C-UCT202	CM-UCT202	5	8	51	97	62	0.6	0.8	1
T204	S-UCT203	SM-UCT203	C-UCT203	CM-UCT203	5	8	51	97	62	0.6	0.8	1
T204	S-UCT204	SM-UCT204	C-UCT204	CM-UCT204	5	8	51	97	62	0.6	0.8	1
T205 TX05 T305	S-UCT205 S-UCTX05	SM-UCT205 SM-UCTX05	C-UCT205 C-UCTX05 C-UCT305	CM-UCT205 CM-UCTX05 CM-UCT305	7 7 -	11 11 12	57 62 –	100.5 113.5 122	70 75 80	0.8 1.3 1.4	0.9 1.5 -	1.1 1.8 1.7
T206 TX06 T306	S-UCT206 S-UCTX06	SM-UCT206 SM-UCTX06	C-UCT206 C-UCTX06 C-UCT306	CM-UCT206 CM-UCTX06 CM-UCT306	7 8 -	11 10 11	62 72 –	113.5 129 139	75 80 85	1.3 1.7 1.8	1.3 2 -	1.7 2.3 2.4
T207 TX07 T307	S-UCT207 S-UCTX07	SM-UCT207 SM-UCTX07	C-UCT207 C-UCTX07 C-UCT307	CM-UCT207 CM-UCTX07 CM-UCT307	8 8 -	10 9 13	72 82 –	129 144 152	80 90 95	1.6 2.6 2.3	1.7 2.8 -	2.1 3.5 3.2
T208 TX08 T308	S-UCT208 S-UCTX08	SM-UCT208 SM-UCTX08	C-UCT208 C-UCTX08 C-UCT308	CM-UCT208 CM-UCTX08 CM-UCT308	8 8 -	9 12 13	82 82 -	144 144.5 164	90 95 105	2.4 2.6 3	2.5 2.8 –	3.1 3.5 4.2
T209 TX09 T309	S-UCT209 S-UCTX09	SM-UCT209 SM-UCTX09	C-UCT209 C-UCTX09 C-UCT309	CM-UCT209 CM-UCTX09 CM-UCT309	8 8 -	12 12 14	82 87 –		95 100 110	2.4 2.7 4	2.5 3 -	3.2 3.7 5.5
T210 TX10 T310	S-UCT210 S-UCTX10	SM-UCT210 SM-UCTX10	C-UCT210 C-UCTX10 C-UCT310	CM-UCT210 CM-UCTX10 CM-UCT310	8 10 –	12 11 15	87 92 –	171.5	100 100 120	2.6 4.2 5	2.7 4.6 –	3.6 5.4 7.1

²⁾ The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type. F-36

Cast iron take-up unit UCT type / cylindrical bore type, setscrew type

•	Silai	t diame	tei	. ၁	5 LC	כפו	1111	11														
	Shaft dia.	Unit number ¹⁾²⁾								Din	nensi mm	ions							Number	Bearin Basic loa dynamic	ad ratings	Fatigue load limit
	mm		N_1	L_2	H_2	N_2	N	L_3	A_1	H_1		L	A_2	A	r	L_1	В	S		$C_{ m r}$	kN C_{0r}	$C_{ m u}$
	55	UCT211 UCTX11 UCT311	32	21		64		102	22	130 130 150	146	194	38 44 44	64 64 66	65 75 80		55.6 65.1 66		UC211D1 UCX11D1 UC311D1	48.0 58.0 79.5	29.2 36.0 45.0	2.29 2.83 3.50
	60	UCT212 UCTX12 UCT312	32	23	111	70	41	102 121 123	26	130 151 160	167	224	42 48 46	64 70 71	75 87 85	119 137 135	65.1 65.1 71		UC212D1 UCX12D1 UC312D1	58.0 63.5 90.5	36.0 40.0 52.0	2.83 3.15 4.10
	65	UCT213 UCTX13 UCT313	32	23	111	70	41	121	26	151 151 170	167	224		70 70 80	87		65.1 74.6 75		UC213D1 UCX13D1 UC313D1		40.0 44.0 60.0	3.15 3.45 4.60
	70	UCT214 UCTX14 UCT314	32	23	111	70	41	121	26	151	167	232	48	70 70 90	92		74.6 77.8 78		UC214D1 UCX14D1 UC314D1	69.0 73.5 115	44.0 49.5 68.0	3.45 3.80 5.10
	75	UCT215 UCTX15 UCT315	32	23	111	70	41	121	28	151 165 192	184	235	48	70 70 90	95		77.8 82.6 82		UC215D1 UCX15D1 UC315D1		49.5 53.0 77.0	3.80 3.95 5.55
	80	UCT216 UCTX16 UCT316	38	30	124	73	48	157	28	165 173 204	198	260	51 54 60		98		82.6 85.7 86		UC216D1 UCX16D1 UC316D1		53.0 64.0 86.5	3.95 4.60 6.05
	85	UCT217 UCTX17 UCT317	38	30	124	73	48	157	28	173 173 214	198	260	54 54 64	73	98	162 162 183		34.1 39.7 40	UC217D1 UCX17D1 UC317D1		64.0 71.5 97.0	4.60 5.00 6.55
	90	UCT318	46	32	160	106	57	175	32	228	255	312	66	110	120	192	96	40	UC318D1	158	107	7.10
	95	UCT319	46	33	165 ·	106	57	180	35	240	270	322	72	110	125	197	103	41	UC319D1	169	119	7.65

¹⁾ Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCT320N1

Bearing Units

With double-side rubber sealed steel cover

With one-side steel closing cover

With double-side rubber sealed cast iron cover

With one-side steel closing cover

			l									
Standard housing	Number of unit	t with steel cover	Number of unit v	vith cast iron cover		D	imer	sions		Unit	mass (ap	prox.)
number	Double-side rubber sealed cover	One-side closing cover	Double-side rubber sealed cover	One-side closing cover	t_1	t_2	$_{A_4}$	m L_4	A_5	Standard	With steel cover	With cast iron cover
					-1	• 2			0			
T211	S-UCT211	SM-UCT211	C-UCT211	CM-UCT211	10	11	92		5 100	3.9	4.1	5
TX11	S-UCTX11	SM-UCTX11	C-UCTX11	CM-UCTX11	8		102	194	115	5.2	5.6	6.7
T311	-	_	C-UCT311	CM-UCT311	-	15	-	211	125	6.3	-	8.5
T212	S-UCT212	SM-UCT212	C-UCT212	CM-UCT212	8	12	102	194	115	4.8	5.1	6.1
TX12	S-UCTX12	SM-UCTX12	C-UCTX12	CM-UCTX12	11	15	107	224	120	7.2	7.7	9
T312	_	-	C-UCT312	CM-UCT312	-	16	-	227	135	7.6	-	10
T213	S-UCT213	SM-UCT213	C-UCT213	CM-UCT213	11	15	107	224	120	7	7.3	8.4
TX13	-	-	C-UCTX13	CM-UCTX13	<u> </u>	17	-		135	7.4	-	9.8
T313	-	-	C-UCT313	CM-UCT313	-	19	-	244	140	9.3	-	12
T214	_	_	C-UCT214	CM-UCT214	_	17	_	224	135	7	_	9.2
TX14	_	_	C-UCTX14	CM-UCTX14	_	17		232	135	7.7	_	10
T314	-	-	C-UCT314	CM-UCT314	-	19	-	258	140	11	-	14
T215	_	_	C-UCT215	CM-UCT215		17	_	232	135	7.4	_	9.8
TX15	_	_	C-UCTX15	CM-UCTX15		17	_	235	145	8.3	_	11
T315	-	-	C-UCT315	CM-UCT315	-	19	-	268	150	13	-	17
T216	_	_	C-UCT216	CM-UCT216	_	17	_	235	145	8.2	_	11
TX16	_	_	C-UCTX16	CM-UCTX16	_	19		260	155	11	_	14
T316	_	_	C-UCT316	CM-UCT316	_	18	-		155	16	_	20
T047			0.1107047	OM HOTO17		10		000	455	4.4		4.4
T217 TX17	_		C-UCT217 C-UCTX17	CM-UCT217 CM-UCTX17	-	19 20	_	260 262	155 165	11	_	14 15
T317	_	_	C-UCTX17	CM-UCT317	-	21	_	303	170	19	_	25
T318	_	_	C-UCT318	CM-UCT318	_	21	_	317	170	21	_	27
T319	_	-	C-UCT319	CM-UCT319	_	20	_	327	180	24	_	31

²⁾ The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Cast iron take-up unit UCT type / cylindrical bore type, setscrew type

Shaft diameter: 100 to 140 mm

Shaft dia.	Unit number ¹⁾²⁾								Din	nensi	ions							Number		ad ratings	Fatigue
mm		N_1	L_2	H_2	N_2	N	L_3	A_1	H_1	mm H	L	A_2	A	r	L_1	В	S		dynami $C_{ m r}$	static kN $C_{0{ m r}}$	load limit $C_{ m u}$
100	UCT320	48	34	175	115	59	200	35	260	290	345	75	120	135	210	108	42	UC320D1	192	141	8.75
105	UCT321	48	34	175	115	59	200	35	260	290	347	75	120	135	212	112	44	UC321D1	204	153	9.35
110	UCT322	52	40	185	125	65	215	38	285	320	385	80	130	150	235	117	46	UC322D1	227	179	10.5
120	UCT324	60	44	210	140	70	230	45	320	355	432	90	140	165	267	126	51	UC324D1	229	185	10.5
130	UCT326	65	47	220	150	75	240	50	350	385	465	100	150	180	285	135	54	UC326D1	254	214	11.7
140	UCT328	70	52	230	160	80	255	50	380	415	515	100	155	200	315	145	59	UC328D1	280	246	13.0

With double-side rubber sealed steel cover

 $---A_5-$ With double-side rubber sealed cast iron cover

With one-side steel closing cover

Standard housing	Number of unit v	vith steel cover	Number of unit with cast iron cover			Dimensions				Unit mass (approx.) kg		
number	Double-side rubber sealed cover	One-side closing cover	Double-side rubber sealed cover	One-side closing cover	t_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			A_5	Standard	With steel cover	With cast iron cover
T320	_	-	C-UCT320	CM-UCT320	-	20	-	350	190	30	-	38
T321	-	-	C-UCT321	CM-UCT321	-	20	-	359	195	30	_	40
T322	-	-	C-UCT322	CM-UCT322	-	20	-	395	200	39	-	50
T324	-	-	C-UCT324	CM-UCT324	-	22	-	439	215	43	-	69
T326	-	-	C-UCT326	CM-UCT326	-	21	-	476	225	69	-	84
T328	-	_	C-UCT328	CM-UCT328	_	21	_	519	235	88	_	106

Spherical graphite cast iron bearings are also available based on request. In this case, a supplementary suffix "N1" is added after the unit number. Example: UCT320N1
 The unit numbers indicate the oil-free type, and supplementary suffix "D1" is added after the number for the oil feeding type.

Plummer Blocks Contents

Plummer blocks ····· G- :
SN5 G-1-
SN2 G-1
SNZ2 G-1
SN6/S6 G-2
SN3/S3 G-2
SNZ3/SZ3 G-2-
SD5/SD5G/SD6/SD6G G-2
SD2/SD2G/SD3/SD3G G-2
SN30/SN31 G-3
SD30/SD30G G-32
SD31/SD31G G-3
SV5 G-3
SV2 G-4

Plummer Blocks

1. Design features and characteristics

The **NTN** plummer blocks are housings for spherical roller bearings and self-aligning ball bearings. The standard housing is gray cast iron, while spheroidal graphite cast iron (ductile cast iron) and cast steel, are also available depending on the application.

The housings can incorporate rubber seals, felt seals, or labyrinth seals depending on the application. Grease and oil are both available for lubrication.

This catalog includes dimension tables of representative shapes indicated by blue characters in "2. Plummer block types and characteristics."

For the details on NTN plummer blocks, see the special catalog "Plummer blocks (CAT. No. 2500/E)."

	Plummer block types	Shaft diameter mm	Page of bearing dimension table
	SN type	25~140	G-14~25, G-30~31
Split type	SD type	150~300	G-26~29, G-32~35
	SBG type	55~180	-
Single type	SV type	20~300	G-36~43
Single	VA type	50~100	_

2. Type

Type

SN type (standard type)

Plummer Blocks

SN5 SN2 SN6 SN3 S6 S3 SN30

Lubricant: grease Seal: rubber seal

- · SN5 and SN6 are the most general types that are specified in JIS, ISO, and DIN, and widely used in the
- SN30 and SN31 are a medium size and can be applied when the bearing diameter is large.
- A tapered bore bearing (with adapter) is used.

SNZ type (stepped bore type)

SNZ3 SZ3

Lubricant: grease

Seal: rubber seal · This type of plummer block is SN5, SN6, and S6 types

having a large aperture on one side. · Cylindrical bore bearings are attached with nuts and

SN type (high strength type)

SN5..F SN2..F SNZ2··F SN6..F SN3..F

Lubricant: grease Seal: rubber seal

- The plummer block has same dimensions as SN5, SN6. and \$6 types except the bottom shape.
- A tapered bore bearing (with adapter) is used.
- There is no mounting bolt hole.

SD type (standard type and large bore type)

SD2··D(G) SD3··D(G) SD6· SD30 SD30··(G) SD31··(G) SD33··(G) SD34··(G)

Lubricant: grease or oil

Seal: double rubber seal · Used for heavy loads with large self-aligning roller

- There are types for the floating side and the fixed side (G).
- · A tapered bore bearing (with adapter) is used.
- There are four mounting bolt holes.

SD type (stepped bore type)

SD3..(G)

SD35 · · (G) SD36 · · (G)

Lubricant: grease or oil Seal: double rubber seal

- · Used for heavy loads with large self-aligning roller
- This type of plummer block is SD5(G) and SD6 (G) types having a large aperture on one side.
- Cylindrical bore bearings are attached with nuts and

Type

SD type (labyrinth seal type)

SD31··TS(G) SD32··TS(G)

Split type Lubricant: grease or oil Seal: Labvrinth seal

· Used for heavy loads with large self-aligning roller

Suitable for high speed rotation because the sealing device for labyrinth seals is adopted.

Used for both oil lubrication and grease lubrication because an oil sump is provided in the housing.

SV type (standard type)

SV6

SV30

Lubricant: grease Seal: rubber seal

- · The plummer block main body is a single type and has higher accuracy compared with the divided type.
- Applied to tapered bore bearings.

SV type (stepped bore type)

SV3 SV35

Lubricant: grease

Seal: rubber seal · This type of plummer block is SN5 and SN6 types having

a large aperture on one side. Cylindrical bore bearings are attached with nuts and

VA type (narrow attachment width type)

Lubricant: grease Seal: oil seal

· Applied to tapered bore bearings.

Mounting bolt holes are provided at the bottom.

JOL

NTN

3. Plummer block numbers

A plummer block number indicates the type, structure, and consists of basic numbers followed by supplementary codes.

For order

The plummer block numbers do not include additional parts. Therefore, please order any necessary parts with their numbers. (Example)

SN506	1206K	H206X	SR62×7	ZF6
Plummer blocks	Rolling bearings	Adapter	Positioning wheel	Rubber sea
			(fixed cide only)	

Article

For shaft ends, a plummer block having a non-penetrating aperture on the shaft end side (outer side) is generally used. There are two types shown below.

4. Accuracy

Plummer Blocks

4.1 Accuracy

Regarding the accuracy of **NTN** plummer blocks, the divided types conform to JIS B 1551 and the single types to The Japan Bearing Industrial Association (BAS) 188. The dimensional tolerances are shown in the table below.

Table 1: dimensional tolerances of bearing seating bore diameter, width, and center height

Table 2: dimensional tolerances of length of castings (cast parts such as bases and bolt holes)

Table 1 Dimensional tolerance of plummer blocks

Ini	

	Divided type	Single type							
Plummer block series	Bearing seating bore dia.	Bearing seating bore width	Center height	Plummer block series	Bearing seating bore dia.	Center height	Main body width	Cover dimension	Cover inlet width
	ΔDs	Δg s	Δ_{H_S}		ΔD s	Δ_{H_S}	I_1	I_2	I3
SN5, SN5F SN(S)6, SN(S)6F SN2, SNZ2, SN30 SN(S)3, SNZ(SZ)3, S SBG5	H8 SN31	H13	h13	SV5 SV6					
SD30, SD31 SD33 SD34, SD35 SD36 SD2, SD3 SD5, SD6 SD31TS, SD32TS	Н8	±0.2	h13	SV2 SV3 SV30 SV35 VA5	Н7	h11	+0.2	±1	0 -0.2

Table 2 Dimensional tolerance of length of castings

Unit: mm

Size of castings (mm)										
120 or below	121 to 250	251 to 400	401 to 800	801 to 1600						
±1.5	±2.0	±3.0	±4.0	±6.0						

JQL.

4.2 Machining accuracy of mounting bolt seating end surface

When a large horizontal load is to be applied on a plummer block, the fastening force of the mounting bolts cannot reliably secure the plumber block alone; therefore, the housing base should abut a fixed surface. In this case, it is effective to use a plummer block with a

Table 3 Machining allowance

Unit: mm

Plummer block nominal dimension	Machining allowance L-L'	Surface finish roughness
All types All sizes	5	12.5 <i>Ra</i>

machined vertical face that comes in contact with the fixed abutment surface.

Seating length L of a plummer block having a machined mounting bolt seating end surface is smaller than the standard dimension by the machining allowance shown in Table 3 and becomes L' (see **Fig. 1**). **Table 4** shows the dimensional tolerance of L'.

Table 4 Tolerance of dimension L' after machining of mounting bolt seating end surface

Offic. Ithii										
$\begin{array}{c} \textbf{Dimension} \\ \textbf{after} \\ \textbf{machining} \\ L' \end{array}$	31 to 120	121 to 315	316 to 1 000	1 001 to 2 000						
Tolerance	±0.8	±1.2	±2.0	±3.0						

Fig. 1 Seating surface length dimension of plummer block

G-6

5. Combination with bearings

Tables 5 (1) and (2) show the combinations of plummer blocks and bearings.

Table 5 (1) P	lumme	r blocks	and ap	plied be	earings					
Applied bearing series Plummer block series	12	22	13	23	230	231	222	232	213	223
SN5 SN5 ··F	06SK ~22SK	06SK ~22SK					06EAK ∼32EAK	18EMK, 20EMK ∼32EMK		
SN2 SN2··F	06S ~22S	06S ~22S					06EA ∼32EA	18EM, 20EM ∼32EM		
SNZ2 SNZ2··F	06S ~22S	06S ~22S					06EA ∼32EA	18EM, 20EM ~32EM		
SD5 SD5…G							34EMK ∼64EMK			
SD2··D SD2··DG							34EM ~64EM			
SD2 SD2··G							34EM ~64EM			
SN(S)6 SN(S)6··F			06SK ~22SK	06SK ~22SK					08CK~10CK 11K~22K	08EAK~28EAK 30EMK~32EMK
SN(S)3 SN(S)3···F			06S ~22S	06S ~22S					08C~10C 11~22	08EA~28EA 30EM~32EM
SNZ(SZ)3 SNZ(SZ)3··F			06S ~22S	06S ~22S					08C~10C 11~22	08EA~28EA 30EM~32EM
SD6 SD6…G										34EMK ~56EMK
SD3··D SD3··DG										34EM ∼56EM
SD3 SD3 ··G										34EM ∼56EM
SN30					24EAK ~38EAK					
SD30 SD30··G					34EAK ~38EAK					
SD33 SD33··G					40EMK ∼76EMK					
SD35 SD35⋅⋅G					40EM ∼76EM					
SN31						22EAK~36EAK 38EMK				
SD31 SD31··G						34EAK~36EAK 38EMK~68EMK 72BK~84BK				
SD34 SD34··G						40EMK ∼68EMK				
SD36 SD36…G						40EM ∼68EM				

Table 5 (2) Plummer blocks and applied bearings

Applied bearing series	12	22	13	23	230	231	222	232	213	223
block series										
SD31··TS SD31··TSG						34EAK~36EAK 38EMK~68EMK 72BK~89BK				
SD32··TS SD32··TSG								34EMK~64EMK 68BK~80BK		
SBG5							12EAK~32EAK 34EMK~40EMK			
SV5	05SK ~22SK	05SK ~22SK					05EAK ∼32EAK	18EMK, 20EMK∼64EMK		
SV2	05S ~22S	05S ~22S					05EA~32EA	18EM, 20EM∼38EM		
SV6			05SK ~22SK	05SK ~22SK						08EAK~28EAK 30EMK~58EMK
SV3			05S ~22S	05S ~22S						08EA~28EA 30EM~58EM
SV30					22EAK~38EAK 40EMK~72EMK					
SV35					22EA~38EA 40EM~72EM					
VA5							11EAK ~22EAK			
TV5							11EAK ∼32EAK			

G-8

6. Allowable speed

The allowable speed of plummer blocks differ by seal types. In the case of a contact seal, the allowable speed is restricted by the allowable peripheral speed of the seal. Fig. 2 shows a rough standard for selecting the peripheral speed of seals.

1) The allowable speed of the seal of cylindrical bore bearings is obtained by the shaft diameter of the seal contact part. The allowable speed of seals is indicated by the rotational speed of shafts.

Fig. 2 Allowable speed of bearings and seals

JQL

7. Sealing device

External seals have two main functions: to prevent lubrication from leaking out and to prevent dust, water, and other contaminants from entering the bearing.

The sealing device must be selected with the following in consideration: the type of lubricant (oil or grease) and seal peripheral speed.

A rubber seal or a felt seal is used for the contact type, and a labyrinth seal is used for the non-contact type. There are also special seals suitable for other conditions including heavy contamination.

7.1 Contact seal

(1) Rubber seal (Fig. 3)

Since rubber seals are mainly used for grease lubrication, a rough standard for the peripheral speed is 5 to 6 m/s.

Nitrile rubber is generally used for the rubber seal material, and materials shown in **Table 6** are used depending on the ambient temperature.

(2) Felt seal (Fig. 4)

Felt seals are interchangeable with rubber seals, but the use is limited to grease lubrication.

Felt seals are unsuitable for environments with a large amount of dust or high humidity, and a rough standard for the peripheral speed is 4 m/s. The seal is also convenient because it can be cut and embedded separately into the seal grooves at the upper and lower parts of a plummer block.

(3) S type seal (Fig. 5)

The S type seal has excellent sealing performance and can be used for grease and oil lubrications. Plummer blocks with special specifications are used.

A rough standard for the peripheral speed of S type seals is 10 to 12 m/s. The shaft roughness and hardness of the seal contact area especially needs attention.

Fig. 3 Rubber seal

Fig. 4 Felt seal

Fig. 5 S type seal

Table 6 Rubber seal types and characteristics

Seal material	Abrasion resistance	Oil resistance	Acid resistance	Alkali resistance	Water resistance	Allowable temp rough standard (°C)	Characteristics
Nitrile rubber (NBR)	0	0	0	0	0	-25 100	The material has resistance to most oils and has good abrasion resistance; therefore, it is the most used oil seal material. The material can be used for most conditions of general machines.
Acrylic rubber (ACM)	0	0	Δ	×	Δ	-15 130	The material has good heat resistance and oil resistance but poor alkali resistance and water resistance; therefore, the application is limited.
Silicone rubber (VMQ)	0	0	Δ	×	0	-50 220	The material has good heat resistance and cold resistance but cannot be used for spindle oil and oil containing an extreme pressure additive.
Fluorinated rubber (FKM)	0	0	0	Δ	0	-10 220	The material is not affected by most oils and chemicals. The material has well-balanced characteristics and can be used in a wide range of applications; therefore, it is the best oil seal material.

③ : Good, ○ : Fair, △: Slightly poor, × : Poor (cannot be used)

JQL,

7.2 Non-contact seal

(1) Labyrinth seal (Fig. 6)

The labyrinth seal is a seal type that uses a labyrinth ring at the aperture part of a plummer block.

The labyrinth ring is used with a shaft loose fit (h9) and attached with an O ring to allow easy attachment and allow for expansion and contraction of the shaft.

The labyrinth seal has excellent sealing performance and can be used for grease and oil lubrications.

Fig. 6 Labyrinth seal

(2) Special labyrinth seal (Fig. 7)

The special labyrinth seal shown in the figure is especially effective for environments with a large amount of contamination such as dirt and sand.

Plummer blocks using this seal have special specifications, so consult with NTN Engineering.

Fig. 7 Special labyrinth seal

(3) Shaft design criteria for seal attachment part (Table 7)

The hardness and roughness of shafts to be attached with seal significantly influences the sealing performance; therefore, the design criteria shown in the table must be followed.

Table 7 Shaft design criteria

Item	Design criteria	Article
Hardness	30 to 40 HRC	
Roughness Ra	0.8	It is preferable to grind the finish surface without feeding.
End surface chamfer	The shaft end to be inserted with a seal must be tapered, and the corner part must be rounded.	15~30° Round the corner.

7.3 Combination seal (Fig. 8)

The combination seal is a sealing device having a rubber seal and a labyrinth seal combined to the aperture part of a plummer block. It is used for environments with a large amount of dirt and foreign materials.

Filling the labyrinth voids with grease further improves the sealing effect.

Fig. 8 Combination seal

8. Strength

The breaking strength of plummer blocks differ by the plummer block type, the characteristic and direction of the load to be applied, and is influenced by the flatness of the mounting surfaces. Fig. 9 and Fig. 10 shows the general fracture loads of static breaking strength of SN5 and SN6 (S6) series gray cast iron plummer blocks.

Fig. 9 Static breaking strength of SN5 series

Table 8 Safety factor of casting plummer block

Types of load	Static load	Repeated load	Alternating load	Impact load
Safety factor	4	6	10	15

For horizontal and axial loads, the base end surface needs to abut a fixed surface.

For places with especially large impact loads or when plummer block damage may result in serious accidents, plummer blocks made of materials other than gray cast iron such as cast steel or spheroidal graphite cast iron are available. Please consult NTN Engineering.

The downward breaking strength is about twice the horizontal breaking strength, and the axial breaking strength is about half of the horizontal breaking strength.

When selecting plummer blocks, consider the safety factor shown in Table 8. The surface to be attached with a plummer block must be flat without backlash.

Fig. 10 Static breaking strength of SN6 series

JOAL

G-12

Plummer block series SN5 (standard type / for bearings with adapter assembly)

$d_1 = 25 \sim 140 \text{mm}$

JQL

a_1	$25 \sim 14$	umm	1													
Shaft dia. mm	Plummer block number					I	Dimens mm						t Name in all	Oil filler / drain plug size	S	Mass kg
d_1		D	H	J	N	N_1	A	L	A_1	H_1	H_2	g	Nominal no.		Nominal dimension	(approx.)
25	SN506	62	50	150	15	20	77	185	52	22	90	30	M8	R1/8		1.7
30	SN507	72	50	150	15	20	82	185	52	22	95	33	M10	R1/8	M12	2.2
35	SN508	80	60	170	15	20	85	205	60	25	110	33	M10	R1/8	M12	2.6
40	SN509	85	60	170	15	20	85	205	60	25	112	31	M10	R1/8	M12	2.8
45	SN510	90	60	170	15	20	90	205	60	25	115	33	M10	R1/8	M12	3
50	SN511	100	70	210	18	23	95	255	70	28	130	33	M12	R1/8	M16	4
55	SN512	110	70	210	18	23	105	255	70	30	135	38	M12	R1/8	M16	4.5
60	SN513	120	80	230	18	23	110	275	80	30	150	43	M12	R1/8	M16	5.6
65	SN515	130	80	230	18	23	115	280	80	30	155	41	M12	R1/8	M16	6
70	SN516	140	95	260	22	27	120	315	90	32	175	43	M16	R1/8	M20	9
75	SN517	150	95	260	22	27	125	320	90	32	185	46	M16	R1/8	M20	9.3
80	SN518	160	100	290	22	27	145	345	100	35	195	62.4	M16	R1/8	M20	12
85	SN519	170	112	290	22	27	140	345	100	35	210	53	M16	R1/8	M20	14
90	SN520	180	112	320	26	32	160	380	110	40	218	70.3	M20	R1/8	M24	17
100	SN522	200	125	350	26	32	175	410	120	45	240	80	M20	R1/4	M24	20
110	SN524	215	140	350	26	32	185	410	120	45	270	86	M20	R1/4	M24	23
115	SN526	230	150	380	28	36	190	445	130	50	290	90	M24	R1/4	M24	29
125	SN528	250	150	420	33	42	205	500	150	50	305	98	M24	R1/4	M30	37
135	SN530	270	160	450	33	42	220	530	160	60	325	106	M24	R1/4	M30	42
140	SN532	290	170	470	33	42	235	550	160	60	345	114	M24	R1/4	M30	48

1) The stabilizing ring indicates the outer diameter and width dimension.
2) Dimension *Y* indicates the reference dimension from the shaft center to the end in the case of the shaft end shape. Note: 1. SN524 or larger plummer blocks are provided with a lifting eye bolt.

Plummer Blocks

Shaft end type

Bearing	Adapter	aligning ball bear Stabilizing rin	ings g	Bearing	Adapter	al roller bearings Stabilizing ring	uantitu	Reference dimension mm	Rubber seal number	End cover number	Shaft dia. mm
number	number	Number 1)	Quantity	number	number	Number 1) (uantity	Y 2)			a_1
1206SK 2206SK	H206X H306X	SR62× 7 SR62×10	2 1	_ 22206EAKW33	_ H306X	_ SR 62×10	_ 1	18 20	ZF6	MF6	25
1207SK 2207SK	H207X H307X	SR72×8 SR72×10	2	_ 22207EAKW33	_ H307X	SR 72×10	1	19 22	ZF7	MF7	30
1208SK 2208SK	H208X H308X	SR80×7.5 SR80×10	2	22208EAKD1	H308X	SR 80×10	- 1	21 23	ZF8	MF8	35
1209SK 2209SK	H209X H309X	SR85 $ imes$ 6 SR85 $ imes$ 8	2 1	_ 22209EAKD1	– H309X	_ SR 85×8	_ 1	22 24	ZF9	MF9	40
1210SK 2210SK	H210X H310X	$ extstyle SR90 imes 6.5 \ extstyle SR90 imes 10$	2 1	_ 22210EAKD1	_ H310X	SR 90×10	_ 1	24 25	ZF10	MF10	45
1211SK 2211SK	H211X H311X	$ ext{SR100}{ imes6} ext{SR100}{ imes8}$	2 1	_ 22211EAKD1	– H311X	_ SR100×8	_ 1	25 27	ZF11	MF11	50
1212SK 2212SK	H212X H312X	SR110×8 SR110×10	2 1	_ 22212EAKD1	_ H312X	_ SR110×10	_ 1	26 29	ZF12	MF12	55
1213SK 2213SK	H213X H313X	SR120×10 SR120×12	2 1	_ 22213EAKD1	_ H313X	_ SR120×12	_ 1	28 32	ZF13	MF13	60
1215SK 2215SK	H215X H315X	SR130×8 SR130×10	2	_ 22215EAKD1	_ H315X	_ SR130×10	_ 1	30 33	ZF15	MF15	65
1216SK 2216SK	H216X H316X	SR140×8.5 SR140×10	2	_ 22216EAKD1	_ H316X	_ SR140×10	_ 1	32 36	ZF16	MF16	70
1217SK 2217SK	H217X H317X	SR150×9 SR150×10	2 1	_ 22217EAKD1	_ H317X	_ SR150×10	_ 1	34 38	ZF17	MF17	75
1218SK 2218SK -	H218X H318X -	SR160×16.2 SR160×11.2	2 -	22218EAKD1 23218EMKD1	H318X H2318X	SR160×11.2 SR160×10	_ 2 1	35 40 46	ZF18	MF18	80
1219SK 2219SK	H219X H319X	SR170×10.5 SR170×10	2 1	_ 22219EAKD1	– H319X	_ SR170×10	_ 1	37 43	ZF19	MF19	85
1220SK 2220SK -	H220X H320X -	SR180×18.1 SR180×12.1	2 2 –	_ 22220EAKD1 23220EMKD1	– H320X H2320X	SR180×12.1 SR180×10	- 2 1	52	ZF20	MF20	90
1222SK 2222SK -	H222X H322X -	SR200×21 SR200×13.5	2 2 -	22222EAKD1 23222EMKD1	– H322X H2322X	SR200×13.5 SR200×10	- 2 1	42 50 58	ZF22	MF22	100
_	-	-	_	22224EAKD1 23224EMKD1	H3124X H2324X	SR215×14 SR215×10	2	53 62	ZF24	MF24	110
_	-	-	-	22226EAKD1 23226EMKD1	H3126 H2326	SR230×13 SR230×10	2	57 65	ZF26	MF26	115
-	-	-	-	22228EAKD1 23228EMKD1	H3128 H2328	SR250×15 SR250×10	2	60 70	ZF28	MF28	125
_	-	_	-	22230EAKD1 23230EMKD1	H3130 H2330	SR270×16.5 SR270×10	2	65 76	ZF30	MF30	135
-	-	-	-	22232EAKD1 23232EMKD1	H3132 H2332	SR290×17 SR290×10	2	71 83	ZF32	MF32	140

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is x of the width dimension of the stabilizing ring.

3. Adapters for series 12 bearings can also be used with H2 and H3 series bearings.

NTN

Plummer Blocks

NTN

Plummer block series SN2 (large bore type / for cylindrical bore bearings)

30 - 160mm

d	30 ∼ ∶	160mm															
	Shaft ameter mm	Plummer block number					D	imens mm						t Nominal	Oil filler / drain plug size	Reference dimension S Nominal	Mass kg
d	d_2		D	H	J	N	N_1	A	L	A_1	H_1	H_2	g	no.			(approx.)
30	35	SN206	62	50	150	15	20	77	185	52	22	90	30	M8	R1/8	M12	1.7
35	45	SN207	72	50	150	15	20	82	185	52	22	95	33	M10	R1/8	M12	2.1
40	50	SN208	80	60	170	15	20	85	205	60	25	110	33	M10	R1/8	M12	2.7
45	55	SN209	85	60	170	15	20	85	205	60	25	112	31	M10	R1/8	M12	3
50	60	SN210	90	60	170	15	20	90	205	60	25	115	33	M10	R1/8	M12	3.2
55	65	SN211	100	70	210	18	23	95	255	70	28	130	33	M12	R1/8	M16	4.3
60	70	SN212	110	70	210	18	23	105	255	70	30	135	38	M12	R1/8	M16	5.2
65	75	SN213	120	80	230	18	23	110	275	80	30	150	43	M12	R1/8	M16	5.9
70	80	SN214	125	80	230	18	23	115	275	80	30	155	44	M12	R1/8	M16	5.7
75	85	SN215	130	80	230	18	23	115	280	80	30	155	41	M12	R1/8	M16	7.2
80	90	SN216	140	95	260	22	27	120	315	90	32	175	43	M16	R1/8	M20	8.9
85	95	SN217	150	95	260	22	27	125	320	90	32	185	46	M16	R1/8	M20	9.9
90	100	SN218	160	100	290	22	27	145	345	100	35	195	62.4	M16	R1/8	M20	12
95	110	SN219	170	112	290	22	27	140	345	100	35	210	53	M16	R1/8	M20	13
100	115	SN220	180	112	320	26	32	160	380	110	40	218	70.3	M20	R1/8	M24	17
110	125	SN222	200	125	350	26	32	175	410	120	45	240	80	M20	R1/4	M24	22
120	135	SN224	215	140	350	26	32	185	410	120	45	270	86	M20	R1/4	M24	23
130	145	SN226	230	150	380	28	36	190	445	130	50	290	90	M24	R1/4	M24	28
140	155	SN228	250	150	420	33	42	205	500	150	50	305	98	M24	R1/4	M30	36
150	165	SN230	270	160	450	33	42	220	530	160	60	325	106	M24	R1/4	M30	43
160	175	SN232	290	170	470	33	42	235	550	160	60	345	114	M24	R1/4	M30	50

¹⁾ The stabilizing ring indicates the outer diameter and width dimension. 2) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape. Note: 1. SN224 or larger plummer blocks are provided with a lifting eye bolt. G-16

Shaft end type

			lied part			Reference dimension	Rubber seal	End cover number	Shaft dia.
	of self-aligning ball be		Combination of sph			mm	number		mm
Bearing	Stabilizing ring		Bearing	Stabilizing ri		<i>Y</i> 2)			,
number	Number 1) Q	uantity	number	Number 1)	Quantity	Y 2)			d
1206S	SR62×7	0				10			
2206S	SR62×10	2 1	22206EAW33	SR62×10	1	18 20	ZF8	MF8	30
1207S	SR72×8	2	-	-		19	7540	ME40	0.5
2207S	SR72×10	1	22207EAW33	SR72×10	1	22	ZF10	MF10	35
1208S	SR80×7.5	2			-	21	ZF11	MF11	40
2208S	SR80×10	1	22208EAD1	SR80×10	11	23	21 11	1411 1 1	40
1209S 2209S	SR85×6 SR85×8	2	22209EAD1	_ SR85×8	1	22 24	ZF12	MF12	45
1210S	SR90×6.5	2	- -	<u>S⊓03∧0</u>		24			
2210S	SR90×10	ī	22210EAD1	SR90×10	1	25	ZF13	MF13	50
1211S	SR100×6	2	_	-	_	25	ZF15	MF15	55
2211S	SR100×8	1	22211EAD1	SR100×8	1	27	2513	IVIF 13	33
1212S	SR110×8	2	-	-	-	26	ZF16	MF16	60
2212S 1213S	SR110×10 SR120×10	2	22212EAD1	SR110×10	1	29 28			
2213S	SR120×10	1	22213EAD1	SR120×12	1	32	ZF17	MF17	65
1214S	SR125×10	2		-		28	7540	ME40	70
2214S	SR125×13	1	22214EAD1	SR125×13	1	32	ZF18	MF18	70
1215S	SR130×8	2			-	30	ZF19	MF19	75
2215S	SR130×10	1	22215EAD1	SR130×10	1	33			,,
1216S 2216S	SR140×8.5 SR140×10	2 1	22216EAD1	SR140×10	1	32 36	ZF20	MF20	80
1217S	SR150×9	2	22210EAD1	3N14U \ 10		34			
2217S	SR150×10	ī	22217EAD1	SR150×10	1	38	ZF21	MF21	85
1218S	SR160×16.2	2	_	_	_	35			
2218S	SR160×11.2	2	22218EAD1	SR160×11.		40	ZF22	MF22	90
10100	- CD170×10 F	_	23218EMD1	SR160×10	1	46			
1219S 2219S	SR170×10.5 SR170×10	2	22219EAD1	SR170×10	1	37 43	ZF24	MF24	95
1220S	SR180×18.1	2		-		39			
2220S	SR180×12.1	2	22220EAD1	SR180×12.	1 2	45	ZF26	MF26	100
	_	_	23220EMD1	SR180×10	1	52			
1222S	SR200×21	2	-	-	_	42	7500	14500	440
2222S	SR200×13.5	2	22222EAD1 23222EMD1	SR200×13. SR200×10	5 2 1	50 58	ZF28	MF28	110
	-		22224EAD1	SR215×14	2	53			
_	_	_	23224EMD1	SR215×10	1	62	ZF30	MF30	120
			22226EAD1	SR230×13	2	57	GS33	MF33	130
_	_	_	23226EMD1	SR230×10	1	65	4333	IVIF33	130
_	_	_	22228EAD1	SR250×15	2	60	GS35	MF35	140
			23228EMD1 22230EAD1	SR250×10	1 5 2	70			_
-	-	-	23230EAD1 23230EMD1	SR270×16. SR270×10	5 Z 1	65 75	GS37	MF37	150
			22232EAD1	SR290×17	2	71	0000	MEGG	160
_	_	_	23232EMD1	SR290×10	1	83	GS39	MF39	100

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is ½ of the width dimension of the stabilizing ring.

NTN

Plummer Blocks

NTN

Plummer block series SNZ2 (stepped bore type / for cylindrical bore bearings)

d 30 ∼ 160mm

<i>a</i> _		1001																
	Shaft diamet		Plummer block					Di	mensi	ons						Oil filler / drain		
	mm		number						mm						t Nominal	plug size	S Nominal	kg
d	d_1	d_2		D	Н	J	N	N_1	A	L	A_1	H_1	H_2	g	no.		dimension	(approx.)
30	25	35	SNZ206	62	50	150	15	20	77	185	52	22	90	30	M 8	R1/8	M12	1.8
35	30	45	SNZ207	72	50	150	15	20	82	185	52	22	95	33	M10	R1/8	M12	2.2
40	35	50	SNZ208	80	60	170	15	20	85	205	60	25	110	33	M10	R1/8	M12	2.9
45	40	55	SNZ209	85	60	170	15	20	85	205	60	25	112	31	M10	R1/8	M12	3.2
50	45	60	SNZ210	90	60	170	15	20	90	205	60	25	115	33	M10	R1/8	M12	3.4
55	50	65	SNZ211	100	70	210	18	23	95	255	70	28	130	33	M12	R1/8	M16	4.5
60	55	70	SNZ212	110	70	210	18	23	105	255	70	30	135	38	M12	R1/8	M16	5.4
65	60	75	SNZ213	120	80	230	18	23	110	275	80	30	150	43	M12	R1/8	M16	6.2
70	60	80	SNZ214	125	80	230	18	23	115	275	80	30	155	44	M12	R1/8	M16	6.7
75	65	85	SNZ215	130	80	230	18	23	115	280	80	30	155	41	M12	R1/8	M16	7.6
80	70	90	SNZ216	140	95	260	22	27	120	315	90	32	175	43	M16	R1/8	M20	9.4
85	75	95	SNZ217	150	95	260	22	27	125	320	90	32	185	46	M16	R1/8	M20	10
90	80	100	SNZ218	160	100	290	22	27	145	345	100	35	195	62.4	M16	R1/8	M20	13
95	85	110	SNZ219	170	112	290	22	27	140	345	100	35	210	53	M16	R1/8	M20	16
100	90	115	SNZ220	180	112	320	26	32	160	380	110	40	218	70.3	M20	R1/8	M24	18
110	100	125	SNZ222	200	125	350	26	32	175	410	120	45	240	80	M20	R1/4	M24	23
120	110	135	SNZ224	215	140	350	26	32	185	410	120	45	270	86	M20	R1/4	M24	25
130	115	145	SNZ226	230	150	380	28	36	190	445	130	50	290	90	M24	R1/4	M24	32
140	125	155	SNZ228	250	150	420	33	42	205	500	150	50	305	98	M24	R1/4	M30	41
150	135	165	SNZ230	270	160	450	33	42	220	530	160	60	325	106	M24	R1/4	M30	49
160	140	175	SNZ232	290	170	470	33	42	235	550	160	60	345	114	M24	R1/4	M30	57

1) Tł	ne stabilizing ring indicates the outer diameter and	width dimension.	2) Dimension Y indicates the reference dimension from the shaft
CE	nter to the end in the case of the shaft end shape.	Note: 1. SNZ2	24 or larger plummer blocks are provided with a lifting eye bolt.

Shaft end type

Com	nbination	of self-aligning bal	l bearings		herical roller bearings		Nut	Washer	Reference dimension mm	Rub se num	al ber	End cover number	Shaft dia. mm
	aring	Stabilizing		Bearing	Stabilizing ring	- 10	number	number	TZ2)	d_1	d_2		,
nui	mber	Number 1)	Quantity	number	Number 1) Qu	antity			$Y^{2)}$	side	side		d
	06S 06S	SR62×7 SR62×10	2 1	_ 22206EAW33	- SD60×10	1	AN06	AW06X	18 20	ZF6	ZF8	MF6	30
	06S 07S	SR72×8	2	- -	SH02 ∧ 10 -	_			10				
220	07S	SR72×10	1	22207EAW33	SR72×10	1	AN07	AW07X	22	ZF7	ZF10	MF7	35
	08S	SR80×7.5				-	AN08	AW08X	21	ZF8	ZF11	MF8	40
	08S 09S	SR80×10 SR85×6	1 2	22208EAD1	SR80×10	1	711100		23 22				
	09S	SR85×8	1	22209EAD1	SR85×8	1	AN09	AW09X	24	ZF9	ZF12	MF9	45
	10S	SR90×6.5		-	-	-	A N 14 O	AW10X	24	ZF10	7510	METO	50
	10S	SR90×10	1	22210EAD1	SR90×10	1	AN10	AVVIUX	25	ZFIU	ZF13	MF10	50
	11S	SR100×6	2	-	-	- 1	AN11	AW11X	25 27	ZF11	ZF15	MF11	55
	11S 12S	SR100×8 SR110×8	1 2	22211EAD1	SR100×8	_			26				
	12S	SR110×6		22212EAD1	SR110×10	1	AN12	AW12X	26 29	ZF12	ZF16	MF12	60
	13S	SR120×10		_	-	_	4.1.4.0	4144614	28	7540	7545	14540	^=
22	13S	SR120×12	2 1	22213EAD1	SR120×12	1	AN13	AW13X	32	ZF13	ZF17	MF13	65
	14S	SR125×10				-	ΔN14	AW14X	28	ZF13	ZF18	MF13	70
	14S	SR125×13		22214EAD1	SR125×13	1	AIVIT	AVVITA	ა∠	21 10	21 10	IVII 10	70
	15S	SR130×8	2		- CD120×10	-	AN15	AW15X	30 33	ZF15	ZF19	MF15	75
	15S 16S	SR130×10 SR140×8.		22215EAD1	SR130×10				33				
	16S	SR140×0.		22216EAD1	SR140×10	1	AN16	AW16X	36	ZF16	ZF20	MF16	80
	17S	SR150×9	2	-	-	_	A N 14 7	A \ A / 4 \ \	34	フロイフ	7504	N4E47	85
	17S	SR150×10		22217EAD1	SR150×10	1	AN17	AW17X	38	ZF17	ZF21	MF17	00
	18S	SR160×16				-			35				
22	18S	SR160×11		22218EAD1	SR160×11.2		AN18	AW18X		ZF18	ZF22	MF18	90
10	_ 19S	SR170×10).5 2	23218EMD1	SR160×10	1			46 37				
	19S	SR170×10		22219EAD1	SR170×10	1	AN19	AW19X	43	ZF19	ZF24	MF19	95
	20S	SR180×18		-	-	_			39				
	20S	SR180×12		22220EAD1	SR180×12.1	2	AN20	AW20X		ZF20	ZF26	MF20	100
	_	_	_	23220EMD1	SR180×10	1			52				
	22S	SR200×21		-	-	_	A N 100	A14/001/	42	7500	7500	14500	
22	22S	SR200×13	3.5 2	22222EAD1 23222EMD1	SR200×13.5 SR200×10	2	AN22	AW22X	50 58	ZF22	ZF28	MF22	110
				22224EAD1	SR215×14	2			ΕO				
-	_	_	_	23224EMD1	SR215×10	1	AN24	AW24X	62	ZF24	ZF30	MF24	120
				22226EAD1	SR230×13	2	AN26	AMOR	57	ZF26	GS33	MEGG	120
		_		23226EMD1	SR230×10	1	AINZO	AVV20	65	ZF20	4333	MF26	130
_	_	_	_	22228EAD1	SR250×15	2	AN28	AW28	60	ZF28	GS35	MF28	140
				23228EMD1 22230EAD1	SR250×10 SR270×16.5	2			70 65				
-	-	-	-	23230EAD1	SR270×10.5	1	AN30	AW30	76	ZF30	GS37	MF30	150
				22232EAD1	SR290×17	2	41100	A14/00	71	7500	0000	MEGO	400
-	_	_	_	23232EMD1	SR290×10	1	AN32	AW32	83	ZF32	GS39	MF32	160

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is $\frac{1}{2}$ of the width dimension of the stabilizing ring.

(standard type / for bearings with adapter)

d_1 25 ~ 140mm

1																
Shaft dia.	Plummer block number					I	Dimens mm						t	Oil filler / drain plug size	Reference dimension S	Mass kg
111111	Hullibei						111111						Nominal	plug size	Nominal	Νg
d_1		D	H	J	N	N_1	A	L	A_1	H_1	H_2	g	no.		dimension	(approx.)
25	SN606	72	50	150	15	20	82	185	52	22	95	37	M10	R1/8	M12	2.3
30	SN607	80	60	170	15	20	90	205	60	25	110	41	M10	R1/8	M12	3
35	SN608	90	60	170	15	20	95	205	60	25	115	43	M10	R1/8	M12	3.1
40	SN609	100	70	210	18	23	105	255	70	28	130	46	M12	R1/8	M16	4.4
45	SN610	110	70	210	18	23	115	255	70	30	135	50	M12	R1/8	M16	5
50	SN611	120	80	230	18	23	120	275	80	30	150	53	M12	R1/8	M16	5.8
55	SN612	130	80	230	18	23	125	280	80	30	155	56	M12	R1/8	M16	7.7
60	SN613	140	95	260	22	27	130	315	90	32	175	58	M16	R1/8	M20	9.8
65	SN615	160	100	290	22	27	140	345	100	35	195	65	M16	R1/8	M20	12
70	SN616	170	112	290	22	27	145	345	100	35	212	68	M16	R1/8	M20	15
75	SN617	180	112	320	26	32	155	380	110	40	218	70	M20	R1/8	M24	17
80	S618	190	112	320	26	35	160	400	110	33	230	74	M20	R1/4	M24	21
85	S619	200	125	350	26	35	170	420	120	36	245	77	M20	R1/4	M24	24
90	S620	215	140	350	26	35	175	420	120	38	280	83	M20	R1/4	M24	29
100	S622	240	150	390	28	38	190	460	130	40	300	90	M24	R1/4	M24	38
110	S624	260	160	450	33	42	205	540	160	50	325	96	M24	R1/4	M30	47
115	S626	280	170	470	33	42	215	560	160	50	350	103	M24	R1/4	M30	54
125	S628	300	180	520	35	45	235	630	170	55	375	112	M30	R1/4	M30	70
135	S630	320	190	560	35	45	245	680	180	55	395	118	M30	R1/4	M30	75
140	S632	340	200	580	42	52	255	710	190	60	415	124	M30	R1/4	M36	80

Plummer Blocks

Shaft end type

Combinati Bearing	i on of self- a Adapter	aligning ball bear Stabilizing rin	ings	lied part Combination Bearing	of spherica Adapter	al roller bearings Stabilizing ring	r	Reference dimension mm	Rubber seal number	End cover number	Shaft dia. mm
number	number		g Quantity	number	number		o Quantity	$Y^{(2)}$			d_1
1306SK 2306SK	H306X H2306X	SR72×9 SR72×10	2	-	_	-	_	19 23	ZF6	MF6	25
1307SK 2307SK	H307X H2307X	SR80×10 SR80×10	2 1	_	_	_	-	21 26	ZF7	MF7	30
1308SK 2308SK	H308X H2308X	SR90×10 SR90×10	2 1	21308CK 22308EAKD1	H308X H2308X	SR90×10 SR90×10	2 1	23 28	ZF8	MF8	35
1309SK 2309SK	H309X H2309X	SR100×10.5 SR100×10	2 1	21309CK 22309EAKD1	H309X H2309X	SR100×10.5 SR100×10	2	25 31	ZF9	MF9	40
1310SK 2310SK	H310X H2310X	SR110×11.5 SR110×10	2	21310CK 22310EAKD1	H310X H2310X	SR110×11.5 SR110×10	2	27 34	ZF10	MF10	45
1311SK 2311SK	H311X H2311X	SR120×12 SR120×10	2	21311K 22311EAKD1	H311X H2311X	SR120×12 SR120×10	2	29 36	ZF11	MF11	50
1312SK 2312SK	H312X H2312X	SR130×12.5 SR130×10	2 1	21312K 22312EAKD1	H312X H2312X	SR130×12.5 SR130×10	2	31 39	ZF12	MF12	55
1313SK 2313SK	H313X H2313X	SR140×12.5 SR140×10	2	21313K 22313EAKD1	H313X H2313X	SR140×12.5	2	33 40	ZF13	MF13	60
1315SK 2315SK	H315X H2315X	SR160×14 SR160×10	2	21315K 22315EAKD1	H315X H2315X	SR160×14 SR160×10	2	36 45	ZF15	MF15	65
1316SK 2316SK	H316X H2316X	SR170×14.5 SR170×10	2	21316K 22316EAKD1	H316X H2316X	SR170×14.5	2	39 48	ZF16	MF16	70
1317SK 2317SK	H317X H2317X	SR180×14.5 SR180×10	2	21317K 22317EAKD1	H317X H2317X	SR180×14.5 SR180×10	2	41 50	ZF17	MF17	75
1318SK 2318SK	H318X H2318X	SR190×15.3 SR190×9.5	2	21318K 22318EAKD1	H318X H2318X	SR190×15.3 SR190×9.5	2	42 52	ZF18	MF18	80
1319SK 2319SK	H319X H2319X	SR200×15.8 SR200×9.5	2	21319K 22319EAKD1	H319X H2319X	SR200×15.8 SR200×9.5	2	44 55	ZF19	MF19	85
1320SK 2320SK	H320X H2320X	SR215×17.8 SR215×9.5	2	21320K 22320EAKD1	H320X H2320X	SR215×17.8 SR215×9.5	2	46 59	ZF20	MF20	90
1322SK 2322SK	H322X H2322X	SR240×19.8 SR240×9.5	2	21322K 22322EAKD1	H322X H2322X	SR240×19.8 SR240×9.5	2	48 63	ZF22	MF22	100
_	_	-	_	22324EAKD1	H2324X	SR260×9.5	1	67	ZF24	MF24	110
_	-	_	-	22326EAKD1	H2326	SR280×9.5	1	72	ZF26	MF26	115
-	-	-	-	22328EAKD1	H2328	SR300×9.5	1	77	ZF28	MF28	125
_	-	_	-	22330EMKD1	H2330	SR320×9.5	1	82	ZF30	MF30	135
-	-	-	-	22332EMKD1	H2332	SR340×9.5	1	88	ZF32	MF32	140

¹⁾ The stabilizing ring indicates the outer diameter and width dimension. 2) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape. Note: 1. S618 or larger plummer blocks are provided with a lifting eye bolt. G-20

NTN

Plummer Blocks

NTN

Plummer block series SN3 / S3 (large bore type / for cylindrical bore bearings)

d	30 ~ :	160mm															
dia	Shaft ameter mm	Plummer block number					D	imens mm						t Nominal	Oil filler / drain plug size	Reference dimension S' Nominal	Mass kg
d	d_2		D	H	J	N	N_1	A	L	A_1	H_1	H_2	g	no.		dimension	(approx.)
30	35	SN306	72	50	150	15	20	82	185	52	22	95	37	M10	R1/8	M12	1.8
30	40	SN306X	72	50	150	15	20	82	185	52	22	95	37	M10	R1/8	M12	1.8
35	45	SN307	80	60	170	15	20	90	205	60	25	110	41	M10	R1/8	M12	2.6
40	50	SN308	90	60	170	15	20	95	205	60	25	115	43	M10	R1/8	M12	2.9
45	55	SN309	100	70	210	18	23	105	255	70	28	130	46	M12	R1/8	M16	4.1
50	60	SN310	110	70	210	18	23	115	255	70	30	135	50	M12	R1/8	M16	4.7
55	65	SN311	120	80	230	18	23	120	275	80	30	150	53	M12	R1/8	M16	5.8
60	70	SN312	130	80	230	18	23	125	280	80	30	155	56	M12	R1/8	M16	6.5
65	75	SN313	140	95	260	22	27	130	315	90	32	175	58	M16	R1/8	M20	8.7
70	80	SN314	150	95	260	22	27	130	320	90	32	185	61	M16	R1/8	M20	10
75	85	SN315	160	100	290	22	27	140	345	100	35	195	65	M16	R1/8	M20	11
80	90	SN316	170	112	290	22	27	145	345	100	35	212	68	M16	R1/8	M20	13
85	95	SN317	180	112	320	26	32	155	380	110	40	218	70	M20	R1/8	M24	15
85	100	SN317X	180	112	320	26	32	155	380	110	40	218	70	M20	R1/8	M24	15
90	100	S318	190	112	320	26	35	160	400	110	33	230	74	M20	R1/4	M24	22
90	105	S318X	190	112	320	26	35	160	400	110	33	230	74	M20	R1/4	M24	22
95	110	S319	200	125	350	26	35	170	420	120	36	245	77	M20	R1/4	M24	26
100	115	S320	215	140	350	26	35	175	420	120	38	280	83	M20	R1/4	M24	32
110	125	S322	240	150	390	28	38	190	460	130	40	300	90	M24	R1/4	M24	42
120	135	S324	260	160	450	33	42	205	540	160	50	325	96	M24	R1/4	M30	61
130	150	S326	280	170	470	33	42	215	560	160	50	350	103	M24	R1/4	M30	68
140	160	S328	300	180	520	35	45	235	630	170	55	375	112	M30	R1/4	M30	95
150	170	S330	320	190	560	35		245	680	180	55	395	118	M30	R1/4	M30	110
160	180	S332	340	200	580	42	52	255	710	190	60	415	124	M30	R1/4	M36	130

Shaft end type

		Арр	lied part			Reference dimension	Rubber seal	End cover number	Sha dia
mbination o	of self-aligning ball b	earings	Combination of sp	herical roller bear	ings	mm	number		mr
Bearing	Stabilizing rin	g	Bearing	Stabilizing r	ing				
number	Number 1) (uantity	number	Number 1)	Quantity	$Y^{2)}$			C
1306S	SR72×9	2				19	ZF8	MF8	3
2306S 1306S	SR72×10 SR72×9	1 2		-		23 19			_
2306S	SR72×10	1	-	_	-	23	ZF9	MF9	3
1307S 2307S	SR80×10 SR80×10	2 1	-	_	-	21 26	ZF10	MF10	3
1308S 2308S	SR90×10 SR90×10	2 1	21308C 22308EAD1	SR90×10 SR90×10	2 1	23 28	ZF11	MF11	4
1309S	SR100×10.5	2	21309C	SR100×10	.5 2	25	ZF12	MF12	4
2309S 1310S	SR100×10 SR110×11.5	2	22309EAD1 21310C	SR100×10 SR110×11	.5 2	31 27	ZF13	MF13	5
2310S 1311S	SR110×10 SR120×12	2	22310EAD1 21311	SR110×10 SR120×12		34 29			_
2311S	SR120×10	1 2	22311EAD1	SR120×10	1	36	ZF15	MF15	5
1312S 2312S	SR130×12.5 SR130×10	1	21312 22312EAD1	SR130×12 SR130×10	1	31 39	ZF16	MF16	6
1313S 2313S	SR140×12.5 SR140×10	2 1	21313 22313EAD1	SR140×12 SR140×10		33 40	ZF17	MF17	6
1314S	SR150×13	2	21314	SR150×13	2	34	ZF18	MF18	7
2314S 1315S	SR150×10 SR160×14	2	22314EAD1 21315	SR150×10 SR160×14		42 36	ZF19	MF19	7
2315S 1316S	SR160×10 SR170×14.5	2	22315EAD1 21316	SR160×10 SR170×14		45 39			_
2316S	SR170×10	1	22316EAD1	SR170×10	1	48	ZF20	MF20	8
1317S 2317S	SR180×14.5 SR180×10	2 1	21317 22317EAD1	SR180×14 SR180×10	1	41 50	ZF21	MF21	8
1317S 2317S	SR180×14.5 SR180×10	2 1	21317 22317EAD1	SR180×14 SR180×10		41 50	ZF22	MF22	8
1318S	SR190×15.3	2	21318	SR190×15	.3 2	42	ZF22	MF22	ç
2318S 1318S	SR190×9.5 SR190×15.3	2	22318EAD1 21318	SR190×9.5 SR190×15	.3 2	52 42	ZF23	MF23	ç
2318S 1319S	SR190×9.5 SR200×15.8	2	22318EAD1 21319	SR190×9.5 SR200×15		52 44			-
2319S	SR200×9.5	1	22319EAD1	SR200×9.5	5 1	55	ZF24	MF24	ć
1320S 2320S	SR215×17.8 SR215×9.5	2 1	21320 22320EAD1	SR215×17 SR215×9.5		46 59	ZF26	MF26	1
1322S 2322S	SR240×19.8 SR240×9.5	2 1	21322 22322EAD1	SR240×19 SR240×9.5		48 63	ZF28	MF28	1
-	-	_	22324EAD1	SR260×9.5		67	ZF30	MF30	1
_	_	_	22326EAD1	SR280×9.5	5 1	72	ZF34	MF34	1
-	-	_	22328EAD1	SR300×9.5	5 1	77	ZF36	MF36	1
_	_	_	22330EMD1	SR320×9.5	5 1	82	ZF38	MF38	1
	_	_	22332EMD1	SR340×9.5	5 1	88	ZF40	MF40	1

Note: 2. Dimension *x* applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is ½ of the width dimension of the stabilizing ring.

d 30 ∼ 160mm

d	30 ~	160	mm															
	Shaft diamet mm		Plummer block number					C	imens) mm						t	Oil filler / drain plug size	Reference dimension S	Mass kg
d	d_1	d_2		D	Н	J	N	N_1	A	L	A_1	H_1	H_2	g	Nominal no.	1 0	Nominal dimension	
α	α_1	a_2		D	11	J	1 v	1 V 1	21	П	211	111	112	g	110.		UIIIICIBIUII	(approx.)
30	25	35	SNZ306	72	50	150	15	20	82	185	52	22	95	37	M10	R1/8	M12	2.1
30	25	40	SNZ306X	72	50	150	15	20	82	185	52	22	95	37	M10	R1/8	M12	2.1
35	30	45	SNZ307	80	60	170	15	20	90	205	60	25	110	41	M10	R1/8	M12	3.1
40	35	50	SNZ308	90	60	170	15	20	95	205	60	25	115	43	M10	R1/8	M12	3.5
45	40	55	SNZ309	100	70	210	18	23	105	255	70	28	130	46	M12	R1/8	M16	4.8
50	45	60	SNZ310	110	70	210	18	23	115	255	70	30	135	50	M12	R1/8	M16	5.6
55	50	65	SNZ311	120	80	230	18	23	120	275	80	30	150	53	M12	R1/8	M16	6.6
60	55	70	SNZ312	130	80	230	18	23	125	280	80	30	155	56	M12	R1/8	M16	7.9
65	60	75	SNZ313	140	95	260	22	27	130	315	90	32	175	58	M16	R1/8	M20	11
70	60	80	SNZ314	150	95	260	22	27	130	320	90	32	185	61	M16	R1/8	M20	12
75	65	85	SNZ315	160	100	290	22	27	140	345	100	35	195	65	M16	R1/8	M20	13
80	70	90	SNZ316	170	112	290	22	27	145	345	100	35	212	68	M16	R1/8	M20	16
85	75	95	SNZ317	180	112	320	26	32	155	380	110	40	218	70	M20	R1/8	M24	18
85	75	100	SNZ317X	180	112	320	26	32	155	380	110	40	218	70	M20	R1/8	M24	18
90	80	100	SZ318	190	112	320	26	35	160	400	110	33	230	74	M20	R1/4	M24	21
90	80	105	SZ318X	190	112	320	26	35	160	400	110	33	230	74	M20	R1/4	M24	21
95	85	110	SZ319	200	125	350	26	35	170	420	120	36	245	77	M20	R1/4	M24	23
100	90	115	SZ320	215	140	350	26	35	175	420	120	38	280	83	M20	R1/4	M24	32
110	100	125	SZ322	240	150	390	28	38	190	460	130	40	300	90	M24	R1/4	M24	42
120	110	135	SZ324	260	160	450	33	42	205	540	160	50	325	96	M24	R1/4	M30	61
130	115	150	SZ326	280	170	470	33	42	215	560	160	50	350	103	M24	R1/4	M30	68
140	125	160	SZ328	300	180	520	35	45	235	630	170	55	375	112	M30	R1/4	M30	95
150	135	170	SZ330	320	190	560	35	45	245	680	180	55	395	118	M30	R1/4	M30	110
160	140	180	SZ332	340	200	580	42	52	255	710	190	60	415	124	M30	R1/4	M36	130

1) The stabilizing ring indicates the outer diameter and width dimension. 2) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape. Note: 1. SZ318 or larger plummer blocks are provided with a lifting eye bolt.

Shaft end type

			Applied pa					Reference dimension	Rub se	al	End cover number	dia.
Combination Bearing	of self-aligning ball bea Stabilizing ring	rings	Combination of a Bearing	spherical roller bearings Stabilizing ring	r	Nut	Washer number	mm	d_1	iber d_2		mm
number		antity	number		; iantity		Hullibel	Y ²⁾	a_1 side	a_2 side		d
Harriser	rumber . Qu	unitity	Trainio Ci	rtumber - Qu	idilicity			-	J.GC	5.40		
1306S	SR72×9	2				ANIOS	AW06X	19 23	ZF6	ZF8	MF6	30
2306S	SR72×10	1			_	AINOO	AVVOOX		210	210	IVII O	30
1306S 2306S	SR72×9 SR72×10	2	_	_	-	AN06	AW06X	19 23	ZF6	ZF9	MF6	30
1307S	SR80×10	2	_	_	_	AN07	AW07X	21	ZF7	ZF10	MF7	35
2307S 1308S	SR80×10 SR90×10	2	21308C	SR90×10	2			26				
2308S	SR90×10	1	22308EAD1	SR90×10	1	AN08	AW08X	23 28	ZF8	ZF11	MF8	40
1309S	SR100×10.5	2	21309C	SR100×10.5	2	AN09	AW09X	25	ZF9	ZF12	MF9	45
2309S 1310S	SR100×10 SR110×11.5	2	22309EAD1 21310C	SR100×10 SR110×11.5	1	711100		31 27	210	21 12		
2310S	SR110×11.5 SR110×10	1	22310EAD1	SR110×11.5 SR110×10	2	AN10	AW10X	34	ZF10	ZF13	MF10	50
1311S	SR120×12	2	21311	SR120×12	2	AN11	AW11X	29	ZF11	ZF15	MF11	55
23115	SR120×10	2	22311EAD1	SR120×10	1			30				33
1312S 2312S	SR130×12.5 SR130×10	1	21312 22312EAD1	SR130×12.5 SR130×10	1	AN12	AW12X	31 39	ZF12	ZF16	MF12	60
1313S	SR140×12.5	2	21313	SR140×12.5	2	AN13	AW13X	33	ZF13	ZF17	MF13	65
2313S	SR140×10	1	22313EAD1	SR140×10	1	ANIS	AVVISA	40	ZF 13	ZF17	IVIF 13	00
1314S 2314S	SR150×13 SR150×10	2	21314 22314EAD1	SR150×13 SR150×10	2	AN14	AW14X	34 42	ZF13	ZF18	MF13	70
1315S	SR160×14	2	21315	SR160×14	2	A N 1 4 E	1111EV	36	7515	ZF19	NAC16	75
2315S	SR160×10	1	22315EAD1	SR160×10	1	AN15	AW15X	45	ZF15	2519	MF15	75
1316S 2316S	SR170×14.5 SR170×10	2	21316 22316EAD1	SR170×14.5 SR170×10	2	AN16	AW16X	39 48	ZF16	ZF20	MF16	80
1317S	SR180×14.5	2	21317	SR180×14.5	2	A N 1 4 7	A \ A / 4 \ \		7517	7504	N4E47	0.5
2317S	SR180×10	1	22317EAD1	SR180×10	1	AN17	AW17X	41 50	ZF17	ZF21	MF17	85
1317S 2317S	SR180×14.5 SR180×10	2	21317 22317EAD1	SR180×14.5 SR180×10	2	AN17	AW17X	41 50	ZF17	ZF22	MF17	85
1318S	SR190×15.3	2	21318	SR190×15.3	2	A N 14 O	A14/4 01/	40	7540	7500	14540	
2318S	SR190×9.5	1	22318EAD1	SR190×9.5	1	AN18	AW18X	52	ZF18	ZF22	MF18	90
1318S 2318S	SR190×15.3	2	21318	SR190×15.3	2	AN18	AW18X	42 52	ZF18	ZF23	MF18	90
1319S	SR190×9.5 SR200×15.8	2	22318EAD1 21319	SR190×9.5 SR200×15.8	2	A N 14 O	A14/4 01/	4.4	7540	7504	14540	
2319S	SR200×9.5	1	22319EAD1	SR200×9.5	1	AN19	AW19X	55	ZF19	ZF24	MF19	95
1320S 2320S	SR215×17.8 SR215×9.5	2	21320 22320EAD1	SR215×17.8 SR215×9.5	2	AN20	AW20X	46 59	ZF20	ZF26	MF20	100
1322S	SR240×19.8	2	21322 21322	SR240×19.8	2	44100	414/001/	48	7500	7500		
2322S	SR240×9.5	1	22322EAD1	SR240×9.5	1	AN22	AW22X	63	ZF22	ZF28	MF22	110
_	_	_	22324EAD1	SR260×9.5	1	AN24	AW24X	67	ZF24	ZF30	MF24	120
			000005454	00000		A N 100	A14/00	70	7500	7504		_
	_	_	22326EAD1	SR280×9.5	1	AN26	AW26	72	ZF26	ZF34	MF26	130
_	_	_	22328EAD1	SR300×9.5	1	AN28	AW28	77	ZF28	ZF36	MF28	140
			00000EMD4	CD200 × 0.5	4	ANIOC	A14/00	00	7500	7500	MEGO	450
		_	22330EMD1	SR320×9.5	1	AN30	AW30	82	ZF30	ZF38	MF30	150
_	_	_	22332EMD1	SR340×9.5	1	AN32	AW32	88	ZF32	ZF40	MF32	160

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is ½ of the width dimension of the stabilizing ring.

JQL.

d_1 150 ~ 300mm

a_1 .	150 - 30	JOHIH													
Shaft dia.		er block nber							ension	s					
mm	Floating	Fixed						mn	1						t Nominal
d_1	side	side	D	H	J	J_1	N	N_1	A	L	A_1	H_1	H_2	$g^{\scriptscriptstyle 1)}$	no.
150	SD534	SD534G	310	180	510	140	32	52	270	620	230	60	360	96	M24
160	SD536	SD536G	320	190	540	150	32	52	280	650	240	60	380	96	M24
170	SD538	SD538G	340	200	570	160	35	55	290	700	260	65	400	102	M30
180	SD540	SD540G	360	210	610	170	35	55	300	740	270	65	420	108	M30
200	SD544	SD544G	400	240	680	190	40	60	330	820	300	70	475	118	M30
220	SD548	SD548G	440	260	740	200	42	62	340	880	310	85	515	130	M36
240	SD552	SD552G	480	280	790	210	42	62	370	940	340	85	560	140	M36
260	SD556	SD556G	500	300	830	230	50	70	390	990	370	100	590	140	M36
280	SD560	SD560G	540	325	890	250	50	70	410	1 060	390	100	640	150	M36
300	SD564	SD564G	580	355	930	270	57	77	440	1 110	420	110	690	160	M42
150	SD634	SD634G	360	210	610	170	35	55	300	740	270	65	420	130	M30
160	SD636	SD636G	380	225	640	180	40	60	320	780	290	70	450	136	M30
170	SD638	SD638G	400	240	680	190	40	60	330	820	300	70	475	142	M30
180	SD640	SD640G	420	250	710	200	42	62	350	860	320	85	500	148	M36
200	SD644	SD644G	460	280	770	210	42	62	360	920	330	85	550	155	M36
220	SD648	SD648G	500	300	830	230	50	70	390	990	370	100	590	165	M36
240	SD652	SD652G	540	325	890	250	50	70	410	1 060	390	100	640	175	M36
260	SD656	SD656G	580	355	930	270	57	77	440	1 110	420	110	690	185	M42

Shaft penetration type

Shaft end type

Oil filler / drain plug size	Reference dimension S Nominal	Mass kg	Applied p Combination of roller bear Bearing	spherical	Reference dimension mm	Rubber seal number	End cover number	Shaft dia. mm
	dimension	(approx.)	number	number	$Y^{(2)}$			d_1
R3/8	M30	95	22234EMKD1	H3134	75	ZF34	MF34	150
R3/8	M30	110	22236EMKD1	H3136	76	ZF36	MF36	160
R3/8	M30	130	22238EMKD1	H3138	80	ZF38	MF38	170
R3/8	M30	150	22240EMKD1	H3140	84	ZF40	MF40	180
R3/8	M36	210	22244EMKD1	H3144	90	ZF44	MF44	200
R3/8	M36	240	22248EMKD1	H3148	98	ZF48	MF48	220
R3/8	M36	320	22252EMKD1	H3152	105	ZF52	MF52	240
R3/8	M42	370	22256EMKD1	H3156	107	ZF56	MF56	260
R3/8	M42	460	22260EMKD1	H3160	114	ZF60	MF60	280
R3/8	M48	560	22264EMKD1	H3164	122	ZF64	MF64	300
R3/8	M30	150	22334EMKD1	H2334	92	ZF34	MF34	150
R3/8	M36	180	22336EMKD1	H2336	96	ZF36	MF36	160
R3/8	M36	210	22338EMKD1	H2338	100	ZF38	MF38	170
R3/8	M36	240	22340EMKD1	H2340	104	ZF40	MF40	180
R3/8	M36	300	22344EMKD1	H2344	109	ZF44	MF44	200
R3/8	M42	370	22348EMKD1	H2348	116	ZF48	MF48	220
R3/8	M42	460	22352EMKD1	H2352	123	ZF52	MF52	240
R3/8	M48	560	22356EMKD1	H2356	130	ZF56	MF56	260

Dimension g indicates the bearing width dimension of the floating side. The fixed side (code G) is larger than the bearing width dimension by 0.5 mm.
 Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape.

Plummer Blocks

NTN

Plummer Blocks

NTN

Plummer block series SD2 / SD2G / SD3 / SD3G (for heavy loads, stepped bore type / for cylindrical bore bearings)

d 170 ∼ 320mm

a	170.0	32011	1111														
	Shaft diamete mm	er		ner block mber						Di	mensi mm						t
d	d_1	d_2	Floating side	Fixed side	D	Н	J	J_1	N	N_1	A	L	A_1	H_1	H_2	$g^{_{1)}}$	Nominal no.
170	160	190	SD234	SD234G	310	180	510	140	32	52	270	620	230	60	360	96	M24
180	170	200	SD236	SD236G	320	190	540	150	32	52	280	650	240	60	380	96	M24
190	180	210	SD238	SD238G	340	200	570	160	35	55	290	700	260	65	400	102	M30
200	190	220	SD240	SD240G	360	210	610	170	35	55	300	740	270	65	420	108	M30
220	210	240	SD244	SD244G	400	240	680	190	40	60	330	820	300	70	475	118	M30
240	230	260	SD248	SD248G	440	260	740	200	42	62	340	880	310	85	515	130	M36
260	250	280	SD252	SD252G	480	280	790	210	42	62	370	940	340	85	560	140	M36
280	260	300	SD256	SD256G	500	300	830	230	50	70	390	990	370	100	590	140	M36
300	280	320	SD260	SD260G	540	325	890	250	50	70	410	1 060	390	100	640	150	M36
320	300	340	SD264	SD264G	580	355	930	270	57	77	440	1 110	420	110	690	160	M42
170	160	190	SD334	SD334G	360	210	610	170	35	55	300	740	270	65	420	130	M30
180	170	200	SD336	SD336G	380	225	640	180	40	60	320	780	290	70	450	136	M30
190	180	210	SD338	SD338G	400	240	680	190	40	60	330	820	300	70	475	142	M30
200	190	220	SD340	SD340G	420	250	710	200	42	62	350	860	320	85	500	148	M36
220	210	240	SD344	SD344G	460	280	770	210	42	62	360	920	330	85	550	155	M36
240	230	260	SD348	SD348G	500	300	830	230	50	70	390	990	370	100	590	165	M36
260	250	280	SD352	SD352G	540	325	890	250	50	70	410	1 060	390	100	640	175	M36
280	260	300	SD356	SD356G	580	355	930	270	57	77	440	1 110	420	110	690	185	M42

Shaft end type

Oil filler / drain plug size	$\begin{array}{c} \textbf{Reference} \\ \textbf{dimension} \\ S \end{array}$	Mass kg	App Combination of sp	lied part oherical rolle	r bearings Washer/lock	Reference dimension mm	Rubbe num		End cover number	Shaft dia. mm
. •	Nominal dimension	(approx.)	Bearing number	Adapter number	plate number	$Y^{(2)}$	$(d_1 {\sf side})$	$(d_2 {\sf side})$		d
R3/8	M30	95	22234EMD1	AN34	AW34	75	ZF36	ZF42	MF36	170
R3/8	M30	110	22236EMD1	AN36	AW36	76	ZF38	ZF44	MF38	180
R3/8	M30	130	22238EMD1	AN38	AW38	80	ZF40	ZF46	MF40	190
R3/8	M30	150	22240EMD1	AN40	AW40	84	ZF42	ZF48	MF42	200
R3/8	M36	210	22244EMD1	AN44	AL44	90	ZF46	ZF52	MF46	220
R3/8	M36	240	22248EMD1	AN48	AL44	98	GS50S	ZF56	MF50	240
R3/8	M36	320	22252EMD1	AN52	AL52	105	ZF54	ZF60	MF54	260
R3/8	M42	370	22256EMD1	AN56	AL52	107	ZF56	ZF64	MF56	280
R3/8	M42	460	22260EMD1	AN60	AL60	114	ZF60	ZF68	MF60	300
R3/8	M48	560	22264EMD1	AN64	AL64	122	ZF64	GS72	MF64	320
R3/8	M30	150	22334EMD1	AN34	AW34	92	ZF36	ZF42	MF36	170
R3/8	M36	180	22336EMD1	AN36	AW36	96	ZF38	ZF44	MF38	180
R3/8	M36	210	22338EMD1	AN38	AW38	100	ZF40	ZF46	MF40	190
R3/8	M36	240	22340EMD1	AN40	AW40	104	ZF42	ZF48	MF42	200
R3/8	M36	300	22344EMD1	AN44	AL44	109	ZF46	ZF52	MF46	220
R3/8	M42	370	22348EMD1	AN48	AL44	116	GS50S	ZF56	MF50	240
R3/8	M42	460	22352EMD1	AN52	AL52	123	ZF54	ZF60	MF54	260
R3/8	M48	560	22356EMD1	AN56	AL52	130	ZF56	ZF64	MF56	280

G-29

¹⁾ Dimension g indicates the bearing width dimension of the floating side. The fixed side (code G) is larger than the bearing width dimension by 0.5 mm

width dimension by 0.5 mm.

2) Dimension *Y* indicates the reference dimension from the shaft center to the end in the case of the shaft end shape.

G-28

JQL.

Plummer block series SN30 / SN31 (standard type / for bearings with adapter)

d_1 100 ~ 170mm

a_1	100 17	OIIIII	•													
Shaft dia. mm	Plummer block number					ı	Dimens mm						t	Oil filler / drain plug size	Reference dimension S	Mass kg
d_1		D	Н	J	N	N_1	A	L	A_1	H_1	H_2	g	Nominal no.	. •	Nominal dimension	_
1						1					2	9	1101		41110110101	(оррголі)
110	SN3024	180	112	320	26	32	150	380	110	40	217	56	M20	R1/4	M24	17
115	SN3026	200	125	350	26	32	160	410	120	45	240	62	M20	R1/4	M24	20
125	SN3028	210	140	350	26	32	170	410	120	45	260	63	M20	R1/4	M24	25
135	SN3030	225	150	380	28	36	175	445	130	50	283	66	M24	R1/4	M24	30
140	SN3032	240	150	390	28	36	190	460	130	50	290	70	M24	R1/4	M24	33
150	SN3034	260	160	450	33	42	200	530	160	60	310	77	M24	R1/4	M30	46
160	SN3036	280	170	470	33	42	210	550	160	60	330	84	M24	R1/4	M30	52
170	SN3038	290	170	470	33	42	210	550	160	60	335	85	M24	R1/4	M30	52
100	SN3122	180	112	320	26	32	155	380	110	40	217	66	M20	R1/4	M24	18
110	SN3124	200	125	350	26	32	165	410	120	45	240	72	M20	R1/4	M24	21
115	SN3126	210	140	350	26	32	170	410	120	45	260	74	M20	R1/4	M24	26
125	SN3128	225	150	380	28	36	180	445	130	50	283	78	M24	R1/4	M24	32
135	SN3130	250	150	420	33	42	200	500	150	50	295	90	M24	R1/4	M30	40
140	SN3132	270	160	450	33	42	215	530	160	60	315	96	M24	R1/4	M30	45
150	SN3134	280	170	470	33	42	220	550	160	60	330	98	M24	R1/4	M30	51
160	SN3136	300	180	520	33	42	230	610	170	70	355	106	M30	R1/4	M30	63
170	SN3138	320	190	560	33	42	240	650	180	70	375	114	M30	R1/4	M30	76

Plummer Blocks

Shaft end type

Bearing number	Combination of s Adapter	plied part pherical roller bearings Stabilizing ring Plummer block	Stabilizing ring	Reference dimension mm	Rubber seal number	End cover number	Shaft dia. mm
	number	number 1)	Quantity	Y ²⁾			d_1
23024EAK	D1 H3024X	SR180×10	1	47	ZF24	MF24	110
23026EAK	D1 H3026	SR200×10	1	51	ZF26	MF26	115
23028EAK	D1 H3028	SR210×10	1	53	ZF28	MF28	125
23030EAK	D1 H3030	SR225×10	1	56	ZF30	MF30	135
23032EAK	D1 H3032	SR240×10	1	61	ZF32	MF32	140
23034EAK	D1 H3034	SR260×10	1	66	ZF34	MF34	150
23036EAK	D1 H3036	SR280×10	1	70	ZF36	MF36	160
23038EAK	D1 H3038	SR290×10	1	72	ZF38	MF38	170
23122EAK	D1 H3122X	SR180×10	1	51	ZF22	MF22	100
23124EAK	D1 H3124X	SR200×10	1	55	ZF24	MF24	110
23126EAK	D1 H3126	SR210×10	1	57	ZF26	MF26	115
23128EAK	D1 H3128	SR225×10	1	60	ZF28	MF28	125
23130EAK	D1 H3130	SR250×10	1	68	ZF30	MF30	135
23132EAK	D1 H3132	SR270×10	1	74	ZF32	MF32	140
23134EAK	D1 H3134	SR280×10	1	76	ZF34	MF34	150
23136EAK	D1 H3136	SR300×10	1	81	ZF36	MF36	160
23138EMK	D1 H3138	SR320×10	1	86	ZF38	MF38	170

¹⁾ The stabilizing ring indicates the outer diameter and width dimension. 2) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape.

Note: 1. SN3028 or larger and SN3126 or larger plummer blocks are provided with a lifting eye bolt.

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is $\frac{1}{2}$ of the width dimension of the stabilizing ring.

(for heavy loads, double seal type / for bearings with adapters)

d_1 150 ~ 400mm

JQL

Shaft dia. mm		ner block mber ¹⁾							nension	S					t
d_1	Floating side	Fixed side	D	Н	J	J_1	N	N_1	A	L	A_1	H_1	H_2	$g^{2)}$	Nominal no.
150	SD3034	SD3034G	260	160	450	110	32	42	230	540	200	50	320	77	M24
160	SD3036	SD3036G	280	170	470	120	32	42	250	560	220	50	340	84	M24
170	SD3038	SD3038G	290	170	470	120	32	42	250	560	220	50	345	85	M24
180	SD3040	SD3040G	310	180	510	140	32	52	270	620	250	60	360	92	M24
200	SD3044	SD3044G	340	200	570	160	35	55	290	700	280	65	400	100	M30
220	SD3048	SD3048G	360	210	610	170	35	55	300	740	290	65	420	102	M30
240	SD3052	SD3052G	400	240	680	190	40	60	340	820	320	70	475	114	M30
260	SD3056	SD3056G	420	250	710	200	42	62	350	860	340	85	500	116	M36
280	SD3060	SD3060G	460	280	770	210	42	62	360	920	350	85	550	128	M36
300	SD3064	SD3064G	480	280	790	210	42	62	380	940	360	85	560	131	M36
380	SD3080	SD3080G	600	365	960	270	57	77	430	1 140	420	120	710	158	M42
400	SD3084	SD3084G	620	375	980	270	57	77	430	1 160	420	120	735	160	M42

Shaft penetration type

Shaft end type

Oil filler / drain plug size	Reference dimension S Nominal	Mass kg	Applied p Combination of roller bear	spherical rings	Reference dimension mm	Rubber seal number	End cover number	Shaft dia. mm
	dimension	(approx.)	Bearing number	Adapter number	$Y^{3)}$			d_1
R3/8	M30	70	23034EAKD1	H3034	66	ZF34	MF34	150
R3/8	M30	80	23036EAKD1	H3036	70	ZF36	MF36	160
R3/8	M30	85	23038EAKD1	H3038	72	ZF38	MF38	170
R3/8	M30	100	23040EMKD1	H3040	76	ZF40	MF40	180
R3/8	M30	130	23044EMKD1	H3044	79	ZF44	MF44	200
R3/8	M30	150	23048EMKD1	H3048	84	ZF48	MF48	220
R3/8	M36	210	23052EMKD1	H3052	90	ZF52	MF52	240
R3/8	M36	240	23056EMKD1	H3056	95	ZF56	MF56	260
R3/8	M36	300	23060EMKD1	H3060	105	ZF60	MF60	280
R3/8	M36	320	23064EMKD1	H3064	108	ZF64	MF64	300
R3/8	M48	620	23080BK	H3080	131	GS80	MF80	380
R3/8	M48	690	23084BK	H3084	132	GS84	MF84	400

SD3068, SD3072, and SD3076 have the same dimensions as SD3368, SD3372, and SD3376. Therefore, when these models are necessary, select "SD3368, SD3372, and SD3376."
 Dimension g indicates the bearing width dimension of the floating side. The fixed side (code G) is larger than the bearing

width dimension by 0.5 mm.

3) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape.

JQL.

(for heavy loads, double seal type / for bearings with adapters)

d_1 150 ~ 400mm

Shaft dia.	nui	mer block mber ¹⁾							ensior	ıs					
mm		F: 1							mm						t
d_1	Floating side	Fixed side	D	Н	J	J_1	N	N_1	A	L	A_1	H_1	H_2	$g^{2)}$	Nominal no.
150	SD3134	SD3134G	280	170	470	120	35	42	250	560	220	50	340	98	M24
160	SD3136	SD3136G	300	180	520	140	35	52	270	630	250	55	365	106	M30
170	SD3138	SD3138G	320	190	560	140	35	55	310	680	270	55	385	114	M30
180	SD3140	SD3140G	340	200	570	160	35	55	310	700	280	65	400	122	M30
200	SD3144	SD3144G	370	225	640	180	40	60	320	780	310	70	450	130	M30
220	SD3148	SD3148G	400	240	680	190	40	60	330	820	320	70	475	138	M30
240	SD3152	SD3152G	440	260	740	200	42	62	360	880	350	85	515	154	M36
260	SD3156	SD3156G	460	280	770	210	42	62	360	920	350	85	550	156	M36
280	SD3160	SD3160G	500	300	830	230	50	70	390	990	380	100	590	170	M36
300	SD3164	SD3164G	540	325	890	250	50	70	430	1 060	400	100	640	186	M36
340	SD3172	SD3172G	600	365	960	310	57	77	470	1 140	460	120	710	202	M42
360	SD3176	SD3176G	620	375	980	320	57	77	500	1 160	490	120	735	204	M42
380	SD3180	SD3180G	650	390	1 040	340	57	77	520	1 220	510	125	770	210	M42
400	SD3184	SD3184G	700	420	1 070	380	57	77	560	1 250	550	135	820	234	M42

Shaft end type

Oil filler / drain plug size	Reference dimension S Nominal		Applied Combination of roller bearing	f spherical	Reference dimension mm	Rubber seal number	End cover number	Shaft dia. mm
	dimension	(approx.)	number	number	$Y^{(3)}$			d_1
R3/8	M30	75	23134EAD1	H3134	76	ZF34	MF34	150
R3/8	M30	94	23136EAKD1	H3136	81	ZF36	MF36	160
R3/8	M30	110	23138EMKD1	H3138	86	ZF38	MF38	170
R3/8	M30	130	23140EMKD1	H3140	91	ZF40	MF40	180
R3/8	M36	180	23144EMKD1	H3144	96	ZF44	MF44	200
R3/8	M36	210	23148EMKD1	H3148	102	ZF48	MF48	220
R3/8	M36	240	23152EMKD1	H3152	112	ZF52	MF52	240
R3/8	M36	310	23156EMKD1	H3156	115	ZF56	MF56	260
R3/8	M42	400	23160EMKD1	H3160	124	ZF60	MF60	280
R3/8	M42	480	23164EMKD1	H3164	135	ZF64	MF64	300
R3/8	M48	630	23172BK	H3172	159	GS72	MF72	340
R3/8	M48	850	23176BK	H3176	162	GS76	MF76	360
R3/8	M48	960	23180BK	H3180	167	GS80	MF80	380
R3/8	M48	1 080	23184BK	H3184	187	GS84	MF84	400

JQL

SD3168 has the same dimensions as SD3468. Therefore, when this model is necessary, select "SD3468."
 Dimension g indicates the bearing width dimension of the floating side. The fixed side (code G) is larger than the bearing width dimension by 0.5 mm.
 Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape.

Plummer block series SV5 (unit standard type / for bearings with adapter assembly)

d_1	$20 \sim 1$	35mr	n															
Shaft dia. mm	Plummer block number						Di	imension mm	ons						Oil filler / drain plug size	Refere dimen S Nominal	sion	Mass kg
d_1		D	H	J	J_1	N	N_1	L	A	A_1	g	A_3	H_1	H_2		dimension	Quantity	(approx.)
20	SV505	52	45	130	_	16	20	165	73	46	27	31	22	85	R1/8	M14	2	2.1
25	SV506	62	50	150	_	16	20	185	80	52	30	34	22	95	R1/8	M14	2	2.7
30	SV507	72	56	150	-	16	20	185	85	52	33	37.5	22	106	R1/8	M14	2	3.3
35	SV508	80	60	170	-	16	20	205	95	60	37	40.5	25	118	R1/8	M14	2	4.5
40	SV509	85	63	170	-	16	23	205	98	60	39	42.5	25	125	R1/8	M14	2	4.5
45	SV510	90	67	170	-	16	23	205	100	60	39	42.5	25	128	R1/8	M14	2	4.8
50	SV511	100	71	210	-	16	23	255	106	70	42	47	28	140	R1/8	M14	2	5.8
55	SV512	110	80	210	-	21	25	255	112	70	46	47	30	155	R1/8	M18	2	6.8
60	SV513	120	85	230	-	21	25	275	118	80	49	50	30	165	R1/8	M18	2	9.5
65	SV515	130	90	230	-	21	25	280	118	80	50	50	30	175	R1/8	M18	2	10
70	SV516	140	100	260	-	25	30	315	136	90	56	58	32	195	R1/8	M22	2	14
75	SV517	150	100	260	-	25	30	315	140	90	56	60	32	195	R1/8	M22	2	15
80	SV518	160	112	290	-	25	30	345	150	100	62	65	35	224	R1/8	M22	2	20
85	SV519	170	112	290	-	25	30	345	165	100	62	72.5	35	224	R1/8	M22	2	20
90	SV520	180	125	320	56	23	32	380	170	110	70	75	40	243	R1/8	M20	4	26
100	SV522	200	132	350	60	23	32	410	190	120	82	82	45	265	R1/4	M20	4	30
110	SV524	215	140	350	60	23	32	410	190	120	82	82	45	280	R1/4	M20	4	36
115	SV526	230	150	380	65	23	32	450	200	130	86	87	50	300	R1/4	M20	4	45
125	SV528	250	160	420	80	23	32	500	218	150	94	96	50	315	R1/4	M20	4	53
135	SV530	270	170	450	92	29	42	540	236	160	103	105	60	335	R1/4	M24	4	63

1) The stabilizing ring indicates the outer diameter and width dimension. 2) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape. Note: 1. SV520 or larger plummer blocks are provided with a lifting eye bolt.

Plummer Blocks

Shaft penetration type

Shaft end type

6 1: .:	6 16			olied part				Reference dimension	Rubber seal	Shaft dia.
Combination Bearing	on of self-a Adapter	aligning ball bear Stabilizing ring		Combinatio Bearing	n of spheric Adapter	cal roller bearing Stabilizing rin		mm	number	mm
number	number		Quantity	number	number	Number 1)	6 Quantity	Y ²⁾		d_1
Trainibe:	Harriboi	110111001	quantity	Hamber	110111001	110111001	Quantity			
1205SK	H205X	SR52×6	2	_	_	_	_	17		
2205SK	H305X	SR52×9	1	22205EAKD1	H305X	SR52×9	1	19	ZF5	20
1206SK	H206X	SR62×7	2	_	-	-	<u> </u>	18		
2206SK	H306X	SR62×10	1	22206EAKD1	H306X	SR62×10	1	20	ZF6	25
1207SK	H207X	SR72×8	2	_	_	-	_	19	757	00
2207SK	H307X	SR72×10	1	22207EAKD1	H307X	SR72×10	1	22	ZF7	30
1208SK	H208X	SR80×9.5	2	_	_	_	_	21	ZF8	35
2208SK	H308X	SR80×7	2	22208EAKD1	H308X	SR80×7	2	23	ZF8	33
1209SK	H209X	SR85×10	2	_	_	-	_	22	ZF9	40
2209SK	H309X	SR85×8	2	22209EAKD1	H309X	$SR85 \times 8$	2	24	213	40
1210SK	H210X	SR90×9.5	2	-	_	_	_	24	ZF10	45
2210SK	H310X	SR90×8	2	22210EAKD1	H310X	SR90×8	2	25	21 10	43
1211SK	H211X	SR100×10.5	2				_	25	ZF11	50
2211SK	H311X	SR100×8.5	2	22211EAKD1	H311X	SR100×8.5	2	27	21 11	30
1212SK	H212X	SR110×12	2	-	_	-	_	26	ZF12	55
2212SK	H312X	SR110×9	2	22212EAKD1	H312X	SR110×9	2	29		
1213SK	H213X	SR120×13	2			CD400×0	_	28	ZF13	60
2213SK 1215SK	H313X H215X	SR120×9 SR130×12.5	2	22213EAKD1	H313X	SR120×9	2	32 30		
2215SK	H315X	SR130 × 12.5 SR130 × 9.5	2	22215EAKD1	H315X	SR130×9.5	2	33	ZF15	65
1216SK	H216X	SR140×15	2	22213EAND1	пэтэх	3H13U \ 9.3	2	32		
2216SK	H316X	SR140×13	2	22216EAKD1	H316X	SR140×11.5	2	36	ZF16	70
1217SK	H217X	SR150×14	2	ZZZ TOLANDT	-	JH140 ∧ 11.J		34		
2217SK	H317X	SR150×10	2	22217EAKD1	H317X	SR150×10	2	38	ZF17	75
1218SK	H218X	SR160×16	2	_	-	-	_	35		
2218SK	H318X	SR160×11	2	22218EAKD1	H318X	SR160×11	2	40	ZF18	80
_	-	_	_	23218EMKD1	H2318X		1	46		00
1219SK	H219X	SR170×15	2	-	-	-	_	37	7540	0.5
2219SK	H319X	SR170×9.5	2	22219EAKD1	H319X	SR170×9.5	2	43	ZF19	85
1220SK	H220X	SR160×18	2	_	_	_	-	39		
2220SK	H320X	SR180×12	2	22220EAKD1	H320X	SR180×12	2	45	ZF20	90
	_	_	_	23220EMKD1	H2320X	SR180×9.7	1	52		
1222SK	H222X	SR200×22	2	_	-	_	_	42		
2222SK	H322X	SR200×14.5	2	22222EAKD1	H322X	SR200×14.5	2	50	ZF22	100
_	_	_	_	23222EMKD1	H2322X		1	58		
_	_	_	_	22224EAKD1	H3124X	SR215×12	2	53	ZF24	110
			_	23224EMKD1	H2324X	SR215×6	1	62		
_	-	-	-	22226EAKD1	H3126	SR230×11	2	57 65	ZF26	115
_	_	_	_	23226EMKD1 22228EAKD1	H2326	SR230×6	1	65		
_	_	_	_	23228EAKD1 23228EMKD1	H3128 H2328	SR250×13 SR250×6	2 1	60 70	ZF28	125
_			_	22230EAKD1	H2328	SR250×6 SR270×15	2	65		
_	Ξ	_	_	23230EARD1	H2330	SR270×15 SR270×7	1	76	ZF30	135
_	_	_		ZUZUULIVIND I	112000	JI IZ I U A I		70		

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is ½ of the width dimension of the stabilizing ring.

3. Adapters for series 12 bearings can also be used with H2 and H3 series bearings.

(unit single standard type / for bearings with adapter assembly)

 d_1 140 ~ 300mm

1																		
Shaft dia. mm	Plummer block number						C	Dimensio mm	ons						Oil filler / drain plug size	Refer dimer	nsion	Mass kg
d_1		D	Н	J	J_1	N	N_1	L	A	A_1	g	A_3	H_1	H_2		Nominal dimension	Quantity	(approx.)
140	SV532	290	190	470	92	29	50	560	250	170	113	112	60	375	R1/4	M24	4	76
150	SV534	310	200	560	92	29	50	660	258	180	122	116	65	405	R1/4	M24	4	89
160	SV536	320	200	560	92	29	50	660	258	180	122	116	65	405	R1/4	M24	4	100
170	SV538	340	212	580	104	33	54	680	300	190	130	137	65	425	R1/4	M27	4	110
180	SV540	360	224	610	130	33	54	740	300	224	138	136	85	450	R1/4	M27	4	130
200	SV544	400	250	680	148	36	60	820	330	250	154	151	95	500	R1/4	M30	4	196
220	SV548	440	280	740	166	40	66	880	340	280	170	156	100	560	R1/4	M33	4	260
240	SV552	480	300	790	180	43	72	940	370	300	184	173	105	600	R1/4	M36	4	318
260	SV556	500	315	830	190	43	72	990	390	315	186	185	110	630	R1/4	M36	4	336
280	SV560	540	335	890	200	46	78	1 060	410	335	202	196	115	670	R1/4	M39	4	433
300	SV564	580	355	930	215	49	84	1 110	440	355	218	211	120	710	R1/4	M42	4	507

Plummer Blocks

Shaft penetration type

Shaft end type

			Ann	lied part				Reference	Rubber	Shaft
			App	nieu pai t				dimension	seal	dia.
Combination	on of self-alig	ning ball bea	arings	Combination	n of spheri	ical roller bearing	s	mm	number	mm
Bearing	Adapter	Stabilizing ri		Bearing	Adapter	Stabilizing ring				
number	number	Number 1)	Quantity	number	number		Quantity	$Y^{2)}$		d_1
			• ,							
_	_	_	_	22232EAKD1	H3132	SR290×16.5	2	71		
_	_	_	_	23232EMKD1	H2332	SR290×9	1	83	ZF32	140
_	_	_	-	22234EMKD1	H3134	SR310×18	2	75	7504	150
_	_	_	_	23234EMKD1	H2334	SR310×12	1	87	ZF34	150
-	_	-	_	22236EMKD1	H3136	SR320×18	2	76	ZF36	160
_	_	_	_	23236EMKD1	H2336	SR320×10	11	89	21 30	100
_	-	-	-	22238EMKD1	H3138	SR340×19	2	80	ZF38	170
			-	23238EMKD1	H2338	SR340×10	1	94	2, 00	
_	_	_	_	22240EMKD1	H3140	SR360×20	2	84	ZF40	180
			_	23240EMKD1 22244EMKD1	H2340	SR360×10	1	99 90		
_	_	_	_	23244EMKD1	H3144 H2344	SR400×23 SR400×10	1	108	ZF44	200
_				22248EMKD1	H3148	SR440×10	2	98		
_	_	_	_	23248EMKD1	H2348	SR440×10	1	118	ZF48	220
	_	_		22252EMKD1	H3152	SR480×27	2	105		
_	_	_	_	23252EMKD1	H2352	SR480×10	1	127	ZF52	240
_	_	_	_	22256EMKD1	H3156	SR500×28	2	107	7550	000
_	_	_	_	23256EMKD1	H2356	SR500×10	1	130	ZF56	260
_	_	_	_	22260EMKD1	H3160	SR540×31	2	114	ZF60	280
_	_	_	_	23260EMKD1	H2360	SR540×10	1	160	ZF0U	200
_	_	_	_	22264EMKD1	H3164	SR580×34	2	122	ZF64	300
_	_	_	-	23264EMKD1	H2364	SR580×10	1	151	21 04	000

1) The stabilizing ring indicates the outer diameter and width dimension. 2) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape. Note: 1. SV520 or larger plummer blocks are provided with a lifting eye bolt.

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is x of the width dimension of the stabilizing ring.

3. Adapters for series 12 bearings can also be used with H2 and H3 series bearings.

Plummer block series SV2 (unit and stepped bore type / for cylindrical bore bearings)

JQL

d	25 ~	140	Omm																	
	Shaft amet mm		Plummer block number						Di	mensio	ns						Oil filler / drain plug size	Refere dimens		Mass kg
d	d_1	d_2		D	Н	J	J_1	N	N_1	L	A	A_1	g	A_3	H_1	H_2	. •	Nominal dimension (Quantity	
25	20	30	SV205	52	45	130	_	16	20	165	73	46	27	31	22	85	R1/8	M14	2	2.0
30	25	35	SV206	62	50	150	-	16	20	185	80	52	30	34	22	95	R1/8	M14	2	2.6
35	30	45	SV207	72	56	150	-	16	20	185	85	52	33	37.5	22	106	R1/8	M14	2	3.1
40	35	50	SV208	80	60	170	-	16	20	205	95	60	37	40.5	25	118	R1/8	M14	2	4.3
45	40	55	SV209	85	63	170	-	16	23	205	98	60	39	42.5	25	125	R1/8	M14	2	4.3
50	45	60	SV210	90	67	170	-	16	23	205	100	60	39	42.5	25	128	R1/8	M14	2	4.6
55	50	65	SV211	100	71	210	-	16	23	255	106	70	42	47	28	140	R1/8	M14	2	5.5
60	55	70	SV212	110	80	210	-	21	25	255	112	70	46	47	30	155	R1/8	M18	2	6.5
65	60	75	SV213	120	85	230	-	21	25	275	118	80	49	50	30	165	R1/8	M18	2	9.5
70	60	80	SV214	125	90	230	-	21	25	280	118	80	50	50	30	175	R1/8	M18	2	10
75	65	85	SV215	130	90	230	-	21	25	280	118	80	50	50	30	175	R1/8	M18	2	10
80	70	90	SV216	140	100	260	-	25	30	315	136	90	56	58	32	195	R1/8	M22	2	14
85	75	95	SV217	150	100	260	-	25	30	315	140	90	56	60	32	195	R1/8	M22	2	15
90	80	100	SV218	160	112	290	-	25	30	345	150	100	62	65	35	224	R1/8	M22	2	20
95	85	110	SV219	170	112	290	-	25	30	345	165	100	62	72.5	35	224	R1/8	M22	2	20
100	90	115	SV220	180	125	320	56	23	32	380	170	110	70	75	40	243	R1/8	M20	4	26
110	100	125	SV222	200	132	350	60	23	32	410	190	120	82	82	45	265	R1/4	M20	4	30
120	110	135	SV224	215	140	350	60	23	32	410	190	120	82	82	45	280	R1/4	M20	4	36
130	115	145	SV226	230	150	380	65	23	32	450	200	130	86	87	50	300	R1/4	M20	4	44
140	125	155	SV228	250	160	420	80	23	32	500	218	150	94	96	50	315	R1/4	M20	4	52

The stabilizing ring indicates the outer diameter and width dimension.
 Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape.
 Note: 1. SV220 or larger plummer blocks are provided with a lifting eye bolt.

Plummer Blocks

Shaft penetration type

Shaft end type

Combinatio	n of self-aligning ball be	earings		• f spherical roller bearin		Nut	Washer	Reference dimension mm	Rub se num	al	Shaft dia. mm
Bearing number	Stabilizing ring Number ¹⁾	Quantity	Bearing number	Stabilizing ring Number ¹⁾	Quantity	number	number	Y ²⁾	$(d_1 \text{ side})$	$(d_2 \text{side})$	d_1
		C			Ç,				(,	(,	
1205S	SR52×6	2	_	-	-	AN05	AW05X	17	ZF5	ZF7	25
2205S 1206S	SR52×9 SR62×7	1	22205EAD1	SR52×9	1			19			
2206S	SR62×10	1	22206EAD1	SR62×10	1	AN06	AW06X	20	ZF6	ZF8	30
1207S	SR72×8	2	_	_	_	AN07	AW07X	19	ZF7	ZF10	35
2207S	SR72×10	1	22207EAD1	SR72×10	1	AINU/	AVVU/A	22	ZF/	ZF10	35
1208S	SR80×9.5	2	-	-	_	AN08	AW08X	21	ZF8	ZF11	40
2208S 1209S	SR80×7 SR85×10	2	22208EAD1	SR80×7	2	7 11 10 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	23	0		
2209S	SR85×8	2	22209EAD1	SR85×8	2	AN09	AW09X	22 24	ZF9	ZF12	45
1210S	SR90×9.5	2	-	-	_			2/			
2210S	SR90×8	2	22210EAD1	SR90×8	2	AN10	AW10X	25	ZF10	ZF13	50
1211S	SR100×10.5		-	-	-	AN11	AW11X	25	ZF11	ZF15	55
2211S	SR100×8.5	2	22211EAD1	SR100×8.5	2	AINTI	AVVIIA	27	Z1 11	21 13	33
1212S	SR110×12	2	-	- -	_	AN12	AW12X	26	ZF12	ZF16	60
2212S 1213S	SR110×9 SR120×13	2	22212EAD1	SR110×9	2			29			
2213S	SR120×13	2	_ 22213EAD1	SR120×9	2	AN13	AW13X	28 32	ZF13	ZF17	65
1214S	SR125×13	2	-	-	_		A14/4 41/	20	7540	7540	70
2214S	SR125×9.5	2	22214EAD1	SR125×9.5	2	AN14	AW14X	32	ZF13	ZF18	70
1215S	SR130×12.5			-	-	AN15	AW15X	30	ZF15	ZF19	75
2215S	SR130×9.5	2	22215EAD1	SR130×9.5	2	ANIO	AVVION	აა	21 13	21 19	73
1216S	SR140×15 SR140×11.5	2	- -	- CD140×44 F	2	AN16	AW16X	32 36	ZF16	ZF20	80
2216S 1217S	SR140×11.5	2	22216EAD1	SR140×11.5	_			3/			
2217S	SR150×14	2	22217EAD1	SR150×10	2	AN17	AW17X	38	ZF17	ZF21	85
1218S	SR160×15	2	-	-	_			35	7540	7500	
2218S	SR160×11	2	22218EAD1	SR160×11	2	AN18	AW18X	40	ZF18	ZF22	90
_	=	-	23218EMD1	SR160×9.6	1			46			
12198	SR170×15	2	-	- 0D470×0.5	_	AN19	AW19X	37	ZF19	ZF24	95
2219S 1220S	SR170×9.5 SR180×18	2	22219EAD1	SR170×9.5	2			43 39			
2220S	SR180×12	2	22220EAD1	SR180×12	2	AN20	AW20X		ZF20	ZF26	100
_	-	_	23220EMD1		1	711420	/11120/	52			100
1222S	SR200×22	2	-	-	_			42	ZF22	ZF28	
2222S	SR200×14.5	5 2	22222EAD1	SR200×14.5		AN22	AW22X		ZF22	ZF28	110
	_	-	23222EMD1	SR200×12.2				58			
_	_	_	22224EAD1	SR215×12	2	AN24	AW24X	53	ZF24	ZF30	120
			23224EMD1 22226EAD1	SR215×6 SR230×11	2			62 57			
-	_	-	23226EMD1	SR230×11	1	AN26	AW26	65	ZF26	GS33	130
			22228EAD1	SR250×13	2	ANIOC	AVAIOC	60	7500	0005	1.40
-	-	-	23228EMD1	SR250×6	1	AN28	AW28	70	ZF28	GS35	140

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is ½ of the width dimension of the stabilizing ring.

(single and different aperture type / for cylindrical bore bearings)

d 150 ∼ 320mm

	Shaf ame mm		Plummer block number						D	imensio mm	ns						Oil filler / drain plug size	Reference dimension S		Mass kg
d	d_1	d_2		D	Н	J	J_1	N	N_1	L	A	A_1	g	A_3	H_1	H_2		Nominal dimension Q	uantity	(approx.)
150	135	165	SV230	270	170	450	92	29	42	540	236	160	103	105	60	335	R1/4	M24	4	62
160	140	175	SV232	290	190	470	92	29	50	560	250	170	113	112	60	375	R1/4	M24	4	75
170	150	190	SV234	310	200	560	92	29	50	660	258	180	122	116	65	405	R1/4	M24	4	87
180	160	200	SV236	320	200	560	92	29	50	660	258	180	122	116	65	405	R1/4	M24	4	98
190	170	210	SV238	340	212	580	104	33	54	680	300	190	130	137	65	425	R1/4	M27	4	110
200	180	230	SV240	360	224	610	130	33	54	740	300	224	138	136	85	450	R1/4	M27	4	130
220	200	250	SV244	400	250	680	148	36	60	820	330	250	154	151	95	500	R1/4	M30	4	196
240	220	260	SV248	440	280	740	166	40	66	880	340	280	170	156	100	560	R1/4	M33	4	260
260	240	280	SV252	480	300	790	180	43	72	940	370	300	184	173	105	600	R1/4	M36	4	318
280	260	300	SV256	500	315	830	190	43	72	990	390	315	186	185	110	630	R1/4	M36	4	336
300	280	320	SV260	540	335	890	200	46	78	1 060	410	335	202	196	115	670	R1/4	M39	4	433
320	300	340	SV264	580	355	930	215	49	84	1 110	440	355	218	211	120	710	R1/4	M42	4	507

Plummer Blocks

Shaft penetration type

Shaft end type

			Applied	part				Reference dimension	Rub se		Shaft dia.
Combination o	f self-aligning bal Stabilizing r		Combination of Bearing	spherical roller beari Stabilizing rii		Nut number	Washer number	mm	num		mm
number	Number 1)	Quantity	number		Quantity			$Y^{(2)}$	$(d_1 \operatorname{side})$	$(d_2 \operatorname{side})$	d_1
-	-	_	2220EAD1 23230EMD1	SR270×15 SR270×7	2 1	AN30	AW30	65 76	ZF30	GS37	150
-	-	-	22232EAD1 23232EMD1	SR290×16.5 SR290×9	1	AN32	AW32	71 83	ZF32	GS39	160
-	-	-	22234EMD1 23234EMD1	SR310×18 SR310×12	2 1	AN34	AW34	75 87	ZF34	ZF42	170
-	-	-	22236EMD1 23236EMD1	SR320×18 SR320×10	2 1	AN36	AW36	76 89	ZF36	ZF44	180
-	-	-	22238EMD1 23238EMD1	SR340×19 SR340×10	2 1	AN38	AW38	80 94	ZF38	ZF46	190
-	-	-	22240EMD1	SR360×20	2	AN40	AW40	84	ZF40	GS50S	200
-	-	-	22244EMD1	SR400×23	2	AN44	AL44	90	ZF44	ZF54	220
-	-	-	22248EMD1	SR440×25	2	AN48	AL44	98	ZF48	ZF56	240
-	-	-	22252EMD1	SR480×27	2	AN52	AL52	105	ZF52	ZF60	260
-	-	-	22256EMD1	SR500×28	2	AN56	AL52	107	ZF56	ZF64	280
_	-	-	22260EMD1	SR540×31	2	AN60	AL60	114	ZF60	ZF68	300
_	-	-	22264EMD1	SR580×34	2	AN64	AL64	122	ZF64	GS72	320

Note: 2. Dimension x applies to plummer block numbers using one stabilizing ring and indicates the value of deviation from the bearing center to the plummer block center. The value is $\frac{1}{2}$ of the width dimension of the stabilizing ring.

G-42

G-43

¹⁾ The stabilizing ring indicates the outer diameter and width dimension. 2) Dimension Y indicates the reference dimension from the shaft center to the end in the case of the shaft end shape. Note: 1. SV220 or larger plummer blocks are provided with a lifting eye bolt.

Contents of Introduction of Catalogs and Technical Review

Introduction of catalogs $\cdots\cdots\cdots$	H-	2
Introduction of technical reviews	H-	24

Introduction of Catalogs and Technical Reviews

Introduction of Catalogs and Technical Reviews

NTN

Introduction of Catalogs and Technical Reviews

NTN

Catalogs and technical reviews issued by **NTN** are as follows.

Please refer to the **NTN** website (https://www.ntnglobal.com) for the latest information.

1. Introduction of catalogs

Catalogs related to rolling bearings

LARGE BEARINGS

CAT.No.2250/E

Precision Rolling Bearings

CAT.No.2260/E

Catalogs related to rolling bearings

ULTAGE series
Spherical Roller Bearings
with High-strength Cage [EMA Type]

CAT.No.3036/E

ULTAGE series Cylindrical Roller Bearings

CAT.No.3037/E

ULTAGE series Spherical Roller Bearings [Type EA, Type EM]

ULTAGE series
Large Size Tapered Roller Bearings

CAT.No.3035/E

ULTAGE series
Deep Groove Ball Bearings
for High-speed Servo Motors [Type MA]

CAT.No.3103/E

ULTAGE series Sealed Spherical Roller Bearings [WA Type]

CAT.No.3703/E

H-2

NTN

Catalogs related to rolling bearings

ULTAGE series Sealed Four Row Tapered Roller Bearings for Rolling Mill Roll-Necks [CROU...LL type]

ULTAGE series IC Tag Integrated Bearing

CAT.No.3019/E

Catalogs related to rolling bearings

Large Size, Long Operating Life Bearing - EA type

CAT.No.3024/E

Bearings with solid grease

CAT.No.3022/E

Ball Bearings Shield and Seal Types

CAT.No.3015/E

Long-Life AS Series TAB/ETA Bearings

CAT.No.3025/E

Bearings for Special Environments Ultra Final Series

CAT.No.3023/E

Ultra Final Series Bearings for Clean Environment

CAT.No.3028/E

H-4 H-5

Catalogs related to rolling bearings

Insulated Bearings MEGAOHM™ Series

CAT.No.3030/E

NTN Bearings for Wind Turbines

CAT.No.8405/JE

CAT.No.3038/E

Integrated Rotation Sensor Bearings

CAT.No.3032/E

Catalogs related to rolling bearings

Adapters, Withdrawal Sleeves, Locknuts, Lockwashers & Lockplates, Hydraulic Nuts

CAT.No.4201/E

HUB BEARINGS

CAT.No.4601/E

Asymmetrical Spherical

for Wind Turbine Main Shafts

Roller Bearings

H-6 H-7 NTN

Catalogs related to needle roller bearings

Needle Roller Bearings

CAT.No.2300/E

HK-F Type Drawn Cup Needle Roller Bearings

CAT.No.3029/JE

Catalogs related to bearing units

Bearing Units

CAT.No.2400/E

Bearing Units with Ductile Cast Iron Housing

CAT.No.3901/E

Cam Followers & Roller Followers

CAT.No.3604/JE

Bearing Units Steel Series

CAT.No.3902/E

Bearing Units Stainless Series

CAT.No.3903/E

H-9

Catalogs related to bearing units

Bearing Units Plastic Housing Series

CAT.No.3904/E

Catalogs related to plummer blocks

PLUMMER BLOCKS

CAT.No.2500/E

Triple-Sealed Bearings for Bearing Units

CAT.No.3905/E

NTN

Catalogs related to sliding bearings

BEAREE

CAT.No.5100/JE

MLE Bearings <BEAREE>

CAT.No.5116/E

Miniature Plastic Sliding Screws BEAREE

CAT.No.5112/E

Sintered Products BEARPHITE

CAT.No.5202/JE

H-10 H-11

Catalogs related to sliding bearings

Spherical Plain Bearings

CAT.No.5301/E

Catalogs related to constant velocity joints

CONSTANT VELOCITY JOINTS for industrial machines

CAT.No.5603/E

TRI-BALL JOINT

CAT.No.5602/E

Constant Velocity Joints for Industrial Machines: Application Examples

CAT.No.5604/E

H-12

NTN

NTN

Catalogs related to clutches

CLUTCHES

CAT.No.2900/E

Electric motors and actuators

Electric Motor and Actuator

CAT.No.7202/JE

Auto tensioners

Auto Tensioner

CAT.No.7201/JE

Catalogs related to parts feeders

PARTS FEEDER

CAT.No.7018/E

Catalogs and Technical Reviews

H-14

NTN

Catalogs related to precision machinery / robots

Wrist Joint Module i-WRIST™

CAT.No.6511/E

Multi Track Magnetic Ring

CAT.No.6512/JE

Catalogs related to maintenance

Condition Monitoring System for Wind Turbines

CAT.No.8406/E

Care and Maintenance of Bearings

CAT.No.3017/E

Bearing Handling

CAT.No.9103/E

Catalogs and Technical Reviews

H-16

Catalogs related to natural energy products

NTN Green Power Station

CAT.No.8407/E

NTN Micro Hydro Turbine

CAT.No.8409/E

Handbooks

ROLLING BEARINGS HANDBOOK

CAT.No.9012/E

NEEDLE ROLLER BEARINGS HANDBOOK

CAT.No.9013/E

BEARING UNITS HANDBOOK

CAT.No.9011/E

ENGINEERING PLASTICS HANDBOOK

CAT.No.9014/E

H-18 H-19

Handbooks

OIL-IMPREGNATED SINTERED BEARINGS HANDBOOK

CAT.No.9015/E

Guide book for each industrial field

AUTOMOTIVE PRODUCTS GUIDE BOOK

NTN

CAT.No.8024/JE

AEROSPACE BEARINGS GUIDE BOOK

CAT.No.8025/JE

Products for Metals Industry

CAT.No.8301/E

Product Catalog for Mining Equipment

CAT.No.8602/E

Catalogs and Technical Reviews

H-20 H-21

Guide book for each industrial field

General Catalog for Office Equipment Products

CAT.No.8701/E

Product Catalog for Food Machinery

Product Catalog for Paper Manufacturing Machinery

CAT.No.8901/E

Parts Feeder Guide Book

CAT.No.8902/E

CAT.No.7019/E

Guide book for each industrial field

Cement Equipment Product Guidebook

CAT.No.8026/E

Corporate Profile

Corporate Profile

H-22 H-23

2. Introduction of technical reviews

No. 87 (November 2019)
Special issue on
"Automotive Products for Electric,
Autonomous and Low Fuel Consumption"

No. 86 (October 2018) Special issue on "Robotics and Sensing Products and Machine Tools"

No. 83 (October 2015) Special issue for Automotive Module Products

No. 82 (October 2014)
Special issue:
Composite Material, Technology
and Products for Industrial Machines

No. 85 (October 2017) Special issue on "Automotive Products and Electric Module Products"

No. 84 (November 2016)
Special issue:
Green Energy Products and Machine
Tool / Manufacturing Technology

No. 81 (November 2013) Special issue : Automotive Products and Technologies

No. 80 (October 2012) Special issue : Environment and Energy

H-24 H-25

No. 79 (November 2011) Special issue: Automotive Technologies

No. 78 (October 2010)
Special issue:
Products for Industrial Machinery
and Elemental Technologies

No. 75 (October 2007)
Special issue:
Automotive Environmental
Technologie

No. 74 (November 2006) Special issue: Products for Industrial Machinery

No. 77 (December 2009) Special issue: Efforts for the Environment

No. 76 (October 2008) Special issue: Elemental Technologies

No. 73 (October 2005) Special issue: Automotive Products

No. 72 (October 2004)
Special issue:
Machine Tool Bearings
and Precision Apparatus Products

H-26 H-27

Appendix Table Contents

Appendix Table

Appendix Table

Appendix table-1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-1

			Douna	ary an	Hensie	113 01	ladiai	Dearin	g3 (14	pereu	TOHET	Jearin	53 1100	inciac	icu) i	_	
Single ro	w radial bal	l bearings	67							68 78							
Double ro	w radial ba	ll bearings															
Cylind	rical roller b	earings									N28	N38	NN48				
Need	lle roller bea	arings											NA48				
Spher	ical roller be	earings															
	al bearing		[Diamete	r series	7					D	iametei	series 8	3			
	liameter d	Nominal			ension s			Nominal					nsion se				
	Dim	bearing	17	27	37	47	17~47	bearing	08	18	28	38	48	58	68	08	18~68
Number	men	outer diameter					Chamfer	diameter									dimension
Der	ension	D		Nomina	l width E	}	dimension *Smin	D			Nom	inal wic	th B				min
_	0.6	2	0.8	_	_	_	0.05	2.5	_	1	_	1.4	_	_	_	_	0.05
1	1	2.5	1	_	_	_	0.05	3	_	1	_	1.5	_	_	_	_	0.05
_	1.5	3	1	_	1.8	_	0.05	4	_	1.2	_	2	_	_	_	_	0.05
2	2	4	1.2	_	2	_	0.05	5	_	1.5	_	2.3	_	_	_	_	0.08
_	2.5	5	1.5	1.8	2.3	_	0.08	6	_	1.8	_	2.6	_	_	_	_	0.08
3	3	6	2	2.5	3	_	0.08	7	_	2	_	3	_	_	_	_	0.1
4	4	7	2	2.5	3	_	0.08	9	_	2.5	3.5	4	_	_	_	_	0.1
5	5	8	2	2.5	3	_	0.08	11	_	3	4	5	_	_	_	_	0.15
6	6	10	2.5	3	3.5	_	0.1	13	_	3.5	5	6	_	_	_	_	0.15
7	7	11	2.5	3	3.5	_	0.1	14	_	3.5	5	6	_	_	_	_	0.15
8	8	12	2.5	_	3.5	_	0.1	16	_	4	5	6	8	_	_	-	0.2
9	9	14	3	_	4.5	_	0.1	17	_	4	5	6	8	_	_	_	0.2
00	10	15	3	_	4.5	_	0.1	19	_	5	6	7	9	_	_	_	0.3
01	12	18	4	_	5	_	0.2	21	_	5	6	7	9	_	_	_	0.3
02	15	21	4	_	5	_	0.2	24	_	5	6	7	9	_	_	_	0.3
03	17	23	4	_	5	_	0.2	26	_	5	6	7	9	_	_	-	0.3
04	20	27	4	_	5	7	0.2	32	4	7	8	10	12	16	22	0.3	0.3
/22	22	30	4	_	5	7	0.2	34	4	7	_	10	_	16	22	0.3	0.3
05	25	32	4	_	5	7	0.2	37	4	7	8	10	12	16	22	0.3	0.3
/28	28	35	4	_	5	7	0.2	40	4	7	_	10	_	16	22	0.3	0.3
06	30	37	4	_	5	7	0.2	42	4	7	8	10	12	16	22	0.3	0.3
/32	32	40	4	_	6	8	0.2	44	4	7	_	10	_	16	22	0.3	0.3
07	35	44	5	_	7	9	0.3	47	4	7	8	10	12	16	22	0.3	0.3
08	40	50	6	_	8	10	0.3	52	4	7	8	10	12	16	22	0.3	0.3
09	45	55	6	_	8	10	0.3	58	4	7	8	10	13	18	23	0.3	0.3
10	50	62	6	_	10	12	0.3	65	5	7	10	12	15	20	27	0.3	0.3
11	55	68	7	_	10	13	0.3	72	7	9	11	13	17	23	30	0.3	0.3
12	60	75	7	_	12	15	0.3	78	7	10	12	14	18	24	32	0.3	0.3
13	65	80	7	_	12	15	0.3	85	7	10	13	15	20	27	36	0.3	0.6
14	70	85	7	_	12	15	0.3	90	8	10	13	15	20	27	36	0.3	0.6
15	75	90	7	_	12	15	0.3	95	8	10	13	15	20	27	36	0.3	0.6
16	80	95	7	_	12	15	0.3	100	8	10	13	15	20	27	36	0.3	0.6
17	85	105	10	_	15	_	0.6	110	9	13	16	19	25	34	45	0.3	1
18	90	110	10	_	15	_	0.6	115	9	13	16	19	25	34	45	0.3	1
19	95	115	10	_	15	_	0.6	120	_	13	16	19	25	34	45	0.3	1
20 21	100 105	120	10 10	_	15 15	_	0.6	125 130	9	13 13	16	19 19	25 25	34	45 45	0.3	1
21		125 135	13	_	19		0.6	140	_		16 19	23	30	40	54	0.3	1
	110			_	-			-	10	16	-			-	-	0.6	
24 26	120 130	145 160	13 16	_	19 23	_	1	150 165	10 11	16 18	19 22	23 26	30 35	40 46	54 63	0.6	1 1.1
28	140	170	16		23		1	175	11	18	22	26	35	46	63	0.6	1.1
30	150	180	16	_	23	_	1	190	13	20	24	30	40	54	71	0.6	1.1
32	160	190	16		23		1	200	13	20	24	30	40	54	71	0.6	1.1
34	170	200	16	_	23		1	215	14	22	27	34	45	60	80	0.6	1.1
J +	110	200	10		23			213	14		41	J+	T-J	00	00	0.0	1.1

Apper	ndix tab	le-1:	Bou	ndar	y din	nensi	ons o	of ra	dial l	oeari	ings (Таре	red ro	ller	bear	ings	not i	nclu	ded)	-2	Uni	t: mm
Single ro	w radial ball b	earings		69 79										160	60 70							
Double ro	w radial ball I	pearings		,,											70							
	ical roller bea			N19	N29	NN39	NN49								N10	N20	NN30	NN40				
	le roller beari						NA49	NA59	NA69													
	cal roller bea					239	249										230	240				
	l bearing					Diame		ries 9			1					Dia	meter		s 0			
	iameter d	Nominal					nensio		ries				Nominal				Dimer					
7	₽.	bearing	09	19	29	39	49	59	69	09	19~39	49~69	bearing	00	10	20	30	40	50	60	00	10~60
Number	Dimensior	outer diameter			N		lul D				Chamfer		outer diameter			N		lul D				mfer
ĕr	sio Si	D			Nomi	nal wid	ith B				dimension <i>Y</i> smin		D			Nomi	nal wi	dth B				ension min
_	0.6	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	1	4	_	1.6	_	2.3	-	_	_	_	0.1	_	_	-	_	_	-	—	-	_	_	_
_	1.5	5	_	2	_	2.6	_	_	_	_	0.15	-	6	_	2.5	_	3	_	-	_	_	0.15
2	2	6	_	2.3	_	3	_	_	_	_	0.15	_	7	-	2.8	_	3.5	-	_	_	_	0.15
_	2.5	7	_	2.5	_	3.5	_	_	_	_	0.15	_	8	_	2.8	_	4	_	_	_	_	0.15
3	3	8	_	3	_	4	_	_	_	_	0.15	_	9	_	3	_	5	-	_	_	-	0.15
4	4	11	_	4	_	5	-	_	_	_	0.15	-	12	_	4	_	6	_	_	_	_	0.2
5	5	13	_	4	_	6	10	_	_	_	0.2	0.15	14	_	5	_	7	_	_	_	_	0.2
6	6	15	_	5	_	7	10	_	_	_	0.2	0.15	17	_	6	-	9	_	_	_	_	0.3
7	7	17	_	5		7	10		_		0.3	0.15	19		6 7	8	10	1.4	10	25		0.3
8	8	19	_	6	_	9	11	_	_	_	0.3	0.2	22	_			11	14	19			0.3
00	10	20 22	_	6	8	10	11 13	16	22	_	0.3	0.3	24 26	_	7 8	10 10	12 12	15 16	20	27 29		0.3
01	12	24		6	8	10	13	16	22		0.3	0.3	28	7	8	10	12	16	21	29	0.3	0.3
02	15	28		7	8.5	10	13	18	23		0.3	0.3	32	8	9	11	13	17	23	30	0.3	0.3
03	17	30		7	8.5	10	13	18	23		0.3	0.3	35	8	_	12	14	18	24	32	0.3	0.3
04	20	37	7	9	11	13	17	23	30	0.3	0.3	0.3	42	8		14	16	22	30	40	0.3	0.5
/22	22	39	7	9	11	13	17	23	30	0.3	0.3	0.3	44		12	14	16	22	30	40	0.3	0.6
05	25	42	7	9	11	13	17	23	30	0.3	0.3	0.3	47	8		14	16	22	30	40	0.3	0.6
/28	28	45	7	9	11	13	17	23	30	0.3	0.3	0.3	52		12	15	18	24	32	43	0.3	0.6
06	30	47	7	9	11	13	17	23	30	0.3	0.3	0.3	55	9		16	19	25	34	45	0.3	1
/32	32	52	7	10	13	15	20	27	36	0.3	0.6	0.6	58		13	16	20	26	35	47	0.3	1
07	35	55	7	10	13	15	20	27	36	0.3	0.6	0.6	62	9		17	20	27	36	48	0.3	1
08	40	62	8	12	14	16	22	30	40	0.3	0.6	0.6	68	9	15	18	21	28	38	50	0.3	1
09	45	68	8	12	14	16	22	30	40	0.3	0.6	0.6	75		16	19	23	30	40	54	0.3	1
10	50	72	8	12	14	16	22	30	40	0.3	0.6	0.6	80	10	16	19	23	30	40	54	0.6	1
11	55	80	9	13	16	19	25	34	45	0.3	1	1	90	11	18	22	26	35	46	63	0.6	1.1
12	60	85	9	13	16	19	25	34	45	0.3	1	1	95	11	18	22	26	35	46	63	0.6	1.1
13	65	90	9	13	16	19	25	34	45	0.6	1	1	100		18	22	26	35	46	63	0.6	1.1
14	70	100	10	16	19	23	30	40	54		1	1	110		20	24	30	40	54	71	0.6	1.1
15	75	105	10	16	19	23	30	40	54	0.6	1	1	115		20	24	30	40	54	71	0.6	1.1
16	80	110	10	16	19	23	30	40	54	0.6	1	1	125		22	27	34	45	60	80	0.6	1.1
17	85	120	11	18	22	26	35	46	63	0.6	1.1	1.1	130		22	27	34	45	60	80	0.6	1.1
18	90	125	11	18	22	26	35	46	63	0.6	1.1	1.1	140		24	30	37	50	67	90	1	1.5
19	95	130	11	18	22	26	35	46	63	0.6	1.1	1.1	145		24	30	37	50	67	90	1	1.5
20	100	140	13	20	24	30	40	54	71	0.6	1.1	1.1	150		24	30	37	50	67	100	1	1.5
21	105	145	13	20	24	30	40	54	71	0.6	1.1	1.1	160		26	33	41	56	75	109	1	2
22	110	150	13	20	24	30	40	54	71	0.6	1.1	1.1	170	19	-	36	45	60	80		1	2
24	120	165	14	22	27	34	45	60	80	0.6	1.1	1.1	180		28	36	46	60		109	1	2
26	130	180	16	24	30	37	50	67	90	1	1.5	1.5	200		33	42	52	69		125	1.1	2
28	140	190	16	24	30	37 4E	50	67	90	1	1.5	1.5	210		33	42	53	69	95	125	1.1	2
30	150	210	19	28	36	45 45	60	80	109	1	2	2	225		35	45	56	75		136	1.1	2.1
32 34	160	220	19	28	36	45 45	60	80	109	1	2	2	240	25		48	60 67	90		145	1.5	2.1
34	170	230	19	28	36	45	60	80	109	1	2	 	260	28	42	54	07	90	122	160	1.5	2.1

Appendix Table

Appendix table-1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-3

Company Comp		idix tab			ary un	11611210) 115 UI	aulai	DEGIIII	go (1a		i Onei i	Jearin	ganot	metuc	ieu)-3	,	
Nominal braining Nominal bra	Single rov	w radial ball	bearings	67							68 78							
Superior label baselings	Double ro	w radial bal	l bearings															
Name Diametric Diametric Series Diametric Series Diametric Series Diametric Series	Cylindr	ical roller b	earings									N28	N38	NN48				
Normal barrier Dismeter series Dismeter se	Need	le roller bea	rings											NA48				
Total Process Total Proces	Spheri	cal roller be	arings															
Normal Section Secti				[Diamete	r series	7					D	iamete	r series 8	3			
Note 10 Note 10 Note 10 Note 10 Note 10 Note Not			Nominal		Dime	ension s	eries		Nominal				Dime	ension se	ries			
36 180 215 18 26 1.1 225 14 22 27 34 45 60 80 0.6 1.1 38 190 230 20 30 1.1 240 16 24 30 37 50 67 90 1 1.5 40 200 240 20 270 16 24 30 37 50 67 90 1 1.5 44 220 300 19 28 36 45 60 80 100 1 2 52 260 300 19 28 36 45 60 80 100 1 2 52 280 380 22 33 42 52 69 95 125 1.1 2 60 300 380 22 33 42 52 69 95 125 1.1 2 63 320 400 25 38 48 60 80 109 145 1.5 2.1 68 340 440 25 38 48 60 80 109 145 1.5 2.1 72 360 440 25 38 48 60 80 109 145 1.5 2.1 80 400 500 31 46 60 75 100 136 180 2 2.1 81 420 500 31 46 60 75 100 136 180 2 2.1 82 440 540 31 46 60 75 100 136 180 2 2.1 83 440 540 31 46 60 75 100 136 180 2 2.1 84 420 540 31 46 60 75 100 136 180 2 2.1 92 460 560 37 56 72 90 118 160 218 2.1 3 550 550 660 37 56 72 90 118 160 218 2.1 3 550 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550	z	말	bearing	17	27	37	47	17~47	bearing	08	18	28	38	48	58	68	08	18~68
36 180 215 18 26 1.1 225 14 22 27 34 45 60 80 0.6 1.1 38 190 230 20 30 1.1 240 16 24 30 37 50 67 90 1 1.5 40 200 240 20 270 16 24 30 37 50 67 90 1 1.5 44 220 300 19 28 36 45 60 80 100 1 2 52 260 300 19 28 36 45 60 80 100 1 2 52 280 380 22 33 42 52 69 95 125 1.1 2 60 300 380 22 33 42 52 69 95 125 1.1 2 63 320 400 25 38 48 60 80 109 145 1.5 2.1 68 340 440 25 38 48 60 80 109 145 1.5 2.1 72 360 440 25 38 48 60 80 109 145 1.5 2.1 80 400 500 31 46 60 75 100 136 180 2 2.1 81 420 500 31 46 60 75 100 136 180 2 2.1 82 440 540 31 46 60 75 100 136 180 2 2.1 83 440 540 31 46 60 75 100 136 180 2 2.1 84 420 540 31 46 60 75 100 136 180 2 2.1 92 460 560 37 56 72 90 118 160 218 2.1 3 550 550 660 37 56 72 90 118 160 218 2.1 3 550 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550 660 37 56 72 90 118 160 218 2.1 3 560 550	umber	nension	diameter		Nomina	width E	3	dimension	diameter			Nom	inal wic	lth B				
38 190 230 20 30 1.1 240 16 24 30 37 50 67 90 1 1.5	36		215	18	I _	26	_		225	14	22	27	34	45	60	80	0.6	1.1
44 220	38	190	230	20	_	30	_	1.1	240	16	24	30	37	50	67	90	1	1.5
48 240 — — — — — 300 19 28 36 45 60 80 100 1 2 56 280 — — — — — 350 22 33 42 52 69 95 125 1.1 2 60 300 — — — — — — 380 25 38 48 60 80 109 145 1.5 2.1 64 320 — — — — — — — 400 25 38 48 60 80 109 145 1.5 2.1 76 380 — — — — — 480 31 46 60 75 100 136 180 2 2.1 80 400 — — — — — — 500 <td< td=""><td>40</td><td>200</td><td>240</td><td>20</td><td>_</td><td>30</td><td>_</td><td>1.1</td><td>250</td><td>16</td><td>24</td><td>30</td><td>37</td><td>50</td><td>67</td><td>90</td><td>1</td><td>1.5</td></td<>	40	200	240	20	_	30	_	1.1	250	16	24	30	37	50	67	90	1	1.5
52 260 — — — — — 320 19 28 36 45 60 80 100 1 2 56 280 — — — — — — — 330 22 33 42 52 69 95 125 1.1 2 60 300 — — — — — — 400 25 38 48 60 80 109 145 1.5 2.1 68 340 — — — — — — 440 25 38 48 60 80 109 145 1.5 2.1 76 380 — — — — — — — 480 31 46 60 75 100 136 180 2 2.1 80 400 — — — — — — — — — 500	44	220	_	_	_	_	_	_	270	16	24	30	37	50	67	90	1	1.5
56 280	48	240	_	_	_	_	_	_	300	19	28	36	45	60	80	100	1	2
60 300 - - - - - - - - 380 25 38 48 60 80 109 145 1.5 2.1	52	260	_	_	_	_	_	_	320	19	28	36	45	60	80	100	1	2
64 320	56	280	_	_	_	_	_	_	350	22	33	42	52	69	95	125	1.1	2
68 340 — — — — — 420 25 38 48 60 80 109 145 1.5 2.1 76 380 — — — — — 480 31 46 60 75 100 136 180 2 2.1 80 400 — — — — — 500 31 46 60 75 100 136 180 2 2.1 84 420 — — — — — — — 500 31 46 60 75 100 136 180 2 2.1 88 440 — — — — — — — — — — — — 18 160 218 2.1 3 96 480 — — — — — — — — — </td <td>60</td> <td>300</td> <td>_ </td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>380</td> <td>25</td> <td>38</td> <td>48</td> <td>60</td> <td>80</td> <td>109</td> <td>145</td> <td>1.5</td> <td>2.1</td>	60	300	_	_	_	_	_	_	380	25	38	48	60	80	109	145	1.5	2.1
72 360 — — — — — 440 25 38 48 60 80 109 145 1.5 2.1 76 380 — — — — — — — — 10 136 180 2 2.1 80 400 — — — — — — — 500 31 46 60 75 100 136 180 2 2.1 84 420 — — — — — — — — — 10 136 180 2 2.1 88 440 — — — — — — — — — — 90 118 160 218 2.1 3 96 480 — — — — — — — — 118 160 218 2.1 3 /500 500 —	64	320	_	_	_	_	_	_	400	25	38	48	60	80	109	145	1.5	2.1
T6 380	68	340	-	_	_	_	_	-	420	25	38	48	60	80	109	145	1.5	2.1
80 400 - - - - - - 500 31 46 60 75 100 136 180 2 2.1 2.1 84 420 - - - - - - - 520 31 46 60 75 100 136 180 2 2.1 2.1 88 440 - - - - - - - - 10 136 180 2 2.1 2.1 92 460 - - - - - - - - 90 118 160 218 2.1 3 96 480 - - - - - - - - - 18 160 218 2.1 3 /530 530 -	72	360	_	_	_	_	_	-	440	25	38	48	60	80	109	145	1.5	2.1
84 420 — — — — 520 31 46 60 75 100 136 180 2 2.1 88 440 — — — — — — — 540 31 46 60 75 100 136 180 2 2.1 92 480 — — — — — — — 90 118 160 218 2.1 3 96 480 — — — — — — — — — — 600 37 56 72 90 118 160 218 2.1 3 /530 530 — — — — — — — — — 90 118 160 218 2.1 3 /560 560 — — — — — — — — 90 118 160 218 2.1 3 /500 600 </td <td>76</td> <td>380</td> <td> - </td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td>480</td> <td>31</td> <td>46</td> <td>60</td> <td>75</td> <td>100</td> <td>136</td> <td>180</td> <td>2</td> <td>2.1</td>	76	380	-	_	_	_	_	-	480	31	46	60	75	100	136	180	2	2.1
88 440 — — — — — 540 31 46 60 75 100 136 180 2 2.1 92 460 — — — — — — — 90 118 160 218 2.1 3 96 480 — — — — — — — 600 37 56 72 90 118 160 218 2.1 3 /500 500 — — — — — — — 650 37 56 72 90 118 160 218 2.1 3 /500 500 — — — — — — — — 18 160 218 2.1 3 /500 500 — — — — — — — — 18 160 218 2.1 3 /500 500 — — — — — <td>80</td> <td>400</td> <td> - </td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>500</td> <td>31</td> <td>46</td> <td>60</td> <td>75</td> <td>100</td> <td>136</td> <td>180</td> <td>2</td> <td>2.1</td>	80	400	-	_	_	_	_	_	500	31	46	60	75	100	136	180	2	2.1
92 460	84	420	-	_	_	_	_	-	520	31	46	60	75	100	136	180	2	2.1
96 480 —	88	440	_	-	_	_	_	_	540	31	46	60	75	100	136	180	2	2.1
/500 500 — <td>92</td> <td>460</td> <td>_ </td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td>580</td> <td>37</td> <td>56</td> <td>72</td> <td>90</td> <td>118</td> <td>160</td> <td>218</td> <td>2.1</td> <td>3</td>	92	460	_	_	_	_	_	-	580	37	56	72	90	118	160	218	2.1	3
/530 530 - <td>96</td> <td>480</td> <td>_ </td> <td>-</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>600</td> <td>37</td> <td>56</td> <td>72</td> <td>90</td> <td>118</td> <td>160</td> <td>218</td> <td>2.1</td> <td>-</td>	96	480	_	-	_	_	_	_	600	37	56	72	90	118	160	218	2.1	-
/560 560 — <td>,</td> <td></td> <td>_ </td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td></td>	,		_	_	_	_	_	-										
/600 600 — — — — — — — — 3 3 3 /630 630 — <td< td=""><td>,</td><td></td><td>_</td><td>-</td><td>_</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>_</td><td></td><td>-</td></td<>	,		_	-	_	_	_	_						-		_		-
/630 630 - - - - - - - - 3 4 /670 670 - - - - - - - - 3 4 /710 710 - - - - - - - - 3 4 /750 750 - - - - - - - 920 54 78 100 128 170 230 308 4 5 /800 800 - - - - - - 980 57 82 106 136 180 243 325 4 5 /850 850 - - - - - - 1090 60 85 112 140 190 258 345 5 5 /950 950 - - - - - - 1150 63 90 118 150 200 272 355	,		_	-	_	_	_	-								-		-
/670 670 - - - - - - - 3 4 /710 710 - - - - - - - 374 95 118 160 218 290 4 4 /750 750 - - - - - - 920 54 78 100 128 170 230 308 4 5 /850 850 - - - - - - 1030 57 82 106 136 180 243 325 4 5 /850 850 - - - - - - 1090 60 85 112 140 190 258 345 5 5 /950 950 - - - - - - 1150 63 90 118 150 218 305 45 <td>,</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>	,		_	_	_	_	_	_				-		-	-			
/710 710 — — — — — — — 4 4 /750 750 — — — — — — 920 54 78 100 128 170 230 308 4 5 /800 800 — — — — — — — 980 57 82 106 136 180 243 325 4 5 /850 850 — — — — — — — — — — 1090 60 85 112 140 190 258 345 5 5 5 9 950 950 — — — — — — — — — 1150 63 90 118 150 200 272 355 5 5 ////> ///> ///> ////> ////> ////> ////> ////> ////> ////> ////> ////> /////> ////> ////> ////> /////> ////> /////> //	,		_	_	_	_	_	-										
/750 750 — — — — — 920 54 78 100 128 170 230 308 4 5 /800 800 — — — — — 980 57 82 106 136 180 243 325 4 5 /850 850 — — — — — — — — 1030 57 82 106 136 180 243 325 4 5 /900 900 — — — — — — — 1090 60 85 112 140 190 258 345 5 5 /////> //////////////////////////////			_	_	_	_	_	-										
/800 800 — — — — — 980 57 82 106 136 180 243 325 4 5 /850 850 — — — — — — — 1030 57 82 106 136 180 243 325 4 5 /900 900 — — — — — — — 1090 60 85 112 140 190 258 345 5 5 /950 950 — — — — — — — — 1150 63 90 118 150 200 272 355 5 5 /1000 1000 — — — — — — 1120 11 100 128 165 218 300 400 5 6 /1120 1120 — — —			_	_	_	_	_	-										
/850 850 — — — — — — — 1030 57 82 106 136 180 243 325 4 5 /900 900 — — — — — — — 1090 60 85 112 140 190 258 345 5 5 /950 950 — — — — — — — — 1150 63 90 118 150 200 272 355 5 5 5 /1000 1000 — — — — — — — — 1120 71 100 128 165 218 300 400 5 6 6 /1120 1120 — — — — — 1280 71 100 128 165 218 300 400 5 6 /1120 1120			_	_	_	_	_	_										
/900 900 - - - - - - 1090 60 85 112 140 190 258 345 5 5 /950 950 - - - - - - - 1150 63 90 118 150 200 272 355 5 5 /1000 1000 - - - - - - 1220 71 100 128 165 218 300 400 5 6 /1000 1060 - - - - - - 1280 71 100 128 165 218 300 400 5 6 /1120 1120 - - - - - 1360 78 106 140 180 243 325 438 5 6 /1250 1250 - - - -			_	_	_	_	_	_										
/950 950 - - - - - - 1150 63 90 118 150 200 272 355 5 5 /1000 1000 - - - - - - 1220 71 100 128 165 218 300 400 5 6 /1060 1060 - - - - - - - 1280 71 100 128 165 218 300 400 5 6 /1120 1120 - - - - - - 1360 78 106 140 180 243 325 438 5 6 /1180 1180 - - - - - - 1420 78 106 140 180 243 325 438 5 6 /1250 1250 - - - - - - 1500			_	_	_	_	_	_							_			-
\(\begin{array}{cccccccccccccccccccccccccccccccccccc	,		_		_			_										
/1060 1060 — — — — — — — 1280 71 100 128 165 218 300 400 5 6 /1120 1120 — — — — — — 1360 78 106 140 180 243 325 438 5 6 /1250 1250 — — — — — — 1420 78 106 140 180 243 325 438 5 6 /1250 1250 — — — — — — — 1500 80 112 145 185 250 335 450 6 6 6 /1320 1320 — — — — — — — 1600 88 122 165 206 280 375 500 6 6 /1400 1400 — — — — — — — 150 128 243	,		_	_	_	_		_									-	
/1120 - - - - - - 1360 78 106 140 180 243 325 438 5 6 /1180 1180 - - - - - - 1420 78 106 140 180 243 325 438 5 6 /1250 1250 - - - - - - 1500 80 112 145 185 250 335 450 6 6 /1320 1320 - - - - - - - 1600 88 122 165 206 280 375 500 6 6 7.5 /1500 1500 - - - - - - 1700 95 132 175 224 300 400 545 6 7.5 /1500 1500 - - - - - 1800 185 243 315 - - 7.5	′			_	_	_	_	_										
/1180 180 - - - - - - 1420 78 106 140 180 243 325 438 5 6 /1250 1250 - - - - - 1500 80 112 145 185 250 335 450 6 6 /1320 1320 - - - - - - - - 500 6 6 /1400 1400 -	_																	
/1250 1250 - - - - - - 1500 80 112 145 185 250 335 450 6 6 /1320 1320 - - - - - 1600 88 122 165 206 280 375 500 6 6 /1400 1400 - - - - - - 1700 95 132 175 224 300 400 545 6 7.5 /1500 1500 - - - - - - - - - - 7.5 /1600 1600 - - - - - - - 7.5 /1700 1700 - - - - - - - - 7.5 /1800 1800 - <td>′</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td>	′													-			-	-
/1320 1320 - - - - - - 1600 88 122 165 206 280 375 500 6 6 6 6 6 6 6 6 6				_		_						_					-	-
/1400 1400 - - - - - - 1700 95 132 175 224 300 400 545 6 7.5 /1500 1500 - - - - - - 1820 - 140 185 243 315 - - - 7.5 /1600 1600 - - - - - - 155 200 265 345 - - - 7.5 /1700 1700 - - - - - - 2060 - 160 206 272 355 - - - 7.5 /1800 1800 - - - - - - 218 290 375 - - - 9.5 /1900 1900 - - - - - - 2300 - 175 230 300 400 - - - - 9.5	′				_													-
/1500 1500 - - - - - 1820 - 140 185 243 315 - - - 7.5 /1600 1600 - - - - - 1950 - 155 200 265 345 - - - 7.5 /1700 1700 - - - - - 2060 - 160 206 272 355 - - - 7.5 /1800 1800 - - - - - 2180 - 165 218 290 375 - - 9.5 /1900 1900 - - - - - 2300 - 175 230 300 400 - - 9.5	,		_	_	_												-	
/1600 1600 - - - - - 1950 - 155 200 265 345 - - 7.5	•				_					_	-	-				J+3	_	
/1700 1700 - - - - - 2060 - 160 206 272 355 - - - 7.5 7.			_	_	_	_	_	_		_			-		_	_	_	-
/1800 1800 - - - - - 2180 - 165 218 290 375 - - 9.5 /1900 1900 - - - - - 2300 - 175 230 300 400 - - 9.5			_		_	_	_	_		_						_	_	
/1900 1900 - - - - - - 2300 - 175 230 300 400 - - - 9.5			_	_	_	_	_								_	_	_	
				_	_	_	_									_	_	
/ZUUUIZUUU			_	_	_	_	_	_	2430	_	190	250	325	425	_	_	_	9.5

					y uiii	101131	0113)	Jiai L	Jean	iliga (Tape	red ro	JIICI I	Dear	iigs	1101	liciu	ueu)	-4	Uni	t: mm
Single r	ow radial ball l	bearings		69 79										160	60 70							
Double r	ow radial ball	bearings																				
Cyline	drical roller be	arings		N19	N29	NN39	NN49								N10	N20	NN30	NN40				
Nee	dle roller bear	ings					NA49	NA59	NA69													
Sphe	rical roller bea	rings				239	249										230	240				
	al bearing diameter				[Diame	ter se	ries 9								Dia	meter	serie	s 0			
Dore	d	Nominal				Dir	nensi	on ser	ies				Nominal				Dimer	nsion	series			
Z	Pin	bearing outer	09	19	29	39	49	59	69	09	19~39	49~69	bearing outer	00	10	20	30	40	50	60	00	10~60
Number	Dimension	diameter D			Nomi	nal wid	dth B				Chamfer		diameter D			Nomii	nal wi	dth B				ımfer ension
· ·	_		22					٥٢	405	4 4	γ_{smir}	1		24					426	400		min
36		250	22	33		52	69	95	125	1.1	2	2	280	31	46	60	74	100	136		2	2.1
38 40		260 280	22 25	33 38		52 60	69 80	95 109	125 145	1.1	2.1	2.1	290	31 34	46 51	60 66	75 82	100			2	2.1
40		300	25	38		60	80		145		2.1	2.1	310 340	37	56	72		109	160			3
48		320	25	38		60	80	109	145	1.5	2.1	2.1	360	37	56	72	92	118			2.1	3
52		360	31	46	-	75	100		180		2.1	2.1	400	44	65	82	104	_	190	_	3	4
56		380	31	46		75	100			2	2.1	2.1	420	44	65	82	104	140			3	4
60		420	37	56		90	118		218	2.1	3	3	460	50	74	95		160		290	4	4
64		440	37	56		90	118		218		3	3	480	50	74	95	121	160			4	4
68		460	37	56		90	118		218	2.1	3	3	520	57	82	106	133	180		325	4	5
72		480	37	56		90	118		218	2.1	3	3	540	57	82		134	180			4	5
76		520	44	65		106	140		250	3	4	4	560	57	82			180	_	325	4	5
80		540	44	65		106	140		250	-	4	4	600	63	90		148	200		355	5	5
84		560	44	65		106	140		250	3	4	4	620	63	90		150	200		355	5	5
88	3 440	600	50	74	95	118	160	218	290	4	4	4	650	67	94	122	157	212	280	375	5	6
92	460	620	50	74	95	118	160	218	290	4	4	4	680	71	100	128	163	218	300	400	5	6
96	480	650	54	78	100	128	170	230	308	4	5	5	700	71	100	128	165	218	300	400	5	6
/500	500	670	54	78	100	128	170	230	308	4	5	5	720	71	100	128	167	218	300	400	5	6
/530	530	710	57	82	106	136	180	243	325	4	5	5	780	80	112	145	185	250	335	450	6	6
/560	560	750	60	85	112	140	190	258	345	5	5	5	820	82	115	150	195	258	355	462	6	6
/600	600	800	63	90	118	150	200	272	355	5	5	5	870	85	118	155	200	272	365	488	6	6
/630	630	850	71	100	128	165	218	300	400	5	6	6	920	92	128	170	212	290	388	515	6	7.5
/670		900	73	103		170	230			5	6	6	980	100	136		230	308		560	6	7.5
/710		950	78	106			243			5	6	6	1030	103		185		315			6	7.5
/750		1000	80	112	_	185	250		450	6	6	6	1090	109	150			335	_	615	7.5	7.5
/800		1060	82	115		195	258			6	6	6	1150	112		200		345		630	7.5	7.5
/850		1120	85	118		200	272			-	6	6	1220	118		212	272	365			7.5	7.5
/900		1180	88	122		206	280			6	6	6	1280			218		375		690	7.5	7.5
/950		1250	95	132	_	224	300		-	6	7.5	7.5	1360	132		236		412		730	7.5	7.5
	1000	1320 1400		140 150		236 250	315 335		580 615	6 7.5	7.5	7.5 7.5	1420 1500	136 140		243 250	308	412 438			7.5 9.5	7.5
,	1120	1460		150		250	335		615	7.5	7.5	7.5	1580	145		265	345	462			9.5	9.5
,	1120	1540		160		272	355	488	650	7.5	7.5	7.5	1660	155	212		355	475		875	9.5	9.5
,	1250	1630		170		280	375	515	690	7.5	7.5	7.5	1750			290	375	500	_	-	J.J	9.5
,	1320	1720		175	-	300	400		710	7.5	7.5	7.5	1850		-	300	400	530				12
	1400	1820	_	185		315	425	_	_	-	9.5	9.5	1950	_		315	412	545	_	_	_	12
,	1500	1950	_	195		335	450	_	_	_	9.5	9.5	2120	_		355	462	615	_	_	_	12
,	1600	2060	_	200		345	462	_	_	_	9.5	9.5	2240	_		365	475	630	_	_	_	12
,	1700	2180	_	212		355	475	_	_	_	9.5	9.5	2360	_	290	375	500	650	_	_	_	15
,	1800	2300	_	218		375	500	_	_	_	12	12	2500	_	308		530	690	_	_	_	15
,	1900	2430	_	230		400	530	_	_	_	12	12	_	_	_	_	_	_	_	_	_	_
	2000										_											

ppendix Tables

Appendix table-1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-5

Single rov	v radial bal	l bearings												62 72		622	632					
	w radial bal	<u> </u>												12		42	52 32					
						NINIDA											N32					
-	ical roller b					NN31								N2		N22	NSZ					
	e roller bea																					
	cal roller be	earings				231	241									222	232					
Non bearin					Diar	neter	series	1								Diame	ter ser	ies 2				
diam	eter l	Nominal				Dime	nsion	series				Nominal				Dii	mensio	n seri	es			
Z	Dim	bearing outer	01	11	21	31	41	51	61	01	11~61	bearing	82	02	12	22	32	42	52	62	82	02~62
Number	Dimension	diameter D			No	minal	widtl	h <i>B</i>			Chamfer dimension I's min	diameter D			No	minal	width	В			dime	mfer nsion min
_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_			_	_
1	_	_	_	_	_	_	_			_	_	_	_	_	_	_	-	_			_	-
_	_	_	_	_	_	_	_			-	_	_	_	_	_	_	_	_			_	_
2	_	_	_	_	_	_	_			_	_	_	_	_	_	_	-	_			_	_
_	_	_	_	_	_	_	_			_	_	10	2.5	_	_	_	_	_			_ _	0.15
3	3	_	_	_	_	_	_			_	_	10	2.5	4	_	_	5	_	_	_	0.1	0.15
5	4 5	15	_	_	_	7	_			_	0.3	13 16	3.5	5	_	_	8		_	_	0.15 0.15	0.2
6	6	18			8	7 10				_	0.3	19	4	6			10		18	23	0.13	0.3
7	7	21		_	9	11	14	19	25	_	0.3	22	5	7			11	_	20	27	0.2	0.3
8	8	23	_		10	12	15	20	27	_	0.3	24	5	8	_		12		21		0.3	0.3
9	9	25	_	_	10	12	16	21	29	_	0.3	26	6	8	_	_	13	_	23		0.3	0.3
00	10	28	_	_	12	14	18	24	32	_	0.3	30	7	9	_	14	14.3	_	27		0.3	0.6
01	12	30	_	_	12	14	18	24	32	_	0.3	32	7	10	_	14	15.9	_	27		0.3	0.6
02	15	33	_	_	12	14	18	24	32	_	0.3	35	8	11	_	14	15.9	20	27		0.3	0.6
03	17	37	_	_	13	15	20	27	36	_	0.6	40	8	12	_	16	17.5	22	30		0.3	0.6
04	20	44	_	_	15	18	24	32	43	_	0.6	47	9	14	_	18	20.6	27	36	48	0.3	1
/22	22	47	_	_	16	19	25	34	45	_	1	50	9	14	_	18	20.6	27	36	48	0.3	1
05	25	50	_	_	16	19	25	34	45	_	1	52	10	15	_	18	20.6	27	36	48	0.3	1
/28	28	55	_	_	17	20	27	36	48	_	1	58	10	16	_	19	23	30	40	54	0.6	1
06	30	58	_	_	18	21	28	38	50	_	1	62	10	16	_	20	23.8	32	43	58	0.6	1
/32	32	62	_	_	19	23	30	40	54	_	1	65	11	17	_	21	25	33	43		0.6	1
07	35	68	_	_	21	25	33	43	60	-	1.1	72	12	17	_	23	27	37	50		0.6	1.1
08	40	75	_	_	22	26	35	46	63	_	1.1	80	13	18	_	23	30.2	40	54		0.6	1.1
09	45	80	_	_	22	26	35	46	63	-	1.1	85	13	19	_	23	30.2	40	54		0.6	1.1
10	50	85	_	_	22	26	35	46	63	_	1.1	90	13	20	_	23	30.2	40	54		0.6	1.1
11	55	95	_	_	24	30	40	54	71	_	1.1	100	14	21	_	25	33.3	45	60	90	0.6	1.5
12	60 65	100	_	_	24	30	40	54 60	71 80	_	1.1	110 120	16 18	22	_	28 31	36.5 38.1	50 56	67 75	100	1	1.5 1.5
14	70	110 115			27	34	45	60	80		1.5	125	18	24		31	39.7	56	75	100		1.5
15	75	125			30	37	50	67	90		1.5	130	18	25		31	41.3	56	75	100		1.5
16	80	130	_	_	30	37	50	67	90	_	1.5	140	19	26	_	33	44.4	60	80	100		2
17	85	140	_	_	31	41	56	75	100		1.5	150	21	28	_	36	49.2	65	88	118		2
18	90	150	_	_	33	45	60	80	109	_	2	160	22	30	_	40	52.4	69	95	125	1.1	2
19	95	160	_	_	39	52	65	88	118	_	2	170	24	32	_	43	55.6	75	100	136	1.1	2.1
20	100	165	21	30	39	52	65	88	_	1.1	2	180	25	34	_	46	60.3	80	109	145	1.5	2.1
21	105	175	22	33	42	56	69	95	125	1.1	2	190	27	36	_	50	65.1	85	115	155	1.5	2.1
22	110	180	22	33	42	56	69	95	125	1.1	2	200	28	38	_	53	69.8	90	122	160	1.5	2.1
24	120	200	25	38	48	62	80	109	145	1.5	2	215	_	40	42	58	76	95	128	170	_	2.1
26	130	210	25	38	48	64	80	109	145	1.5	2	230	_	40	46	64	80	100	136	180	_	3
28	140	225	27	40	50	68	85	115	155	1.5	2.1	250	_	42	50	68	88	109	150	200	_	3

Appendix table-1: Boundar	v dimensions (of radial bearings	(Tapered roller bearing	rs not included)-6	Unit: mm

Single row	v radial bal	bearings			63 73		623	633				64 74		
Double rov	w radial bal	l bearings			13		43 23	53 33						
Cvlindri	ical roller b	earings			N3		N23	N33				N4		
	e roller bea	<u> </u>												
	cal roller be				213		223							
Nom		arings												
bearing	g bore				Diame	eter se	ries 3				Dia	amete	r series	4
diam	neter <i>l</i>	Nominal	Nominal			Dime	ension	series			Nominal	Dime	ension s	eries
7	₽	bearing outer	bearing outer	83	03	13	23	33	83	03~33	bearing outer	04	24	
Number	mension	diameter	diameter						Cha	mfer	diameter	Non	ninal	Chamfer dimension
oer	sion	D	D		Nom	ninal w	idth B		dime	nsion min	D		th B	1's min
_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_
1	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	- 1
2	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3	3	_	13	_	5	_	_	7	_	0.2	_	_	_	_
4	4	_	16	_	5	_	_	9	_	0.3	_	_	-	-
5	5	15	19	_	6	_	_	10	_	0.3	-	_	-	_
6	6	18	22	_	7	_	11	13	_	0.3	_	_	_	_
7	7	21	26	_	9	_	13	15	_	0.3	_	_	_	_
8	8	23	28	_	9	_	13	15	_	0.3	30	10	14	0.6
9	9	25	30	_	10	_	14	16	_	0.6	32	11	15	0.6
00	10	28	35	9	11	_	17	19	0.3	0.6	37	12	16	0.6
01	12	30	37	9	12	_	17	19	0.3	1	42	13	19	1
02	15	33	42	9	13	_	17	19	0.3	1	52	15	24	1.1
03	17	37	47	10	14	_	19	22.2	0.6	1	62	17	29	1.1
04	20	44	52	10	15	_	21	22.2	0.6	1.1	72	19	33	1.1
/22	22	47	56	11	16	_	21	25	0.6	1.1	_	_	-	
05	25	50	62	12 13	17	_	24	25.4 30	0.6	1.1	80	21	36	1.5
/28	28 30	55	68	13	18 19	_	24		0.6	1.1	90	23	40	1 [
06 /32	32	58 62	72 75	14	20	_	27 28	30.2	0.6	1.1	90	23	40	1.5
07	35	68	80	14	21		31	34.9	0.6	1.5	100	25	43	1.5
08	40	75	90	16	23		33	36.5	1	1.5	110	27	46	2
09	45	80	100	17	25	_	36	39.7	1	1.5	120	29	50	2
10	50	85	110	19	27	_	40	44.4	1	2	130	31	53	2.1
11	55	95	120	21	29	_	43	49.2	1.1	2	140	33	57	2.1
12	60	100	130	22	31	_	46	54	1.1	2.1	150	35	60	2.1
13	65	110	140	24	33	_	48	58.7	1.1	2.1	160	37	64	2.1
14	70	115	150	25	35	_	51	63.5	1.5	2.1	180	42	74	3
15	75	125	160	27	37	_	55	68.3	1.5	2.1	190	45	77	3
16	80	130	170	28	39	_	58	68.3	1.5	2.1	200	48	80	3
17	85	140	180	30	41	_	60	73	2	3	210	52	86	4
18	90	150	190	30	43	_	64	73	2	3	225	54	90	4
19	95	160	200	33	45	_	67	77.8	2	3	240	55	95	4
20	100	165	215	36	47	51	73	82.6	2.1	3	250	58	98	4
21	105	175	225	37	49	53	77	87.3	2.1	3	260	60	100	4
22	110	180	240	42	50	57	80	92.1	3	3	280	65	108	4
24	120	200	260	44	55	62	86	106	3	3	310	72	118	5
26	130	210	280	48	58	66	93	112	3	4	340	78	128	5
28	140	225	300	50	62	70	102	118	4	4	360	82	132	5

1-7

Appendix table-1: Boundary dimensions of radial bearings (Tapered roller bearings not included)-7

	IUIX La		. 500	anda	ı y uı	men	31011	3 01 1	uuit	Dec	۱ <u>۶</u>	,s (Tup	ereu		ווווווווווווווווווווווווווווווווווווווו			IIICIC	ueu,	'		
	v radial ball													62 72		622	632					
Double ro	w radial bal	l bearings												12		42 22	52 32					
Cylindri	ical roller b	earings				NN31								N2		N22	N32					
Needl	le roller bea	rings																				
Spheric	cal roller be	arings				231	241									222	232					
Non					Diar	neter	series	: 1								Diame:	ter ser	ies 2				
bearin diam																						
0.0.1	i.	Nominal				Dimer	nsion	series				Nominal				Dir	nensio	n seri	es			
Z	Dimensior	bearing outer	01	11	21	31	41	51	61	01	11~61	bearing outer	82	02	12	22	32	42	52	62	82	02~62
Number	ens	diameter D			No	minal	widtl	n R			Chamfer dimension	diameter D			No	minal	width	R				ımfer ension
er	ion				140		widti	12			l's min				140		width					min
30	150	250	31	46	60	80	100	136		2	2.1	270	-	45	54	73	96	118	160	218	_	3
32	160	270	34	51	66	86		150		2	2.1	290	_	48	58	80	104		175	236	-	3
34	170	280	34	51	66	88	109	150		2	2.1	310	-	52	62	86	110	140	190	250	_	4
36	180	300	37	56	72	96	118	160			3	320	_	52	62	86		140	190	250	_	4
38	190	320	42	60	78	104	128	175	236	3	3	340	_	55	65	92	120	150	200	272	_	4
40	200	340	44	65	82	112	140	190		3	3	360	_	58	70	98			218	290	_	4
44 48	220 240	370 400	48 50	69 74	88 95	120 128	150	200		3	4	400 440	_	65 72	78	108	144 160	180	243	325	_	4
52	260	440	57	82	106	144	160 180	218 243		4	4	480	_	80	85 90	120 130		200 218	272 300	355 400		5
56	280	460	57	82	106	146	180	243	325	4	5	500		80	90	130	176	218	300	400		5
60	300	500	63	90	118	160	200	272	355	5	5	540		85	98	140	192	243	325	438		5
64	320	540	71	100	128	176	218	300		5	5	580	_	92	105	150	_	258	355	462	_	5
68	340	580	78	106	140	190	243	325	438	5	5	620	_	92	118	165		280	375	500	_	6
72	360	600	78	106				325	438	5	5	650	_	95	122	170			388	515	_	6
76	380	620	78	106	140	194	243	325	438	5	5	680	_	95	132	175	240	300	400	545	_	6
80	400	650	80	112	145	200	250	335	450	6	6	720	_	103	140	185	256	315	438	580	_	6
84	420	700	88	122	165	224	280	375	500	6	6	760	_	109	150	195	272	335	462	615	_	7.5
88	440	720	88	122	165	226	280	375	500	6	6	790	_	112	155	200	280	345	475	630	_	7.5
92	460	760	95	132	175	240	300	400	545	6	7.5	830	_	118	165	212	296	365	500	670	-	7.5
96	480	790	100	136	180	248	308	425	560	6	7.5	870	_	125	170	224	310	388	530	710	-	7.5
/500	500	830	106	145	190	264	325	450	600	7.5	7.5	920	-	136	185	243	336	412	560	750	_	7.5
/530	530	870		150	195	272	335	462	615	7.5	7.5	980	-	145	200	258	355	450	600	_	-	9.5
/560	560	920	_	160	206	280	355	488	650	7.5	7.5	1030	_	150	206	272	365	475	630	_	_	9.5
/600	600	980		170	218	300	375	515	690	7.5	7.5	1090	_	155	212	280	388	488	670	_	_	9.5
/630	630	1030	-	175	230	315	400	545	710	7.5	7.5	1150	_	165	230	300	412	515	710	_	_	12
/670	670	1090		185	243	336	412	560	750	7.5	7.5	1220	_	175	243	315	438	545	750	_	_	12
/710	710	1150		195	250	345	438	600	800	9.5	9.5	1280	_	180	250	325	450	560	775	_	_	12
/750	750	1220		206	272	365	475	630	_	9.5	9.5	1360	_	195	265	345	475	615	825	_	_	15
/800	800	1280		212	272	375	475	650	_	9.5	9.5	1420	_	200	272	355	488	615	_	_	_	15
/850 /900	850 900	1360 1420		224 230	290 300	400	500 515	690 710		12 12	12 12	1500 1580		206 218	280 300	375 388	515	650				15 15
/950	950	1500		243	315	412 438		750			12	1660		230	315	412	515 530	670 710				15
/1000	1000	1580		258	335	462	580	775		12	12	1750		243	330	412	560	750				15
/1060	1060	1660		265	345	475	600	800	_		15	1/30	_	Z43	330	+25	300	750				13
/1120	1120	1750		280	365	475	630	_	_		15		_		_							_
/1120	1180	1850		290	388	_	670		_	_	15	_	_	_	_	_	_	_			_	_
/1250	1250	1950	_	308	400	530	710		_	_	15	_		_	_		_	_			_	_
/1320	1320	2060	_	325	425	560	750	_	_	_	15	_	_	_	_	_	_	_			_	_
/1400		2180	_	345	450		775	_	_	_	19	_	_	_	_		_	_			_	_
/1500		2300	_	355	462	600		_	_	_	19	_	_	_	_	_	_	_			_	_

1-8

Appendix table-1: Boundar	v dimensions of radial bearing	(Tanered roller hearings n	ot included)-8 Linit: mm

Single rov	v radial bal	l bearings			63 73		623	633				64 74		
Double ro	w radial ba	ll bearings			13		43 23	53 33						
Cylindr	ical roller b	earings			N3		N23	N33				N4		
_	e roller be													
	cal roller be				213		223							
Non	ninal					ter se					Dia	meter	series	: 4
bearin diam					Diamie						Die			
(Nominal	Nominal			Dime	ension	series			Nominal	Dime	nsion s	eries
Z	Dim	bearing outer	bearing outer	83	03	13	23	33	83	03~33	bearing outer	04	24	Chamfer
Number	Dimension	diameter D	diameter D		Nom	inal w	idth <i>R</i>		Cha dime	mfer nsion	diameter D	Non		dimension Tsmin
								1		min		wid		
30	150	250	320	_	65	75	108	128	_	4	380	85	138	5
32	160	270	340	_	68	79	114	136	_	4	400	88	142	5
34	170	280	360	_	72	84	120	140	_	4	420	92	145	5
36	180	300	380	_	75	88	126	150	_	4	440	95	150	6
38	190	320	400	_	78	92	132	155	_	5	460	98	155	6
40	200	340	420	_	80	97	138	165		5	480	102	160	6
44	220	370	460	_	88	106	145	180	_	5	540	115	180	6
48 52	240 260	400	500 540	_	95	114 123	155 165	195 206	_	6	580 620	122 132	190 206	6 7.5
56	280	460	580		102	132	175	224		6	670	140	224	7.5
60	300	500	620	Ξ	108	140	185	236		7.5	710	150	236	7.5
64	320	540	670		112	155	200	258		7.5	750	155	250	9.5
68	340	580	710		112	165	212	272		7.5	800	164	265	9.5
72	360	600	750		125	170	224	290		7.5	850	180	280	9.5
76	380	620	780		123	175	230	300	_	7.5	900	190	300	9.5
80	400	650	820	_	136	185	243	308	_	7.5	950	200	315	12
84	420	700	850	_	136	190	250	315	_	9.5	980	206	325	12
88	440	720	900	_	145	200	265	345	_		1030	212	335	12
92	460	760	950	_	155	212	280	365	_	9.5	1060	218	345	12
96	480	790	980	_	160	218	290	375	_		1120	230	365	15
/500	500	830	1030	_	170	230	300	388	_	12	1150	236	375	15
/530	530	870	1090	_	180	243	325	412	_	12	1220	250	400	15
/560	560	920	1150	_	190	258	335	438	_	12	1280	258	412	15
/600	600	980	1220	_	200	272	355	462	_	15	1360	272	438	15
/630	630	1030	1280	_	206	280	375	488	_	15	1420	280	450	15
/670	670	1090	1360	_	218	300	400	515	_	15	1500	290	475	15
/710	710	1150	1420	_	224	308	412	530	_	15	_	_	_	_
/750	750	1220	1500	_	236	325	438	560	-	15	_	_	_	_
/800	800	1280	1600	_	258	355	462	600	_	15	_	_	_	_
/850	850	1360	1700	_	272	375	488	630	_	19	-	_	_	_
/900	900	1420	1780	_	280	388	500	650	_	19	_	_	_	_
/950	950	1500	1850	_	290	400	515	670	_	19	_	_	_	_
/1000	1000	1580	1950	_	300	412	545	710	_	19	_	_	_	-
/1060	1060	1660	-	-	_	_	_	_	_	_	_	_	_	-
/1120	1120	1750	_	_	_	_	_	_	_	_	_	_	_	_
/1180	1180	1850	-	_	_	_	_	_	_	_	-	-	_	-
/1250	1250	1950	_	_	_	_	_	_	_	_	_	_	_	-
/1320	1320	2060	-	_	_	_	_	_	_	_	_	-	_	-
/1400	1400	2180	_	_	_	_	_	_	_	_	_	_	_	_
/1500	1500	2300	-	_	_	_	_	_	_	_	_	_	_	_

Appendix table-2: Boundary dimensions of tapered roller bearing-1

Tapere	ed roller rings				29						ox					33	30		
		В		Diam	eter se	ries 9		В		Diam	eter se	ries 0		В		Diam	eter se	ries 0	
Bore	gearir diar	earin diar		Dimen	sion se	ries 29		earin		Dimen	sion se	ries 20		earin diar		Dimen	sion se	ries 30	
diameter No.	Bearing bore diameter	Bearing outer diameter	Assembly width	Inner ring width	Outer ring width		mfer nsion Outer ring	Bearing outer diameter	Assembly width	Inner ring width	Outer ring width		mfer nsion Outer ring	Bearing outer diameter	Assembly width	Inner ring width	Outer ring width		mfer nsion Outer ring
	d	D	T	В	C	r(m	nin.)	D	T	В	C	r(n	nin.)	D	T	В	C	r(n	nin.)
02	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
03	17	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
04	20	_	_	_	_	_	_	42	15	15	12	0.6	0.6	_	_	_	_	_	_
/22	22	_	_	_	-	_	_	44	15	15	11.5	0.6	0.6		_	_	_	_	_
05	25	_	_	_	_	_	_	47	15	15	11.5	0.6	0.6	47	17	17	14	0.6	0.6
/28	28		_	_	_	_	_	52	16	16	12	1	1		_	_	_	_	_
06	30	47	12	12	9	0.3	0.3	55	17	17	13	1	1	55	20	20	16	1	1
/32	32	_	_	_		_	_	58	17	17	13	1	1	_	-	_	_	_	_
07	35	55	14	14	11.5	0.6	0.6	62	18	18	14	1	1	62	21	21	17	1	1
08	40	62	15	15	12	0.6	0.6	68	19	19	14.5	1	1	68	22	22	18	1	1
09	45	68	15	15	12	0.6	0.6	75	20	20	15.5	1	1	75	24	24	19	1	1
10	50	72	15	15	12	0.6	0.6	80	20	20	15.5	1	1	80	24	24	19	1	1
11	55	80	17	17	14	1	1	90	23	23	17.5	1.5	1.5	90	27	27	21	1.5	1.5
12	60	85	17	17	14	1	1	95	23	23	17.5	1.5	1.5	95	27	27	21	1.5	1.5
13 14	65 70	90 100	17 20	17 20	14 16	1	1	100	23 25	23 25	17.5 19	1.5 1.5	1.5	100 110	27 31	27 31	21 25.5	1.5	1.5 1.5
				20					-	25	19	-	1.5		-		25.5	-	-
15	75 80	105	20	20	16 16	1	1	115 125	25 29	29	22	1.5 1.5	1.5	115 125	31 36	31 36	29.5	1.5	1.5 1.5
16	85	110 120	23	23	18	1.5	1.5	130	29	29	22	1.5	1.5	130	36	36	29.5		
17 18	90	125	23	23	18	1.5	1.5	140	32	32	24	2	1.5	140	39	39	32.5	1.5	1.5 1.5
19	95	130	23	23	18	1.5	1.5	145	32	32	24	2	1.5	145	39	39	32.5	2	1.5
20	100	140	25	25	20	1.5	1.5	150	32	32	24	2	1.5	150	39	39	32.5	2	1.5
21	105	145	25	25	20	1.5	1.5	160	35	35	26	2.5	2	160	43	43	34	2.5	2
22	110	150	25	25	20	1.5	1.5	170	38	38	29	2.5	2	170	47	47	37	2.5	2
24	120	165	29	29	23	1.5	1.5	180	38	38	29	2.5	2	180	48	48	38	2.5	2
26	130	180	32	32	25	2	1.5	200	45	45	34	2.5	2	200	55	55	43	2.5	2
28	140	190	32	32	25	2	1.5	210	45	45	34	2.5	2	210	56	56	44	2.5	2
30	150	210	38	38	30	2.5	2	225	48	48	36	3	2.5	225	59	59	46	3	2.5
32	160	220	38	38	30	2.5	2	240	51	51	38	3	2.5	_	_	_	_	_	
34	170	230	38	38	30	2.5	2	260	57	57	43	3	2.5	_	_	_	_	_	_
36	180	250	45	45	34	2.5	2	280	64	64	48	3	2.5	_	_	_	_	_	_
38	190	260	45	45	34	2.5	2	290	64	64	48	3	2.5	_	_	_	_	_	_
40	200	280	51	51	39	3	2.5	310	70	70	53	3	2.5	_	_	_	_	_	_
44	220	300	51	51	39	3	2.5	340	76	76	57	4	3	_	_	_	_	_	_
48	240	320	51	51	39	3	2.5	360	76	76	57	4	3	_	_	_	_	_	_
52	260	360	63.5	63.5	48	3	2.5	400	87	87	65	5	4	_	_	_	_	_	_
56	280	380	63.5	63.5	48	3	2.5	420	87	87	65	5	4	_	_	_	_	_	_
60	300	420	76	76	57	4	3	460	100	100	74	5	4	_	_	_	_	_	_
64	320	440	76	76	57	4	3	480	100	100	74	5	4	_	_	_	_	_	_
68	340	460	76	76	57	4	3	_	_	_	_	_	_	_	_	_	_	_	_
72	360	480	76	76	57	4	3	_	_	_	_	_	_	_	_	_	_	_	_

Appendix table-2: Boundary dimensions of tabered roller bearing-2	Appendix table-2: Boundary	y dimensions of tapered roller bearing-2
---	----------------------------	--

Init · m	

Tapere bear	d roller rings			33	31					30)2					32	2		
Deu.				Diam	eter se	ries 1		В		Diame	eter ser	ies 2		В		Diame	ter seri	ies 2	
Bore	geari dia	dia		Dimen	sion se	ries 31		Bearing of diame		Dimens	sion ser	ies 02		Bearing of diame	[Dimens	ion seri	es 22	
e diameter No.	Bearing bore diameter	Bearing outer diameter	Assembly width	Inner ring width	Outer ring width		mfer nsion Outer ring	ring outer iameter	Assembly width	Inner ring width	Outer ring width	Cha dime Inner ring	mfer nsion Outer ring	iring outer iameter	Assembly width	Inner ring width	Outer ring width		mfer nsion Outer ring
	d	D	T	В	C	r(m	nin.)	D	T	В	C	r(n	nin.)	D	T	В	C	r(n	nin.)
02	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
03	17	_	_	_	_	_	_	40	13.25	12	11	1	1	40	17.25	16	14	1	1
04	20	_	_	_	_	_	_	47	15.25	14	12	1	1	47	19.25	18	15	1	1
/22	22	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
05	25	_	_	_	_	_	_	52	16.25	15	13	1	1	52	19.25	18	16	1	1
/28	28	_	_	_	_	_	_	_		_	_		_	_		_		_	-
06	30	_	_	_	_	_	_	62	17.25	16	14	1	1	62	21.25	20	17	1	1
/32	32	_	_	_	_	_	_	65	18.25	17	15	1	1	_	_	_	-	_	- 1
07	35	75	_	-	-	_	_	72	18.25	17	15	1.5	1.5	72	24.25	23	19	1.5	1.5
08	40	75	26	26	20.5	1.5	1.5	80	19.75	18	16	1.5	1.5	80	24.75	23	19	1.5	1.5
09	45	80	26	26	20.5	1.5	1.5	85	20.75	19	16	1.5	1.5	85	24.75	23	19	1.5	1.5
10	50	85	26	26	20	1.5	1.5	90	21.75	20	17	1.5	1.5	90	24.75	23	19	1.5	1.5
11	55	95 100	30 30	30 30	23 23	1.5	1.5	100	22.75	21	18	2	1.5	100	26.75	25 28	21	2	1.5
13	60 65		34	34	26.5	1.5 1.5	1.5	110 120		23	19 20	2	1.5	110	29.75	31	27	2	1.5
14	70	110 120	37	37	29.5	2	1.5	125	24.75 26.25	24	21	2	1.5	120 125	32.75 33.25	31	27	2	1.5
15	75	125	37	37	29	2	1.5	130	27.25	25	22	2	1.5	130		31	27	2	1.5
16	80	130	37	37	29	2	1.5	140	28.25	26	22	2.5	2	140	33.25 35.25	33	28	2.5	2
17	85	140	41	41	32	2.5	2	150	30.5	28	24	2.5	2	150	38.5	36	30	2.5	2
18	90	150	45	45	35	2.5	2	160	32.5	30	26	2.5	2	160	42.5	40	34	2.5	2
19	95	160	49	49	38	2.5	2	170	34.5	32	27	3	2.5	170	45.5	43	37	3	2.5
20	100	165	52	52	40	2.5	2	180	37	34	29	3	2.5	180	49	46	39	3	2.5
21	105	_	_	_	-		_	190	39	36	30	3	2.5	190	53	50	43	3	2.5
22	110	180	56	56	43	2.5	2	200	41	38	32	3	2.5	200	56	53	46	3	2.5
24	120	200	62	62	48	2.5	2	215	43.5	40	34	3	2.5	215	61.5	58	50	3	2.5
26	130		_	_			_	230	43.75	40	34	4	3	230	67.75	64	54	4	3
28	140	_	_	_	_	_	_	250	45.75	42	36	4	3	250	71.75	68	58	4	3
30	150	_	_	_	_	_	_	270	49	45	38	4	3	270	77	73	60	4	3
32	160	_	_	_	_	_	_	290	52	48	40	4	3	290	84	80	67	4	3
34	170	_	_	_	_	_	_	310	57	52	43	5	4	310	91	86	71	5	4
36	180	_	_	_	_	_	_	320	57	52	43	5	4	320	91	86	71	5	4
38	190	_	_	_	_	_	_	340	60	55	46	5	4	340	97	92	75	5	4
40	200	_	_	_	_	_	_	360	64	58	48	5	4	360	104	98	82	5	4
44	220	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
48	240	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
52	260	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
56	280	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
60	300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
64	320	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
68	340	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-
72	360	—	—	—	-	_	_	_	-	_	—	_	—	_	_	_	—	—	-

I-10

Appendix table-2: Boundary dimensions of tapered roller bearing-3

		tabi	e-2:	Bour	idary	aım	ensic	ns o	ftape	ea ro	iler b	earır	1g-3						
	d roller rings			33	32					30	3					303	BD		
	В	Be		Diam	eter se	ries 2		Be		Diame	eter ser	ies 3		Be		Diame	eter ser	ies 3	
Bore	Bearing bore diameter	Bearing oute diameter		Dimen	sion se			Bearing outer diameter		Dimens	ion ser			Bearing outer diameter		Dimens	sion ser		
No. diar	ig bo	g outer neter	Assembly	Inner	Outer		mfer nsion	g ou nete	Assembly	Inner	Outer		mfer nsion	g ou nete	Assembly	Inner	Outer		mfer nsion
diameter No.	n m	r te	width	ring width	ring width	Inner ring	Outer ring	r et	width	ring width	ring width	Inner ring	Outer	r et	width	ring width	ring width	Inner	Outer ring
Ť	d	D	T	В	C	r(n		D	T	В	C	r(n		D	T	В	C		nin.)
02	15	_	_	_	_	_	_	42	14.25	13	11	1	1	_	_	_	_	_	_
03	17	_	_	_	_	_	_	47	15.25	14	12	1	1	_	_	_	_	_	_
04	20	_	_	_	_	_	_	52	16.25	15	13	1.5	1.5	_	_	_	_	_	_
/22	22	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
05	25	52	22	22	18	1	1	62	18.25	17	15	1.5	1.5	62	18.25	17	13	1.5	1.5
/28	28	58	24	24	19	1	1	_	- 75	-	-	_	_	_	- 75	-	_	_	_
06	30	62 65	25 26	25	19.5 20.5	1	1	72	20.75	19	16	1.5	1.5	72	20.75	19	14	1.5	1.5
/32 07	32 35	72	28	26 28	20.5	1.5	1.5	-	22.75	_ 21	18	2	1.5	80	22.75	21	_ 15	2	1.5
08	40	80	32	32	25	1.5	1.5	80 90	22.75 25.25	23	20	2	1.5	90	22.75 25.25	23	17	2	1.5
09	45	85	32	32	25	1.5	1.5	100	27.25	25	22	2	1.5	100	27.25	25	18	2	1.5
10	50	90	32	32	24.5	1.5	1.5	110	29.25	27	23	2.5	2	110	29.25	27	19	2.5	2
11	55	100	35	35	27	2	1.5	120	31.5	29	25	2.5	2	120	31.5	29	21	2.5	2
12	60	110	38	38	29	2	1.5	130	33.5	31	26	3	2.5	130	33.5	31	22	3	2.5
13	65	120	41	41	32	2	1.5	140	36	33	28	3	2.5	140	36	33	23	3	2.5
14	70	125	41	41	32	2	1.5	150	38	35	30	3	2.5	150	38	35	25	3	2.5
15	75	130	41	41	31	2	1.5	160	40	37	31	3	2.5	160	40	37	26	3	2.5
16	80	140	46	46	35	2.5	2	170	42.5	39	33	3	2.5	170	42.5	39	27	3	2.5
17	85	150	49	49	37	2.5	2	180	44.5	41	34	4	3	180	44.5	41	28	4	3
18	90	160	55	55	42	2.5	2	190	46.5	43	36	4	3	190	46.5	43	30	4	3
19	95	170	58	58	44	3	2.5	200	49.5	45	38	4	3	200	49.5	45	32	4	3
20	100	180	63	63	48	3	2.5	215	51.5	47	39	4	3	_	_	_	_	_	_
21	105 110	190 —	68	68	52 —	3	2.5	225 240	53.5 54.5	49 50	41 42	4	3	_	_	_	_	_	_
24	120							260	59.5	55	46	4	3						
26	130			_		_	_	280	63.75	58	49	5	4	_		_		_	
28	140	_	_	_	_	_	_	300	67.75	62	53	5	4	_	_	_	_	_	_
30	150	_	_	_	_	_	_	320	72	65	55	5	4	_	_	_	_	_	_
32	160	_	_	_	_	_	_	340	75	68	58	5	4	_	_	_	_	_	_
34	170	_	_	_	_	_	_	360	80	72	62	5	4	_	_	_	_	_	_
36	180	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
38	190	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
40	200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
44	220	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
48	240	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
52	260	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
56	280	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
60	300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
64	320	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
68	340	_	_	_	_	_			_	_	_	_		_	_	_	_		
72	360				_			-	_	_	_	_		_	_		-		

Appendix table-2: Boundary dimensions of tapered roller bearing-4 Unit: mm

Tapere	d roller			3:					ea rolle	32			t: mm
bear	rings			Diam	eter se	ries 3				Diame	eter ser	ies 3	
Вс	Bearing diamet	Bearing outer diameter			sion se			Bearing outer diameter			sion ser		
Bore diameter No.	earing bo diameter	ing		Dimen			nfer	earing out diameter					mfer
dian No.	bore	out	Assembly	Inner	Outer	dime	nsion	out	Assembly	Inner	Outer	dime	nsion
iete	, ф	er	width	ring width	ring width	Inner ring	Outer ring	욕	width	ring width	ring width	Inner ring	Outer ring
	d	D	T	В	C	r(m		D	T	В	C		nin.)
02	15	_	_	_	_	_	_	_	_	_	_	_	_
03	17	_	_	_	_	_	_	47	20.25	19	16	1	1
04	20	_	_	_	_	_	_	52	22.25	21	18	1.5	1.5
/22	22	_	_	_	_	_	_	_	-	_	_	_	_
05	25	_	_	_	_	_	_	62	25.25	24	20	1.5	1.5
/28	28	_	_	_	_	_	_	_	-	_	_	_	_
06	30	_	_	_	_	_	_	72	28.75	27	23	1.5	1.5
/32	32	_	_	_	_	_	_	_	_	_	_	_	_
07	35	_	_	_	_	_	_	80	32.75	31	25	2	1.5
08	40	_	_	_	_	_	_	90	35.25	33	27	2	1.5
09	45	_	_	_	_	_	_	100	38.25	36	30	2	1.5
10	50	_	_	_	_	_	_	110	42.25	40	33	2.5	2
11	55	_	_	_	_	_	_	120	45.5	43	35	2.5	2
12	60	_	_	_	_	_	_	130	48.5	46	37	3	2.5
13	65	_	_	_	_	_	_	140	51	48	39	3	2.5
14	70	_	_	_	_	_	_	150	54	51	42	3	2.5
15	75	_	_	_	_	_	_	160	58	55	45	3	2.5
16	80	_	_	_	_	_	_	170	61.5	58	48	3	2.5
17	85	_	_	_	_	_	_	180	63.5	60	49	4	3
18	90	_	_	_	_	_	_	190	67.5	64	53	4	3
19	95 100	215	-	51	35	4	3	200	71.5 77.5	67	55	4	3
20				-			-	215		73	60	4	3
21	105 110	225 240	58 63	53 57	36 38	4	3	225 240	81.5 84.5	77 80	63 65	4	3
24	120	260	68	62	42	4	3		90.5			4	3
26	130	280	72	66	44	5	4	260	50.5	86	69	4	э _
28	140	300	77	70	47	5	4						
30	150	320	82	75	50	5	4	_	_	_	_	_	_
32	160	_	_	_	_	_	_	_	_	_	_	_	_
34	170	_	_	_	_	_	_	_	_	_	_	_	_
36	180	_	_	_	_	_	_	_	_	_	_	_	_
38	190	_	_	_	_	_	_	_	_	_	_	_	_
40	200	_	_		_	_	_	_	_	_	_	_	_
44	220	_	_	_	_	_	_	_	_	_	_	_	_
48	240	_	_	_	_	_	_	_	_	_	_	_	_
52	260	_	_	_	_	_	_	_	_	_	_	_	_
56	280	_	_	_	_	_	_	_	_	_	_	_	_
60	300	_	_	_	_	_	_	_	_	_	_	_	_
64	320	_	_	_	_	_	_	_	_	_	_	_	_
68	340	_	_	_	_	_	_	_	_	_	_	_	_
72	360		_		_			_		_	_	_	_

Fig. 1-12 I-13

Appendix table-3: Boundary dimensions of single direction thrust bearings-1

	st ball	tubi	C J.	Doan	laar j	, am	lensi	0113	71 3111		IICC	IOH L	ili usi	bea		, _				
bear	rings									511					512		522			
Spheric thrust b	al roller pearings													292						
	σ×		Diam	eter se	ries 0			Diam	eter se	ries 1					Di	amete	r series	2		
Во	Nominal bearing bore diameter	Nominal bearing outer diameter	Dime	nsion s	series	di C	Nominal bearing outer diameter	Dime	nsion s	series	di C	Nomir bearing of diame		Di	mensi	on seri	es		하우	흥오
re d	bear amet	nal be r dian	70	90	10	Chamfer dimension	omir ing c amet	71	91	11	Chamfer dimension	Nominal aring out diameter	72	92	12	22	2	2	Chamfer dimension	Chamfer dimension
Bore diameter code	er ing	earing neter	Non	ninal he	eight	g e	uter ter	Non	ninal he	eight	g e	inal couter eter		lomina	l heigh	nt .	Central i	raceway	fer	fer
eter			14011		218111	r		14011		218111	r		ľ		_		Nominal hore	Nominal height	r	r_1
	d	D		T		(min.)	D		T		(min.)	D		2	Г		diameter d_2	B	(min.)	(min.)
4	4	12	4	—	6	0.3	_	_	_	<u> </u>	_	16	6	_	8	<u> </u>	_	_	0.3	_
6	6	16	5	_	7	0.3	_	_	_	_	_	20	6	_	9	_	_	_	0.3	_
8	8	18	5	_	7	0.3	_	_	_	_	_	22	6	_	9	_	_	_	0.3	_
00	10	20	5	_	7	0.3	24	6	_	9	0.3	26	7	_	11	_	_	_	0.6	_
01	12	22	5	_	7	0.3	26	6	_	9	0.3	28	7	_	11	_	_	_	0.6	_
02	15 17	26 28	5 5	_	7	0.3	28 30	6	_	9	0.3	32 35	8	_	12 12	22	10	5	0.6	0.3
03	20	32	6		8	0.3	35	7		10	0.3	40	9		14	26	15	6	0.6	0.3
05	25	37	6		8	0.3	42	8		11	0.5	47	10		15	28	20	7	0.6	0.3
06	30	42	6	_	8	0.3	47	8	_	11	0.6	52	10	_	16	29	25	7	0.6	0.3
07	35	47	6	_	8	0.3	52	8	_	12	0.6	62	12	_	18	34	30	8	1	0.3
08	40	52	6	_	9	0.3	60	9	_	13	0.6	68	13	_	19	36	30	9	1	0.6
09	45	60	7	_	10	0.3	65	9	_	14	0.6	73	13	_	20	37	35	9	1	0.6
10	50	65	7	_	10	0.3	70	9	_	14	0.6	78	13	_	22	39	40	9	1	0.6
11	55	70	7	_	10	0.3	78	10	_	16	0.6	90	16	21	25	45	45	10	1	0.6
12	60	75	7	_	10	0.3	85	11	_	17	1	95	16	21	26	46	50	10	1	0.6
13	65	80	7	_	10	0.3	90	11	_	18	1	100	16	21	27	47	55	10	1	0.6
14	70	85	7	_	10	0.3	95	11	_	18	1	105	16	21	27	47	55	10	1	1
15	75	90	7	_	10	0.3	100	11	_	19	1	110	16	21	27	47	60	10	1	1
16	80 85	95 100	7		10	0.3	105	11 11		19 19	1	115 125	16 18	21	28 31	48 55	65 70	10 12	1	1 1
18	90	105	7	_	10	0.3	120	14		22	1	135	20	27	35	62	75	14	1.1	1
20	100	120	9	_	14	0.6	135	16	21	25	1	150	23	30	38	67	85	15	1.1	1
22	110	130	9	_	14	0.6	145	16	21	25	1	160	23	30	38	67	95	15	1.1	1
24	120	140	9	_	14	0.6	155	16	21	25	1	170	23	30	39	68	100	15	1.1	1.1
26	130	150	9	_	14	0.6	170	18	24	30	1	190	27	36	45	80	110	18	1.5	1.1
28	140	160	9	_	14	0.6	180	18	24	31	1	200	27	36	46	81	120	18	1.5	1.1
30	150	170	9	_	14	0.6	190	18	24	31	1	215	29	39	50	89	130	20	1.5	1.1
32	160	180	9	_	14	0.6	200	18	24	31	1	225	29	39	51	90	140	20	1.5	1.1
34	170	190	9	_	14	0.6	215	20	27	34	1.1	240	32	42	55	97	150	21	1.5	1.1
36	180	200	9	_	14	0.6	225	20	27	34	1.1	250	32	42	56	98	150	21	1.5	2
38	190	215	11	_	17	1	240	23	30	37	1.1	270	36	48	62	109	160	24	2	2
40	200	225 250	11 14		17 22	1	250 270	23	30	37	1.1	280 300	36 36	48 48	62 63	109	170 190	24	2	2
44	220 240	270	14	_	22	1	300	23	36	45	1.1	340	45	60	78	110	190	_	2.1	_
52	260	290	14	_	22	1	320	27	36	45	1.5	360	45	60	79	_	_	_	2.1	_
56	280	310	14	_	22	1	350	32	42	53	1.5	380	45	60	80	_	_	_	2.1	_
60	300	340	18	24	30	1	380	36	48	62	2	420	54	73	95	_	_	_	3	_
64	320	360	18	24	30	1	400	36	48	63	2	440	54	73	95	_	_	_	3	_

Note: 1. Dimension series 22, 23, and 24 are double row bearing series. For double row bearings, d2 becomes the nominal bearing bore diameter.

 For the outer diameter of the shaft raceway washer and the inner diameter of the housing raceway washer, see the dimension table of thrust bearings.

Appendix table-3: Boundary dimensions of single direction thrust bearings-2

		m

App	Ciidi	A tal		, DO		ii y u	iiiici	13101	13 01	31116	,ic ui	1	011 0	nrus	LDCC	,, ,,,,	3 Z					: mm
			513		523							514		524							Thrus bear	
		293									294										Spheric thrust b	
			Diam	eter se	eries 3							Diam	eter se	eries 4				Diam	eter se	eries 5		cumgs
9 No		Di	mensi	on ser	ies		۵. ر	ه. ص	2 S		Di	mensi	on ser	ies		ه. ص	ه. ص	2 N	Dimension series	ه ۵	ore o	В
Nominal bearing outer diameter	73	93	13	23	2	 3	Chamfer dimension	Chamfer dimension	Nominal bearing outer diameter	74	94	14	24	2	4	Chamfer dimension	Chamfer dimension	Nominal bearing outer diameter	95	Chamfer dimension	Nominal bearing bore diameter	ore
bearin					Central		nfer	nfer	bearin					Central		nfer	nfer	bearin	Nominal	nfer	eter	dian code
D D	N	Nomina !	al heig T	ht	Nominal bore diameter	Nominal height	r (min.)	r_1 (min.)	D D		lomina '	al heig T	ht	Nominal bore diameter	Nominal height	r (min.)	r_1 (min.)	D D	height	r (min.)	d d	Bore diameter code
20	7	Ι_	11	Γ_	d ₂	B	0.6		-	-	_	- I	Ι_	d_2	B	_		-	_	_	4	4
24	8	_	12	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	6	6
26	8	_	12	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	8	8
30	9	_	14	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	10	00
32	9	_	14	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	12	01
37	10	_	15	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	15	02
40	10	_	16	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	52	21	1	17	03
47	12	_	18	_	_	_	1	_	_	_	_	_	_	_	_	_	_	60	24	1	20	04
52	12	_	18	34	20	8	1	0.3	60	16	21	24	45	15	11	1	0.6	73	29	1.1	25	05
60	14	_	21	38	25	9	1	0.3	70	18	24	28	52	20	12	1	0.6	85	34	1.1	30	06
68	15	_	24	44	30	10	1	0.3	80	20	27	32	59	25	14	1.1	0.6	100	39	1.1	35	07
78	17	22	26	49	30	12	1	0.6	90	23	30	36	65	30	15	1.1	0.6	110	42	1.5	40	08
85	18	24	28	52	35	12	1	0.6	100	25	34	39	72	35	17	1.1	0.6	120	45	2	45	09
95	20	27	31	58	40	14	1.1	0.6	110	27	36	43	78	40	18	1.5	0.6	135	51	2	50	10
105	23	30	35	64	45	15	1.1	0.6	120	29	39	48	87	45	20	1.5	0.6	150	58	2.1	55	11
110	23	30	35	64	50	15	1.1	0.6	130	32	42	51	93	50	21	1.5	0.6	160	60	2.1	60	12
115	23	30	36	65	55	15	1.1	0.6	140	34	45	56	101	50	23	2	1	170	63	2.1	65	13
125	25	34	40	72	55	16	1.1	1	150	36	48	60	107	55	24	2	1	180	67	3	70	14
135	27	36	44	79	60	18	1.5	1	160	38	51	65	115	60	26	2	1	190	69	3	75	15
140	27	36	44	79	65	18	1.5	1	170	41	54	68	120	65	27	2.1	1	200	73	3	80	16
150	29	39	49	87	70	19	1.5	1	180	42	58	72	128	65	29	2.1	1.1	215	78	4	85	17
155	29	39	50	88	75	19	1.5	1	190	45	60	77	135	70	30	2.1	1.1	225	82	4	90	18
170	32	42	55	97	85	21	1.5	1	210	50	67	85	150	80	33	3	1.1	250	90	4	100	20
190	36	48	63	110	95	24	2	1	230	54	73	95	166	90	37	3	1.1	270	95	5	110	22
210	41	54	70	123	100	27	2.1	1.1	250	58	78	102	177	95	40	4	1.5	300	109	5	120	24
225	42	58	75	130	110	30	2.1	1.1	270	63	85	110	192	100	42	4	2	320	115	5	130	26
240	45	60	80	140	120	31	2.1	1.1	280	63	85	112	196	110	44	4	2	340	122	5	140	28
250	45	60	80	140	130	31	2.1	1.1	300	67	90	120	209	120	46	4	2	360	125	6	150	30
270	50	67	87	153	140	33	3	1.1	320	73	95	130	226	130	50	5	2	380	132	6	160	32
280	50	67	87	153	150	33	3	1.1	340	78	103	135	236	135	50	5	2.1	400	140	6	170	34
300	54	73	95	165	150	37	3	2	360	82	109	140	245	140	52	5	3	420	145	6	180 190	36
320 340	58 63	78 85	105 110	183 192	160 170	40 42	4	2	380 400	90	115 122	150 155				5		440 460	150 155	7.5	200	38 40
360	63	85	112	132	110	42	4	_	420	90	122	160	_	_		6		500	170	7.5	220	44
380	63	85	112				4		440	90	122	160				6		540	180	7.5	240	48
420	73	95	130	_	_	_	5		480	100	132	175	_		_	6		580	190	9.5	260	52
440	73	95	130				5		520	100	145	190			_	6		620	206	9.5	280	56
480	82	109	140	_	_	_	5	_	540	109	145	190	_	_	_	6	_	670	224	9.5	300	60
500	82	109	140	_	_	_	5	_	580	118	155	205	_	_	_	7.5	_	710	236	9.5	320	64
550	02	1.00	1-40					L	1500	1110	1100	200		\Box		1.5		, 10	250	ر.ر	J20	U-T

I-14

Appendix table-3: Boundary dimensions of single direction thrust bearings-3

Thrust bal	l bearings									511	
Spherica thrust b	al roller earings										
c ast b			Dia	ımeter serie	s 0			Dia	ameter serie	s 1	
Вс	Nominal bearing bore diameter	0 57	Dii	mension ser	ies	<u>⊕</u> .o	0 57	Di	mension ser	ies	0.
ore o	min ng b met	Nominal bearing outer diameter	70	90	10	Chamfer dimension	Nominal bearing outer diameter	71	91	11	Chamfer dimension
liam ode	al er	eter eter				nfer	eter eter				nsic
Bore diameter code			N	ominal heig	ht			l N	ominal heig	ht) 5 q
	d	D		T		r (min.)	D		T		r (min.)
68	340	380	18	24	30	1	420	36	48	64	2
72	360	400	18	24	30	1	440	36	48	65	2
76	380	420	18	24	30	1	460	36	48	65	2
80	400	440	18	24	30	1	480	36	48	65	2
84	420	460	18	24	30	1	500	36	48	65	2
88	440	480	18	24	30	1	540	45	60	80	2.1
92	460	500	18	24	30	1	560	45	60	80	2.1
96	480	520	18	24	30	1	580	45	60	80	2.1
/500	500	540	18	24	30	1	600	45	60	80	2.1
/530	530	580	23	30	38	1.1	640	50	67	85	3
/560	560	610	23	30	38	1.1	670	50	67	85	3
/600 /630	600 630	650 680	23 23	30 30	38 38	1.1	710 750	50 54	67 73	85 95	3
/670	670	730	27	36	45	1.1 1.5	800	58	78	105	4
/710	710	780	32	42	53	1.5	850	63	85	112	4
/750	750	820	32	42	53	1.5	900	67	90	120	4
/800	800	870	32	42	53	1.5	950	67	90	120	4
/850	850	920	32	42	53	1.5	1000	67	90	120	4
/900	900	980	36	48	63	2	1060	73	95	130	5
/950	950	1030	36	48	63	2	1120	78	103	135	5
/1000	1000	1090	41	54	70	2.1	1180	82	109	140	5
/1060	1060	1150	41	54	70	2.1	1250	85	115	150	5
/1120	1120	1220	45	60	80	2.1	1320	90	122	160	5
/1180	1180	1280	45	60	80	2.1	1400	100	132	175	6
/1250	1250	1360	50	67	85	3	1460	_	_	175	6
/1320	1320	1440	_	_	95	3	1540	_	_	175	6
/1400	1400	1520	_	_	95	3	1630	_	_	180	6
/1500	1500	1630	_	_	105	4	1750	_	_	195	6
/1600	1600	1730	_	_	105	4	1850	_	_	195	6
/1700	1700	1840	_	_	112	4	1970	_	_	212	7.5
/1800	1800	1950	_	_	120	4	2080	_	_	220	7.5
/1900	1900	2060	_	_	130	5	2180	_	_	220	7.5
/2000	2000	2160	_	_	130	5	2300	_	_	236	7.5 7.5
/2120 /2240	2120 2240	2300 2430		_	140 150	5 5	2430 2670		_	243 258	9.5
/2360	2360	2550			150	5	2700			265	9.5
/2500	2500	2700	_	_	160	5	2850	_	_	272	9.5

Note: 1. Dimension series 22, 23, and 24 are double row bearing series.
2. For the outer diameter of the shaft raceway washer and the inner diameter of the housing raceway washer, see the dimension table of thrust bearings.

Appendix table-3: Boundary dimensions of single direction thrust bearings-4

n		
	m	m

Thrust ba	ll bearings		-		512		522			
Spheric	al roller earings			292						
thrust t						l Diamete	r series 2			
œ	Nominal bearing bore diameter	0 7			Dimensi	on series			٥٥	۵۵
Bore diameter code	ing ing	Nominal bearing outer diameter	72	92	12	22	2		Chamfer dimension	Chamfer dimension
dian	ter bore	rinal ier ete	12	32	12	22	Central		nfer nsio	nfer nsio
nete				Nomina	l height		Nominal bore	her Nominal	D ,	, p
Ť	d	D		2	г		diameter d_2	height B	r (min.)	$r_{\scriptscriptstyle 1}$ (min.)
68	340	460	54	73	96	_	_	_	3	_
72	360	500	63	85	110	_	_	_	4	_
76	380	520	63	85	112	_	_	_	4	_
80	400	540	63	85	112	_	_	_	4	_
84	420	580	73	95	130	_	_	_	5	_
88	440	600	73	95	130	_	_	_	5	_
92	460	620	73	95	130	_	_	_	5	_
96	480	650	78	103	135	_	_	_	5	_
/500	500	670	78	103	135	_	_	_	5	_
/530	530	710	82	109	140	_	_	_	5	_
/560	560	750	85	115	150	–	–	_	5	-
/600	600	800	90	122	160	_	_	_	5	_
/630	630	850	100	132	175	_	_	_	6	_
/670	670	900	103	140	180	_	_	_	6	_
/710	710	950	109	145	190	_	_	_	6	_
/750	750	1000	112	150	195	_	_	_	6	_
/800	800	1060	118	155	205	_	_	_	7.5	_
/850	850	1120	122	160	212	_	_	_	7.5	_
/900	900	1180	125	170	220	_	_	_	7.5	_
/950	950	1250	136	180	236	_	_	_	7.5	_
/1000	1000	1320	145	190	250	_	_	_	9.5	_
/1060	1060	1400	155	206	265	_	_	_	9.5	_
/1120	1120	1460	_	206	_	_	_	_	9.5	_
/1180	1180	1520	_	206	_	_	_	_	9.5	_
/1250	1250	1610	_	216	_	_	_	_	9.5	_
/1320	1320	1700	_	228	_	_	_	_	9.5	_
/1400	1400	1790	_	234	_	_	_	_	12	_
/1500	1500	1920	_	252	_	_	_	_	12	_
/1600	1600	2040	_	264	_	_	_	_	15	_
/1700	1700	2160	_	276	_	_	_	_	15	_
/1800	1800	2280	_	288	_	_	_	_	15	_
/1900	1900	_	_	_	_	_	_	_	_	_
/2000	2000	_	_	_	_	_	_	_	_	_
/2120	2120	_	_	_	_	_	_	_	_	_
/2240	2240	_	_	_	_	_	_	_	_	_
/2360	2360	_	_	_	_	_	_	_	_	_
/2500	2500	_	_	_	_	_	_	_	_	_
/2500	2500			_						

I-16 I-17

Appendix table-3: Boundary dimensions of single direction thrust bearings-5

Appendix table Thrust ball bearings Spherical roller		3: Boun	dary dir	nension	s of sing	ge airec	tion thru	ist bear	ngs-5	Unit: mm
Thrus bear	t ball ings				513		523			
	al roller			293						
					Dia	meter seri	es 3			
Во	bea dia	<u>೧</u>			Dimensi	on series			ei-C	di-C
Bore diameter code	Nominal bearing bore diameter	Nominal bearing outer diameter	73	93	13	23	2	3	Chamfer dimension	Chamfer dimension
diame code	iter bore	iter na		Nomina	l height		Central	raceway	ifer	ıfer sion
eter					Ü		Was Nominal bore	Nominal		
	d	D		1	Γ		diameter d_2	height B	r (min.)	r_1 (min.)
68	340	540	90	122	160	_	_	_	5	_
72	360	560	90	122	160	_	_	_	5	_
76	380	600	100	132	175	_	_	_	6	_
80	400	620	100	132	175	_	_	_	6	_
84	420	650	103	140	180	_	_	_	6	_
88 92	440	680 710	109 112	145 150	190	_	_	_	6	_
96	460 480	730	112	150	195 195				6	
/500	500	750	112	150	195	_	_	_	6	_
/530	530	800	122	160	212	_	_	_	7.5	_
/560	560	850	132	175	224	_	_	_	7.5	_
/600	600	900	136	180	236	_	_	_	7.5	_
/630	630	950	145	190	250	_	_	_	9.5	_
/670	670	1000	150	200	258	_	_	_	9.5	_
/710	710	1060	160	212	272	_	_	_	9.5	_
/750	750	1120	165	224	290	_	_	_	9.5	_
/800	800	1180	170	230	300	_	_	_	9.5	_
/850	850	1250	180	243	315	_	_	_	12	_
/900	900	1320	190	250	335	_	_	_	12	_
/950	950	1400	200	272	355	_	_	_	12	_
/1000	1000	1460	_	276	_	_	_	_	12	_
/1060 /1120	1060 1120	1540 1630	_	288	_	_	_	_	15 15	_
/1120	1120	1710		306 318					15	
/1250	1250	1800	_	330	_	_	_	_	19	_
/1320	1320	1900	_	348	_	_	_	_	19	_
/1400	1400	2000	_	360	_	_	_	_	19	_
/1500	1500	2140	_	384	_	_	_	_	19	_
/1600	1600	2270	_	402	_	_	_	_	19	_
/1700	1700	_	_	_	_	_	_	_	_	_
/1800	1800	_	_	_	_	_	_	_	_	_
/1900	1900	_			_	_	_	_	_	_
/2000	2000	_	_	_	_	_	_	_	_	_
/2120	2120	_	_	_	_	_	_	_	_	_
/2240	2240	_	_	_	_	_	_	_	_	_
/2360	2360	_	_	_	_	_	_	_	_	_
/2500	2500									

Appendix table-3: Boundary dimensions of single direction thrust bearings-6

Thrus	ppendix table-3: B Thrust ball bearings spherical roller thrust bearings bearing bone diameter diameter bone bone diameter bone bone diameter bone bone bone bone bone bone bone bone				514		524						Unit: mm
Spheric	al roller			294	<u> </u>								
thrust b	pearings			294									
	be 7					meter seri	es 4					meter seri Dimension	
Bore	iam	dio g Z		ı	Dimensi	on series			흙도	활운	dio k K	series	활오
C di	iina g bo	Nominal bearing outer diameter	74	94	14	24	2	4	Chamfer dimension	Chamfer dimension	Nominal bearing outer diameter	95	Chamfer dimension
e diameter code	n a	<u>6</u> <u>6</u> <u>6</u>		Nomina	l height		Central was	raceway sher	ion er	g e	<u> </u>	Nominal height	ion er
ter		_					Nominal bore	Nominal			_	_	
	d	D		1	Г		diameter d_2	height B	r (min.)	$r_1(\text{min.})$	D	T	r (min.)
68	340	620	125	170	220	_	_	_	7.5	_	750	243	12
72	360	640	125	170	220	_	_	_	7.5	_	780	250	12
76	380	670	132	175	224	_	_	_	7.5	_	820	265	12
80	400	710	140	185	243	_	_	_	7.5	_	850	272	12
84	420	730	140	185	243	_	_	_	7.5	_	900	290	15
88	440	780	155	206	265	_	_	_	9.5	_	950	308	15
92	460	800	155	206	265	_	_	_	9.5	_	980	315	15
96	480	850	165	224	290	_	_	_	9.5	_	1000	315	15
/500	500	870	165	224	290	_	_	_	9.5	_	1060	335	15
/530	530	920	175	236	308	_	_	_	9.5	_	1090	335	15
/560	560	980	190	250	335	_	_	_	12	_	1150	355	15
/600	600	1030	195	258	335	_	_	_	12	_	1220	375	15
/630	630	1090	206	280	365	_	_	_	12	_	1280	388	15
/670	670	1150	218	290	375	_	_	_	15	_	1320	388	15
/710	710	1220	230	308	400	_	_	_	15	_	1400	412	15
/750	750	1280	236	315	412	_	_	_	15	_	_	_	_
/800	800	1360	250	335	438	_	_	_	15	_	_	_	_
/850	850	1440	_	354	_	_	_	_	15	_	_	_	_
/900	900	1520		372	_	_	_	_	15	_	_	_	_
/950	950	1600	_	390	_	_	_	_	15	_	_	_	_
/1000	1000	1670	_	402	_	_	_	_	15	_	_	_	_
/1060	1060	1770	_	426	_	_	_	_	15	_	_	_	_
/1120	1120	1860	_	444	_	_	_	_	15	_	_	_	_
/1180	1180	1950	_	462	_	_	_	_	19	_	_	_	_
/1250	1250	2050	_	480	_	_	_	_	19	_	_	_	_
/1320	1320	2160	_	505	_	_	_	_	19	_	_	_	_
/1400	1400	2280	_	530	_	_	_	_	19	_	_	_	_
/1500	1500	_	_	_	_	_	_	_	_	_	_	_	_
/1600	1600	_	_	_	_	_	_	_	_	_	_	_	_
/1700	1700	_	_	_	_	_	_	_	_	_	_	_	_
/1800	1800	_	_	_	_	_	_	_	_	_	_	_	_
/1900	1900	_	_	_	_	_	_	_	_	_	_	_	_
/2000	2000	_	_	_	_	_	_	_	_	_	_	_	_
/2120	2120	_	_	_	_	_	_	_	_	_	_	_	_
/2240	2240	_	_	_	_	_	_	_	_	_	_	_	_
/2360	2360	_	_	_	_		_		_	_	_	_	_
/2500	2500		_ _ _								_		

Note: 1. Dimension series 22, 23, and 24 are double row bearing series.
2. For the outer diameter of the shaft raceway washer and the inner diameter of the housing raceway washer, see the dimension table of thrust bearings.

Appendix table-4: Comparison table of SI and CGS series gravity units-1

Unit system Quantity	Length L	Mass M	Time T	Acceleration	Force	Stress	Pressure	Energy
SI	m	kg	S	m/s²	N	Pa	Pa	J
CGS system	cm	g	S	Gal	dyn	dyn/cm²	dyn/cm²	erg
Gravitation system	m	kgf ⋅ s²/m	s	m/s²	kgf	kgf/m²	kgf/m²	kgf ⋅ m

Appendix table-5: SI-customary unit conversion table-1

Quantity	Unit designation	Code	Conversion rate to SI	SI unit designation	Code
	Degree	0	π/180		
Angle	Minute	,	π/10 800	Radian	rad
	Second	" (sec)	π/648 000		
	Meter	m	1		
Length	Micron	μ	10-6	Meter	m
. 0	Angstrom	Å	10-10		
	Square meter	m²	1		
Area	Are	a	102	Square meter	m²
	Hectare	ha	104		
	Cubic meter	m³	1		
Volume	Liter	ℓ.L	10-3	Cubic meter	m³
	Kilogram	kg	1		
Mass	Ton		103	Kilogram	kσ
iviass	Kilogram force / square second per meter	kgf · s²/m	9.806 65	Kilograffi	kg
	Second		1		
	Minute	S:-	60		
Time		min		Second	s
	Hour	h	3 600		
	Day	d	86 400		
Speed	Meters per second	m/s	1	Meters per second	m/s
	Knot	kn	1 852/3 600		
requency and vibration	·	s ⁻¹ (pps)	1	Hertz	Hz
evolutions (rotational speed)	Revolutions per minute (rpm)	rpm(r/min)	1/60	Per second	S ⁻¹
ngular velocity	'	rad/s	1	Radians per second	rad/s
Acceleration	Meters per square second	m/s²	1	Radians per second	m/s ²
	G	G	9.806 65		, -
	Kilogram force	kgf	9.806 65		
Force	Ton force	tf	9 806.65	Newton	N
	Dyne	dyn	10 ⁻⁵		
orce moment	Kilogram force / meter	kgf · m	9.806 65	Newton meter	N⋅m
nertia moment	Kilogram force / meter / square second	$kgf \cdot m \cdot s^2$	9.806 65	Kilogram / square meter	kg · m²
Stress	Kilogram force per square meter	kgf/m²	9.806 65	Pascal or newton per square meter	Pa or N/m
	Kilogram force per square meter	kgf/m²	9.806 65		
	Meter water column	mH₂O	9 806.65		
D	Meter of mercury	mHg	101 325/0.76	Pascal	D-
Pressure	Torr	Torr	101 325/760	Pascal	Pa
	Atmosphere	atm	101 325		
	Bar	bar	10 ⁵		
	Erg	erg	10-7		
	IT calorie	calıт	4.186 8		
Energy	Kilogram force / meter	kgf ⋅ m	9.806 65	Joule	J
	Kilowatt hour	kW · h	3.600×10 ⁶		_
	Metric horsepower per hour	PS · h	2.647 79×10 ⁶		
	Watt	W	1		
Power rate	Metric horsepower	PS	735.5	Watt	w
and power	Kilogram force / meter per second	kgf⋅m/s	9.806 65	vvacc	V V
	Miograni force / meter per second	Kgi · III/S	II 2.000 02	1	I

Appendix table-4: Comparison table of SI and CGS series gravity units-2

Unit system Quantity	Power rate	Temperature	Viscosity	Dynamic viscosity	Flux	Flux density	Magnetic field strength
SI	W	K	Pa⋅s	m²/s	Wb	Т	A/m
CGS system	erg/s	°C	Р	St	Mx	Gs	Oe
Gravitation system	kgf ⋅ m/s	°C	kgf ⋅ s/m²	m²/s	_	_	_

Appendix table-5: SI-customary unit conversion table-2

Quantity	Unit designation	Code	Conversion rate to SI	SI unit designation	Code
	Poise	Р	10 ⁻¹		
Viscosity	Centipoise	cР	10 ⁻³	Pascal second	Pa⋅s
	Kilogram force / square second per meter	kgf · s/m²	9.806 65		
Dynamic viscosity	Stoke	St	10-4	Square meter per second	m²/s
Dynamic viscosity	Centistoke	cSt	10 ⁻⁶	Square meter per second	111/5
Temperature	Degree	°C	+273.15	Kelvin	K
Radioactivity	Curie	Ci	3.7×10 ¹⁰	Becquerel	Bq
Dosage	Roentgen	R	2.58×10 ⁻⁴	Coulombs per kilogram	C/kg
Absorption dosage	Rad	rad	10 ⁻²	Gray	Gy
Dosage equivalent	Rem	rem	10 ⁻²	Sievert	Sv
Dosage equivalent	Maxwell	Mx	10-8	Weber	Wb
Flux density	Gamma	γ	10 ⁻⁹	Tesla	т
r lux derisity	Gauss	Gs	10 ⁻⁴	resia	'
Magnetic field strength	Oersted	Oe	$10^{3}/4\pi$	Amperes per meter	A/m
Magnetic field strength	Coulomb	С	1	Coulomb	С
Potential difference	Volt	V	1	Volt	V
Electric resistance	Ohm	Ω	1	Ohm	Ω
Curren	Ampere	Α	1	Ampere	Α

Appendix table-6: Tenth power multiples of SI unit

	• •					
Ī	Multiples	Pre	efix	Multiples	Pre	efix
	of unit	Designation	Code	of unit	Designation	Code
	10 ¹⁸	Exa	Е	10-1	Deci	d
	10 ¹⁵	Peta	Р	10-2	Centi	С
	10 ¹²	Tera	Т	10 ⁻³	Milli	m
	10°	Giga	G	10-6	Micro	μ
	10 ⁶	Mega	М	10-9	Nano	n
	10 ³	Kilo	k	10-12	Pico	р
	10 ²	Hecto	h	10 ⁻¹⁵	Femto	f
	10	Deca	da	10 ⁻¹⁸	Atto	а

Appendix table-7: Dimensional tolerance for shafts

Diameter division a13 c12 d6 e6 e13 f5 f6 g5 g6																			
			12		10		_	_	_	_	12				_		_		
	sion m	a:	13	c:	12	a	ь	е	6	e	13	T:)	T	Ь	g!	5	g6)
	Incl.	Upper	Lower	Unner	Lower	Unner	Lower	Unner	Lower	Unner	Lower	Unner	Lower	Unner	Lower	Unner	Lower	Upper L	ower
- Over	31)				- 160						- 154							- 2 -	
3	6		- 450		- 190														
6	10	- 280	- 500		- 230						- 245		-19		- 22				
10	18	- 290	- 560	- 95	- 275	- 50	- 61	- 32	- 43	- 32	- 302	-16	-24	- 16	- 27	- 6	-14	- 6 -	- 17
18	30		- 630		- 320	- 65	- 78	- 40	- 53	- 40	- 370	-20	-29	- 20	- 33	- 7	-16	- 7 -	- 20
30	40		- 700		- 370	_ 80	- 96	- 50	- 66	- 50	- 440	-25	-36	_ 25	- 41	_ 9	-20	- 9 -	- 25
40	50		- 710		- 380														
50	65		- 800		- 440	-100	-119	- 60	- 79	- 60	- 520	-30	-43	- 30	- 49	-10	-23	-10 -	- 29
<u>65</u>	<u>80</u>				- 450 - 520					-		_							
100	120		- 950		- 530	-120	-142	- 72	- 94	- 72	- 612	-36	-51	- 36	- 58	-12	-27	-12 -	- 34
120	140		-1 090		- 600														
140	160				- 610	-145	-170	- 85	-110	- 85	- 715	-43	-61	- 43	- 68	-14	-32	-14 -	- 39
160	180	- 580	-1 210	-230	- 630														
180	200		-1 380																
200	225		-1 460	-260		-170	-199	-100	-129	-100	- 820	-50	-70	- 50	- 79	-15	-35	-15 -	- 44
225	250		-1 540	-280															
250	280	- 920 -1 050	-1 730		- 820	-190	-222	-110	-142	-110	- 920	-56	-79	- 56	- 88	-17	-40	-17 -	- 49
280 315	355		-1 860 -2 090		- 850 - 930							_				_			
355	400				- 970	-210	-246	-125	-161	-125	-1 015	-62	-87	- 62	- 98	-18	-43	-18 -	- 54
400					-1 070														
450	500		-2 620		-1 110	-230	-270	-135	-175	-135	-1 105	-68	-95	- 68	-108	-20	-47	-20 -	- 60
500	560	_	_		_	260	-304	1/10	100	1/10	-1 245	_	_	76	-120	_		-22 -	66
560	630	_				-260	-304	-145	-109	-145	-1 245	_		- 76	-120	_		-22 -	- 00
630	710	_	_	_	_	-290	-340	-160	-210	-160	-1 410	_	_	- 80	-130	_	_	-24 -	- 74
710	800						0				10								
800	900 1 000	-	-	-	-	-320	-376	-170	-226	-170	-1 570	-	-	- 86	-142	-	-	-26 -	- 82
1 000																			
1 120		-	-	-	-	-350	-416	-195	-261	-195	-1 845	-	-	- 98	-164	-	-	-28 -	- 94
1 250																			
1 400		-	-	-	-	-390	-468	-220	-298	-220	-2 170	-	-	-110	-188	-	-	-30 -	-108
1 600							_	240	-332	240	-2 540	_	_	120	-212			-32 -	124
1800							-	-240	-332	-240	-2 340			-120	-212			-32 -	-124
2 000		_	_	_	_	_	_	-260	-370	-260	-3 060	_	_	-130	-240	_	_	-34 -	-144
2 240																			
2 500 2 800		-	-	-	-	-	-	-290	-425	-290	-3 590	-	-	-145	-280	-	-	-38 -	-173
			in mat														-		

1) Basic tolerance **a** is not used for the basic size tolerance with respect to the size of 1 mm or below shown in drawings.

_																				
		neter	<u> </u>			-														_
		sion m	j	5	js	5	j	b	js	ь	j	/	k	4	k	5	k	ь	m	15
	Over	Incl.	Unner	Lower	Unner	Lower	Unner	Lower	Upper	Lower	Unner	Lower								
-	-	3	+2	- 2	+ 2	- 2	+ 4	- 2	+ 3	- 3	+ 6	- 4	+ 3	0	+ 4	0	+ 6	0	+ 6	+ 2
-	3	6	+3	- 2	+ 2.5		+ 6	- 2	+ 4	- 4	+ 8	- 4	+ 5	+1	+ 6	+1		+1		+ 4
	6	10	+4	- 2	+ 3	- 3	+ 7	- 2		- 4.5	+10	- 5	+ 5	+1	+ 7	+1			+12	+ 6
	10	18	+5	- 3	+ 4	- 4	+ 8	- 3		- 5.5	+12	- 6	+ 6	+1	+ 9	+1	+ 12		+15	+ 7
-	18 30	30 40	+5	- 4	+ 4.5		+ 9	- 4	+ 6.5		+13	- 8	+ 8	+2	+11	+2		+2	+17	+ 8
	40	50	+6	- 5	+ 5.5	- 5.5	+11	- 5	+ 8	- 8	+15	-10	+ 9	+2	+13	+2	+ 18	+2	+20	+ 9
-	50	65	+6	7	+ 6.5		112	- 7	+ 9.5	0.5	+18	-12	+10	+2	+15	+2	1 21	١.	124	+11
	65	80	+6	- 7	+ 6.5	- 6.5	+12	- /	+ 9.5	- 9.5	+18	-12	+10	+2	+15	+2	+ 21	+2	+24	+11
	80	100	+6	- 9	+ 7.5	- 7.5	+13	- 9	+11	-11	+20	-15	+13	+3	+18	+3	+ 25	+3	+28	+13
-	100 120	120 140																		
	140	160	+7	-11	+ 9	- 9	+14	-11	+12.5	-12.5	+22	-18	+15	+3	+21	+3	+ 28	+3	+33	+15
	160	180	1			_														
	180	200																		
	200	225	+7	-13	+10	-10	+16	-13	+14.5	-14.5	+25	-21	+18	+4	+24	+4	+ 33	+4	+37	+17
-	225 250	250 280																		
	280	315	+7	-16	+11.5	-11.5	+16	-16	+16	-16	+26	-26	+20	+4	+27	+4	+ 36	+4	+43	+20
	315	355	+7	-18	+12.5	12 5	+18	-18	+18	-18	+29	-28	+22	+4	+29	+4	+ 40		±46	+21
	355	400	Τ,	-10	+12.5	-12.5	+10	-10	⊤10	-10	729	-20	T 22	T-4	+29	T-4	T 40	T-4	+40	TZI
	400 450	450 500	+7	-20	+13.5	-13.5	+20	-20	+20	-20	+31	-32	+25	+5	+32	+5	+ 45	+5	+50	+23
-	500	560																		
	560	630	-	-	+16	-16	-	-	+22	-22	-	-	-	-	-	-	+ 44	0	-	-
	630	710	_	_	+18	-18	_	_	+25	-25	_	_	_	_	_	_	+ 50	0	_	_
_	710	800			1 10	-10	_		1 23	-23	_						1 30	U	_	
	800 900	900 1 000	-	-	+20	-20	-	-	+28	-28	-	-	-	-	-	-	+ 56	0	-	-
-	1 000	1 120																		
	1 120	1 250	-	-	+23.5	-23.5	-	-	+33	-33	-	-	-	-	-	-	+ 66	0	-	-
	1 250	1 400	_	_	+27.5	-27 5	_		+39	-39	_	_	_	_	_	_	+ 78	0	_	_
	1 400	1 600	_		1 21.3	-21.3			, 39	39							. , ,	U		
	1 600 1 800	1 800 2 000	-	-	+32.5	-32.5	-	-	+46	-46	-	-	-	-	-	-	+ 92	0	-	-
	2 000	2 240																		
	2 240	2 500	-	-	+39	-39	-	-	+55	-55	-	-	-	-	-	-	+110	0	-	-
	2 500	2 800	_		+48	-48	_		+67.5	-67 5	_	_	_		_		+135	0	_	_
1	2 800	3 150			1 40				707.5	07.5							133	0		

	Unit: μm
--	----------

h	4	ı	h5		h6		h7		h8		h9	ı	h10		h1:	1		h13	3		js4	div	neter ision nm
Upper	Lower	Upper	Lower	Uppe	er Lower	Uppe	r Lower	Uppe	r Lower	Uppe	r Lower	Uppe	r Lower	Uppe	er	Lower	Uppe	er	Lower	Upper	Lower	Over	Incl.
0	- 3	0	- 4	0	- 6	0	- 10	0	- 14	0	- 25	0	- 40	0	_	60	0	_	140	+ 1.		-	3
0	- 4	0	- 5	0	- 8	0	- 12	0	- 18	0	- 30	0	- 48	0	-	75	0	-	180	+ 2	- 2	3	6
0	- 4	0	- 6	0	- 9	0	- 15	0	- 22	0	- 36	0	- 58	0	-	90	0	-	220	+ 2	- 2	6	10
0	- 5 - 6	0	- 8 - 9	0	- 11 - 13	0	- 18 - 21	0	- 27 - 33	0	- 43 - 52	0	- 70	0	_	110 130	0	-	270	+ 2.		10	18
	- 6	U	- 9	U	- 13	0	_ 21	0	- 33	0	- 52	0	- 84	0	_	130	0	_	330	+ 3	- 3	18 30	30 40
0	- 7	0	-11	0	- 16	0	- 25	0	- 39	0	- 62	0	-100	0	-	160	0	-	390	+ 3.	5 - 3.5	40	50
0	- 8	0	-13	0	- 19	0	- 30	0	- 46	0	- 74	0	-120	0	_	190	0	_	460	+ 4	- 4	50	65
U	- 0	U	-13	U	- 19	U	- 30	U	- 46	U	- 74	U	-120	U		190	U		460	+ 4	- 4	65	80
0	-10	0	-15	0	- 22	0	- 35	0	- 54	0	- 87	0	-140	0	_	220	0	_	540	+ 5	- 5	80	100
	-10	L.		_		Ľ.		Ŭ		_		_				220	_		340	, ,		100	120
_								_				_		_			_			٠. ـ	_	120	140
0	-12	0	-18	0	- 25	0	- 40	0	- 63	0	-100	0	-160	0	-	250	0	-	630	+ 6	- 6	140 160	160 180
						-																180	200
0	-14	0	-20	0	- 29	0	- 46	0	- 72	0	-115	0	-185	0	_	290	0	_	720	+ 7	- 7	200	225
U	-14	"	-20		- 23	"	- 40	"	- 12	0	-113	۰	-105			290			720	' '	- '	225	250
_		-		_		_		_		_		_		_			_					250	280
0	-16	0	-23	0	- 32	0	- 52	0	- 81	0	-130	0	-210	0	-	320	0	-	810	+ 8	- 8	280	315
0	-18	0	-25	0	- 36	0	- 57	0	- 89	0	-140	0	-230	0	_	360	0	_	890	+ 9	- 9	315	355
U	-10	U	-25	٥	- 30	U	- 57	U	- 69	٥	-140	U	-230	U		360	U		890	T 9	- 9	355	400
0	-20	0	-27	n	- 40	n	- 63	0	- 97	0	-155	0	-250	0	_	400	0	_	970	+10	-10	400	450
		<u> </u>		_		Ľ.		<u> </u>		_		_				400	_		2,0	1 10		450	500
0	-22	0	-32	0	- 44	0	- 70	0	-110	0	-175	0	-280	0	_	440	0	-1	100	+11	-11	500	560
		-		_		-		-		_		_		_			_			_		560 630	630 710
0	-25	0	-36	0	- 50	0	- 80	0	-125	0	-200	0	-320	0	-	500	0	-1	250	+12.	5 -12.5	710	800
																		_				800	900
0	-28	0	-40	0	- 56	0	- 90	0	-140	0	-230	0	-360	0	-	560	0	-1	400	+14	-14	900	1 000
0	-33	0	-47	0	- 66	0	-105	0	-165	0	-260	0	-420	0	_	660	0	-1	650	116	5 -16.5	1 000	1 120
U	-33	U	-47	٥	- 66	U	-105	U	-105	٥	-260	U	-420	U		000	U	-1	. 650	+16	5 -10.5	1 120	1 250
0	-39	0	-55	0	- 78	0	-125	0	-195	0	-310	0	-500	0	_	780	0	_1	950	+19	5 -19.5	1 250	1 400
		<u> </u>		_		Ľ.		L.		_		_				700	_		. ,,,,	1 1 2		1 400	1 600
0	-46	0	-65	0	- 92	0	-150	0	-230	0	-370	0	-600	0	-	920	0	-2	300	+23	-23	1 600	1 800
																						1 800	2 000
0	-55	0	-78	0	-110	0	-175	0	-280	0	-440	0	-700	0	-1	100	0	-2	800	+27	5 -27.5	2 240	2 500
																		_				2 500	2 800
0	-68	0	-96	0	-135	0	-210	0	-330	0	-540	0	-860	0	-1	. 350	0	-3	300	+34	-34		3 150
				_										_				_				, _ 000	2 200

Unit: µn

																				Ur	nit: μι
m	16	n	5	n	6	р	5	р	6		r	6		r	7	E	Basic to	lerance	9	Diam divis mi	sion
	Lower					Upper										IT2	IT3	IT5	IT7	Over	Incl.
+ 8	+ 2	+ 8		+ 10				+ 12							+ 10	1.2	2	4	10		
+ 12 + 15	+ 4 + 6	+13 +16	+ 8 +10	+ 16 + 19		+17 +21	+12 +15	+ 20 + 24	+ 1		- 23 - 28				+ 15 + 19	1.5 1.5	2.5 2.5	5 6	12 15	3 6	10
+ 18	+ 7	+20	+12		+ 10	+26		+ 29							+ 23	2	3	8	18	10	18
+ 21	+ 8	+24	+15		+ 15										+ 28	2.5	4	9	21	18	30
+ 25	+ 0	+28	+17	+ 33	+ 17	+37	+26	+ 42	+ 2	5 4	- 50	+	3/1	+ 50	+ 34	2.5	4	11	25	30	40
1 23	, ,	1 20	11/	1 33	1 17	131	1 20	1 42	1 2							2.5		-11		40	50
+ 30	+11	+33	+20	+ 39	+ 20	+45	+32	+ 51	+ 3		60				+ 41 + 43	3	5	13	30	50 65	65 80
												+			+ 51					80	100
+ 35	+13	+38	+23	+ 45	+ 23	+52	+37	+ 59	+ 3	7 -		+			+ 54	4	6	15	35	100	120
											- 88	+	63	+103	+ 63					120	140
+ 40	+15	+45	+27	+ 52	+ 27	+61	+43	+ 68	+ 4					+105		5	8	18	40	140	160
														$+108 \\ +123$	+ 68					160 180	180 200
+ 46	+17	+51	+31	+ 60	+ 31	+70	+50	+ 79	+ 50							7	10	20	46	200	225
1 40	1 17	' 31	1 31	00	, 51	' / 0	1 30	' ' '	, 5,					+130		,	10	20	40	225	250
+ 52	±20	+57	+34	+ 66	 21	+79	+56	+ 88		<u>.</u> -	126	+	94	+146	+ 94	8	12	23	52	250	280
T 32	+20	+31	⊤34	+ 00	⊤ 34	+19	+30	⊤ 00	T 3		130	+				<u> </u>	12	23	52	280	315
+ 57	+21	+62	+37	+ 73	+ 37	+87	+62	+ 98	+ 63						+108 +114	9	13	25	57	315 355	355 400
										-					+114					400	450
+ 63	+23	+67	+40	+ 80	+ 40	+95	+68	+108	+ 6						+132	10	15	27	63	450	500
+ 70	+26	_		+ 88	+ 11	_		+122	+ 7	2 -	194	+1	50	+220	+150	11	16	30	70	500	560
1 70	1 20	_		1 00		_		1 122							+155	11	10	30	- 10	560	630
+ 80	+30	-	-	+100	+ 50	-	-	+138	+ 88						+175 +185	13	18	35	80	630 710	710 800
											-266				+210					800	900
+ 90	+34	-	-	+112	+ 56	-	-	+156	+10		276				+220	15	21	40	90	900	
+106	+40	_	_	+132	+ 66	_	_	+186	+12						+250	18	24	46	105	1 000	
1100	1 40	_		1132	- 00	_		1 100	1 12						+260	10			103	1 120	
+126	+48	-	-	+156	+ 78	-	-	+218	+140		⊦378 ⊦408				+300 +330	21	29	54	125	1 250 1 400	
											-408 -462				+370					1 600	
+150	+58	-	-	+184	+ 92	-	-	+262	+17						+400	25	35	65	150	1 800	
+178	+68	_	_	+220	+110	_		+305	+10						+440	30	41	77	175	2 000	
1170	1 00			1 220	110	_		1 303	1 19.	-	570				+460	50	71	• • •	1/3	2 240	
+211	+76	-	-	+270	+135	-	-	+375	+240		-685 -715				+550 +580	36	50	93	210	2 500 2 800	
											115	_⊤5	øυ	7.190	⊤560					2 000	2 12(

Appendix Table

Appendix table-8: Dimensional tolerance for housing bore

				_																
Diam divis m	sion m		7		E1			E1			E1			- 6		7		8	G	-
Over	Incl.	Upper	Lower	Up	per	Lower	Upp	per	Lower	Up				Lower	Upper	Lower	Upper	Lower	Upper	Lower
-	3	+ 24				+ 14			+ 14		114	+ 14			+ 16		+ 20	+ 6		+ 2
3	6	+ 32	+ 20	+	68	+ 20	+	95	+ 20	+	140	+ 20	+ 18	+ 10	+ 22	+ 10	+ 28	+ 10	+ 12	+ 4
6	10	+ 40	+ 25	+	83	+ 25	+ :	115	+ 25	+	175	+ 25	+ 22	+ 13	+ 28	+ 13	+ 35	+ 13	+ 14	+ 5
10	18	+ 50	+ 32	+	102	+ 32	+	142	+ 32	+	212	+ 32	+ 27	+ 16	+ 34	+ 16	+ 43	+ 16	+ 17	+ 6
18	30	+ 61	+ 40	+	124	+ 40	+	170	+ 40	+		+ 40		+ 20	+ 41	+ 20	+ 53	+ 20	+ 20	+ 7
30	40																			
40	50	+ 75	+ 50	+	150	+ 50	+ .	210	+ 50	+	300	+ 50	+ 41	+ 25	+ 50	+ 25	+ 64	+ 25	+ 25	+ 9
50	65				400						250									
65	80	+ 90	+ 60	+	180	+ 60	+ .	250	+ 60	+	360	+ 60	+ 49	+ 30	+ 60	+ 30	+ 76	+ 30	+ 29	+10
80	100	1107	. 72		212	. 72		202	. 72		422	. 72		+ 36	. 71	1 26	. 00	1 26	. 24	112
100	120	+107	T /2	-	212	T /2	Τ.	232	T /2	_	422	T /2	T 30	T 30	T /1	⊤ 30	T 30	T 30	T 34	T12
120	140																			
140	160	+125	+ 85	+	245	+ 85	+ :	335	+ 85	+	485	+ 85	+ 68	+ 43	+ 83	+ 43	+106	+ 43	+ 39	+14
160	180																			
180	200																			
200	225	+146	+100	+	285	+100	+ :	390	+100	+	560	+100	+ 79	+ 50	+ 96	+ 50	+122	+ 50	+ 44	+15
225	250																			
250	280	⊥162	⊥110	_	220	±110	_	42N	⊥110	_	620	⊥110	_ 00	+ 56	⊥100	_ E6	⊥127	_ E6	40	⊥17
280	315	1102	1110	ļ'.	320	1110	' '	+30	1110	ļ'.	030	1110	1 00	1 30	1 100	1 30	1137	1 30	1 49	1 17
315	355	+192	+125	1	355	+125	L .	185	+125	+	605	+125	+ 08	+ 62	+110	+ 62	+151	+ 62	+ 54	±18
355	400	+102	T125	т	333	T125	т .	403	T125	_	093	T125	T 90	+ 02	T119	T 02	+151	T 02	T 34	⊤10
400	450	⊥10Ω	+135	1	385	±135	L .	525	±135	+	765	+135	+108	+ 68	±131	+ 68	+165	+ 68	+ 60	+20
450	500	1190	1 133	<u>'</u>	303	1133	' '		1 133		703	1 133	1 100	1 00	1 131	1 00	1 103	1 00	1 00	1 20
500	560	+215	+145	1	125	+145	4	585	+145	+	8/15	+145	+120	+ 76	+146	+ 76	+186	+ 76	+ 66	+22
560	630	1213	1143	<u> </u>	423	1 143	' '	303	1 143	<u>'</u>	043	1 143	1120	1 70	1 140	1 70	1 100	1 70	1 00	1 22
630	710	+240	+160	+	480	+160	+ 1	660	+160	+	960	+160	+130	+ 80	+160	+ 80	+205	+ 80	+ 74	+24
710	800	1 2-40	1 100	'	700	1 100	' '		1 100		500	1 100	1 130	, 00	1 100	, 00	1 203	, 00	' '-	127
800	900	+260	+170	+	530	+170	+	730	+170	+1	1 070	+170	+142	+ 86	+176	+ 86	+226	+ 86	+ 82	+26
900	1 000	- 200	. 170	Ι.	-550	1 270	Ľ.	. 50	1 270	1.		1 270	, 172	, 00	, 1,0	, 00	1220	, 00	, 02	1 20
1 000	1 120	+300	+195	+	615	+195	+ :	855	+195	+1	1 245	+195	+164	+ 98	+203	+ 98	+263	+ 98	+ 94	+28
1 120	1 250		. 200	1	515		· '	-55			5		. 234	. 50	. 200				, ,,,,	
1 250	1 400	+345	+220	+	720	+220	+1	000	+220	+1	1 470	+220	+188	+110	+235	+110	+305	+110	+108	+30
1 400	1 600			Ľ.						-										
1 600	1 800	+390	+240	+	840	+240	+1	160	+240	+1	L 740	+240	+212	+120	+270	+120	+350	+120	+124	+32
1 800	2 000			-						-										
2 000	2 240	+435	+260	+	960	+260	+1	360	+260	+2	2 010	+260	+240	+130	+305	+130	+410	+130	+144	+34
2 240	2 500						_			H										
2 500	2 800	+500	+290	+1	150	+290	+1	640	+290	+2	2 390	+290	+280	+145	+355	+145	+475	+145	+173	+38
2 800	3 150	,,,,,																		

divi	neter sion m	J	6	Js	6	J	7		Js	s7		K	(5	K	6	к	7	N	16
Over	Incl.	Unner	Lower	Unner	Lower	Unner	Lower	Ui	nner	Lowe	r	Unner	Lower	Unner	Lower	Unner	Lower	Unner	Lower
-	3	+ 2	-4		- 3	+ 4	- 6	+	5	- 5		0	- 4	0	- 6	0	- 10	- 2	- 8
3	6	+ 5	-3	+ 4	- 4	+ 6	- 6	÷	6	- 6	\neg	0	- 5	+2	- 6	+ 3	- 9	- 1	- 9
6	10	+ 5	-4		- 4.5	+ 8	- 7	+	7.5			+1	- 5	+2	- 7	+ 5	- 10	- 3	- 12
10	18	+ 6	-5		- 5.5	+10	- 8	+	9	- 9		+2	- 6	+2	- 9	+ 6	- 12	- 4	- 15
18	30	+ 8	-5	+ 6.5	- 6.5	+12	- 9	+	10.5	- 10.	.5	+1	- 8	+2	- 11	+ 6	- 15	- 4	- 17
30	40	+10	-6	+ 8	- 8	+14	-11	+	12.5	- 12	5	+2	- 9	+3	- 13	+ 7	- 18	- 4	- 20
<u>40</u> 50	50 65			_							-								
65	80	+13	-6	+ 9.5	- 9.5	+18	-12	+	15	- 15		+3	-10	+4	- 15	+ 9	- 21	- 5	- 24
80	100								_		\dashv								
100	120	+16	-6	+11	-11	+22	-13	+	17.5	- 17.	.5	+2	-13	+4	- 18	+10	- 25	- 6	- 28
120	140										\neg								
140	160	+18	-7	+12.5	-12.5	+26	-14	+	20	- 20	j	+3	-15	+4	- 21	+12	- 28	- 8	- 33
160	180										\perp								
180	200																		
200	225	+22	-7	+14.5	-14.5	+30	-16	+	23	- 23		+2	-18	+5	- 24	+13	- 33	- 8	- 37
225 250	250 280							\vdash			\dashv								
280	315	+25	-7	+16	-16	+36	-16	+	26	- 26		+3	-20	+5	- 27	+16	- 36	- 9	- 41
315	355										\dashv								
355	400	+29	-7	+18	-18	+39	-18	+	28.5	- 28.	5	+3	-22	+7	- 29	+17	- 40	-10	- 46
400	450	1 22		1.20	20	. 42			24.5		_		25			140	45	40	
450	500	+33	-7	+20	-20	+43	-20	+	31.5	- 31.	.5	+2	-25	+8	- 32	+18	- 45	-10	- 50
500	560	_	_	+22	-22	_	_	+	35	- 35		_	_	0	- 44	0	- 70	-26	- 70
560	630			1 22				Ľ	33		_			·		Ů		20	,,
630	710	_	_	+25	-25	_	_	+	40	- 40	-	_	_	0	- 50	0	- 80	-30	- 80
710 800	800 900										\dashv								
	1 000	-	-	+28	-28	-	-	+	45	- 45		-	-	0	- 56	0	- 90	-34	- 90
	1 120						-	Ι.			_			_		_			400
	1 250	-	-	+33	-33	-	-	+	52.5	- 52.	5	-	-	0	- 66	0	-105	-40	-106
	1 400		_	+39	-39	_		+	62.5	- 62.	5	_	_	0	- 78	0	-125	-48	-126
	1 600			1 39	-33	_		F	02.5	- 02.				U	- 70	0	-123	-+0	-120
	1 800	_	_	+46	-46	_	_	+	75	- 75		_	_	0	- 92	0	-150	-58	-150
	2 000			_							_					_			
	2 500	-	-	+55	-55	-	-	+	87.5	- 87.	.5	-	-	0	-110	0	-175	-68	-178
	2 800										\dashv								
	3 150	-	-	+67.5	-67.5	-	-	+1	105	-105		-	-	0	-135	0	-210	-76	-211

			Unit: μm	
1	1		D:	

	G	7	н	6	н	7	H	18	F	19	H:	10	H1	1	ŀ	H13	divi	neter sion m
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Uppe	r Lower	Over	Incl.
į	+ 12	+ 2	+ 6	0	+ 10	0	+ 14	0	+ 25	0	+ 40	0	+ 60	0	+ 14		-	3
	+ 16	+ 4	+ 8	0	+ 12	0	+ 18	0	+ 30	0	+ 48	0	+ 75	0	+ 18		3	6
	+ 20	+ 5	+ 9	0	+ 15	0	+ 22	0	+ 36	0	+ 58	0	+ 90	0	+ 22		6	10
	+ 24	+ 6	+ 11	0	+ 18	0	+ 27	0	+ 43	0	+ 70	0	+ 110	0	+ 27		10	18
	+ 28	+ 7	+ 13	0	+ 21	0	+ 33	0	+ 52	0	+ 84	0	+ 130	0	+ 33	0 0	18	30
	+ 34	+ 9	+ 16	0	+ 25	0	+ 39	0	+ 62	0	+100	0	+ 160	0	+ 39	0 0	30 40	40 50
																	50	65
	+ 40	+10	+ 19	0	+ 30	0	+ 46	0	+ 74	0	+120	0	+ 190	0	+ 46	0 0	65	80
i	+ 47	1 12	+ 22	0	+ 35	0	+ 54	0	+ 87	0	+140	0	+ 220	0	+ 54	0 0	80	100
	+ 47	+12	+ 22	U	+ 35	U	+ 54	U	+ 87	U	+140	U	+ 220	U	+ 54	0 0	100	120
																	120	140
	+ 54	+14	+ 25	0	+ 40	0	+ 63	0	+100	0	+160	0	+ 250	0	+ 63	0 0	140	160
																	160	180
																	180	200
	+ 61	+15	+ 29	0	+ 46	0	+ 72	0	+115	0	+185	0	+ 290	0	+ 72	0 0	200	225
																	225	250
	+ 69	+17	+ 32	0	+ 52	0	+ 81	0	+130	0	+210	0	+ 320	0	+ 81	0 0	250	280
																	280	315 355
	+ 75	+18	+ 36	0	+ 57	0	+ 89	0	+140	0	+230	0	+ 360	0	+ 89	0 0	315 355	400
																	400	450
	+ 83	+20	+ 40	0	+ 63	0	+ 97	0	+155	0	+250	0	+ 400	0	+ 97	0 0	450	500
														-			500	560
	+ 92	+22	+ 44	0	+ 70	0	+110	0	+175	0	+280	0	+ 440	0	+110	0 0	560	630
-																	630	710
	+104	+24	+ 50	0	+ 80	0	+125	0	+200	0	+320	0	+ 500	0	+1 25	0 0	710	800
i	+116	+26	+ 56	0	+ 90	0	+140	0	+230	0	+360	0	+ 560	0	+1 40	0 0	800	900
	+110	+20	T 30		T 90		+140		+230		+300		T 300		+140	0 0	900	1 000
	+133	+28	+ 66	0	+105	0	+165	0	+260	0	+420	0	+ 660	0	+165	0 0	1 000	1 120
	1 133	1 20	1 00		1 103		1 103		1 200		1 420		1 000		1 1 03		1 120	1 250
	+155	+30	+ 78	0	+125	0	+195	0	+310	0	+500	0	+ 780	0	+195	0 0	1 250	1 400
	. 100						. 150		. 510		1 300		1 .00		1 2 30		1 400	1 600
	+182	+32	+ 92	0	+150	0	+230	0	+370	0	+600	0	+ 920	0	+230	0 0	1 600	1 800
											,,,,						1 800	2 000
	+209	+34	+110	0	+175	0	+280	0	+440	0	+700	0	+1 100	0	+280	0 0	2 000	2 240 2 500
																	2 500	2 800
	+248	\pm 38	+135	0	+210	0	+330	0	+540	0	+860	0	+1350	0	+330	0 0	2 800	3 150
																	2 300	3 130

Unit: un

														C	лис. μп
N	17	N	6	N	17	P	16	Р	77	F	16	R	17	divi	neter sion im
Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Over	Incl.
- 2	- 12	- 4	- 10	- 4	- 14	- 6	- 12	- 6	- 16	- 10	- 16	- 10	- 20	_	3
0	- 12	- 5	- 13	- 4	- 16	- 9	- 17	- 8	- 20	- 12	- 20	- 11	- 23	3	6
0	- 15 - 18	- 7 - 9	- 16 - 20	- 4 - 5	- 19 - 23	- 12 - 15	- 21 - 26	- 9	- 24 - 29	- 16 - 20	- 25 - 31	- 13 - 16	- 28 - 34	6	10
0	- 18 - 21	- 9 - 11	- 20 - 24	- 5 - 7	- 23 - 28	- 15 - 18	- 26 - 31	- 11 - 14	- 29 - 35	- 20 - 24	- 31 - 37	- 16	- 34 - 41	10 18	18 30
														30	40
0	- 25	- 12	- 28	- 8	- 33	- 21	- 37	- 17	- 42	- 29	- 45	- 25	- 50	40	50
				_						- 35	- 54	- 30	- 60	50	65
0	- 30	- 14	- 33	- 9	- 39	- 26	- 45	- 21	- 51	- 37	- 56	- 32	- 62	65	80
0	- 35	- 16	- 38	- 10	- 45	- 30	- 52	- 24	- 59	- 44	- 66	- 38	- 73	80	100
U	- 33	- 16	- 30	- 10	- 45	- 30	- 52	- 24	- 59	- 47	- 69	- 41	- 76	100	120
										- 56	- 81	- 48	- 88	120	140
0	- 40	- 20	- 45	- 12	- 52	- 36	- 61	- 28	- 68	- 58	- 83	- 50	- 90	140	160
										- 61	- 86	- 53	- 93	160	180
_										- 68	- 97	- 60	-106	180	200
0	- 46	- 22	- 51	- 14	- 60	- 41	- 70	- 33	- 79	- 71	-100	- 63	-109	200	225
										- 75 - 85	-104 -117	- 67 - 74	-113 -126	225 250	250 280
0	- 52	- 25	- 57	- 14	- 66	- 47	- 79	- 36	- 88	- 85 - 89	-117 -121	- 74 - 78	-126	280	315
										- 97	-133	- 87	-144	315	355
0	- 57	- 26	- 62	- 16	- 73	- 51	- 87	- 41	- 98	-103	-139	- 93	-150	355	400
										-113	-153	-103	-166	400	450
0	- 63	- 27	- 67	- 17	- 80	- 55	- 95	- 45	-108	-119	-159	-109	-172	450	500
26		44		44	444	70	400	70	440	-150	-194	-150	-220	500	560
-26	- 96	- 44	- 88	- 44	-114	- 78	-122	- 78	-148	-155	-199	-155	-225	560	630
-30	-110	- 50	-100	- 50	-130	- 88	-138	- 88	-168	-175	-225	-175	-225	630	710
-30	-110	- 30	-100	- 30	-130	- 00	-130	- 00	-100	-185	-235	-185	-265	710	800
-34	-124	- 56	-112	- 56	-146	-100	-156	-100	-190	-210	-266	-210	-300	800	900
J-1		30		30	140	100		100		-220	-276	-220	-310	900	1 000
-40	-145	- 66	-132	- 66	-171	-120	-186	-120	-225	-250	-316	-250	-355	1 000	1 120
										-260	-326	-260	-365		1 250
-48	-173	- 78	-156	- 78	-203	-140	-218	-140	-265	-300 -330	-378	-300 -330	-425 -455	1 250 1 400	1 400
										-330	-408 -462	-330	-455 -520		1 800
-58	-208	- 92	-184	- 92	-242	-170	-262	-170	-320	-400	-462 -492	-400	-520 -550	1 800	2 000
										-440	-550	-440	-615	2 000	2 240
-68	-243	-110	-220	-110	-285	-195	-305	-195	-370	-460	-570	-460	-635	2 240	2 500
	205	405		405					450	-550	-685	-550	-760	2 500	2 800
-76	-286	-135	-270	-135	-345	-240	-375	-240	-450	-580	-715	-580	-790	2 800	

I-25

Appendix Table

Appendix table-9: Basic tolerance

Appena	ix table-	9: Basic	toleranc	e							Unit: μm
	mension nm				IT	basic tole	erance cla	ss			
Over	Incl.	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10
_	3	0.8	1.2	2	3	4	6	10	14	25	40
3	6	1	1.5	2.5	4	5	8	12	18	30	48
6	10	1	1.5	2.5	4	6	9	15	22	36	58
10	18	1.2	2	3	5	8	11	18	27	43	70
18	30	1.5	2.5	4	6	9	13	21	33	52	84
30	50	1.5	2.5	4	7	11	16	25	39	62	100
50	80	2	3	5	8	13	19	30	46	74	120
80	120	2.5	4	6	10	15	22	35	54	87	140
120	180	3.5	5	8	12	18	25	40	63	100	160
180	250	4.5	7	10	14	20	29	46	72	115	185
250	315	6	8	12	16	23	32	52	81	130	210
315	400	7	9	13	18	25	36	57	89	140	230
400	500	8	10	15	20	27	40	63	97	155	250
500	630	9	11	16	22	30	44	70	110	175	280
630	800	10	13	18	25	35	50	80	125	200	320
800	1 000	11	15	21	29	40	56	90	140	230	360
1 000	1 250	13	18	24	34	46	66	105	165	260	420
1 250	1 600	15	21	29	40	54	78	125	195	310	500
1 600	2 000	18	25	35	48	65	92	150	230	370	600
2 000	2 500	22	30	41	57	77	110	175	280	440	700
2 500	3 150	26	36	50	69	93	135	210	330	540	860

Appendix table-10: Viscosity conversion table

Dynamic viscosity mm²/s	Saybolt SUS (second)	Redwood R" (second)	Engler E (degree)
2.7	35	32.2	1.18
4.3	40	36.2	1.32
5.9	45	40.6	1.46
7.4	50	44.9	1.60
8.9	55	49.1	1.75
10.4	60	53.5	1.88
11.8	65	57.9	2.02
13.1	70	62.3	2.15
14.5	75	67.6	2.31
15.8	80	71.0	2.42
17.0	85	75.1	2.55
18.2	90	79.6	2.68
19.4	95	84.2	2.81
20.6	100	88.4	2.95
23.0	110	97.1	3.21
25.0	120	105.9	3.49
27.5	130	114.8	3.77
29.8	140	123.6	4.04
32.1	150	132.4	4.32
34.3	160	141.1	4.59
36.5	170	150.0	4.88
38.8	180	158.8	5.15
41.0	190	167.5	5.44
43.2	200	176.4	5.72
47.5	220	194.0	6.28
51.9	240	212	6.85
56.5	260	229	7.38
60.5	280	247	7.95
64.9	300	265	8.51
70.3	325	287	9.24
75.8	350	309	9.95
81.2	375	331	10.7
86.8	400	353	11.4
92.0	425	375	12.1
97.4	450	397	12.8

Dynamic	Saybolt	Redwood	Engler
viscosity mm²/s	SUS (second)	R" (second)	E (degree)
	475	410	
103 108	475 500	419 441	13.5 14.2
108 119	500 550	441 485	14.2 15.6
119	600	485 529	17.0
141	650	529 573	17.0 18.5
152	700	617	19.9
163	750	661	21.3
173	800	705	22.7
184	850	749	24.2
195	900	793	25.6
206	950	837	27.0
217	1 000	882	28.4
260	1 200	1 058	34.1
302	1 400	1 234	39.8
347	1 600	1 411	45.5
390	1 800	1 587	51
433	2 000	1 763	57
542	2 500	2 204	71
650	3 000	2 646	85
758	3 500	3 087	99
867	4 000	3 526	114
974	4 500	3 967	128
1082	5 000	4 408	142
1150	5 500	4 849	156
1300	6 000	5 290	170
1400	6 500	5 730	185
1510	7 000	6 171	199
1630	7 500	6 612	213
1740	8 000	7 053	227
1850	8 500	7 494	242
1960	9 000	7 934	256
2070	9 500	8 375	270
2200	10 000	8 8 1 6	284

I-26

Appendix table-11: Kgf to N conversion table

zipponam ta								
kgf		N	kgf		N	kgf		N
0.1020	1	9.8066	3.4670	34	333.43	6.8321	67	657.04
0.2039	2	19.613	3.5690	35	343.23	6.9341	68	666.85
0.3059	3	29.420	3.6710	36	353.04	7.0361	69	676.66
0.4079	4	39.227	3.7730	37	362.85	7.1380	70	686.46
0.5099	5	49.033	3.8749	38	372.65	7.2400	71	696.27
0.6118	6	58.840	3.9769	39	382.46	7.3420	72	706.08
0.7138	7	68.646	4.0789	40	392.27	7.4440	73	715.88
0.8158	8	78.453	4.1808	41	402.07	7.5459	74	725.69
0.9177	9	88.260	4.2828	42	411.88	7.6479	75	735.50
1.0197	10	98.066	4.3848	43	421.68	7.7499	76	745.30
1.1217	11	107.87	4.4868	44	431.49	7.8518	77	755.11
1.2237	12	117.68	4.5887	45	441.30	7.9538	78	764.92
1.3256	13	127.49	4.6907	46	451.10	8.0558	79	774.72
1.4276	14	137.29	4.7927	47	460.91	8.1578	80	784.53
1.5296	15	147.10	4.8946	48	470.72	8.2597	81	794.34
1.6316	16	156.91	4.9966	49	480.52	8.3617	82	804.14
1.7335	17	166.71	5.0986	50	490.33	8.4637	83	813.95
1.8355	18	176.52	5.2006	51	500.14	8.5656	84	823.76
1.9375	19	186.33	5.3025	52	509.94	8.6676	85	833.56
2.0394	20	196.13	5.4045	53	519.75	8.7696	86	843.37
2.1414	21	205.94	5.5065	54	529.56	8.8716	87	853.18
2.2434	22	215.75	5.6085	55	539.36	8.9735	88	862.98
2.3454	23	225.55	5.7104	56	549.17	9.0755	89	872.79
2.4473	24	235.36	5.8124	57	558.98	9.1775	90	882.60
2.5493	25	245.17	5.9144	58	568.78	9.2794	91	892.40
2.6513	26	254.97	6.0163	59	578.59	9.3814	92	902.21
2.7532	27	264.78	6.1183	60	588.40	9.4834	93	912.02
2.8552	28	274.59	6.2203	61	598.20	9.5854	94	921.82
2.9572	29	284.39	6.3223	62	608.01	9.6873	95	931.63
3.0592	30	294.20	6.4242	63	617.82	9.7893	96	941.44
3.1611	31	304.01	6.5262	64	627.62	9.8913	97	951.24
3.2631	32	313.81	6.6282	65	637.43	9.9932	98	961.05
3.3651	33	323.62	6.7302	66	647.24	10.0952	99	970.86

[How to read the table] If for example you want to convert 10 kgf to N, find "10" in the middle column of the first set of columns. Look in the N column directly to the right of "10," and you will see that 10 kgf equals 98.066 N. Oppositely, to convert 10 N to kgf, look in the kgf column to the left of "10" and you will see that 10 N equals 1.0197 kgf.

1kgf=9.80665N 1N=0.101972kgf

Appendix table-12: Inch / millimeter conversion table

	Inch						Γ"	<i>C</i> "	711	0"	6"
Fraction	Decimal	0"	1"	2"	3″	4"	5"	6"	7"	8″	9″
1/64 1/32 3/64 1/16	0.015625 0.031250 0.046875 0.062500	0.397 0.794 1.191 1.588	25.400 25.797 26.194 26.591 26.988	50.800 51.197 51.594 51.991 52.388	76.200 76.597 76.994 77.391 77.788	101.600 101.997 102.394 102.791 103.188	127.000 127.397 127.794 128.191 128.588	152.400 152.797 153.194 153.591 153.988	177.800 178.197 178.594 178.991 179.388	203.200 203.597 203.994 204.391 204.788	228.600 228.997 229.394 229.791 230.188
5/64	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184	230.584
3/32	0.093750	2.381	27.781	53.181	48.581	103.981	129.381	154.781	180.181	205.581	230.981
7/64	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978	231.378
1/ 8	0.125000	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375	231.775
9/64	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772	232.172
5/32	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169	232.569
11/64	0.171875	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566	232.966
3/16	0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962	233.362
13/64	0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359	233.759
7/32	0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756	234.156
15/64	0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153	234.553
1/ 4	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550	234.950
17/64	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947	235.347
9/32	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744
19/64	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141
5/16	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138	236.538
21/64	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534	236.934
11/32	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931	237.331
23/64	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328	237.728
3/ 8	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725	238.125
25/64	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122	238.522
13/32	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519	238.919
27/64	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916	239.316
7/16	0.437500	11.112	36.512	61.912	87.312	112.721	138.112	163.512	188.912	214.312	239.712
29/64	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109
15/32	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506
31/64	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903
1/ 2	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900	241.300
33/64	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297	241.697
17/32	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694	242.094
35/64	0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091	242.491
9/16	0.562500	14.288	39.688	65.088	90.488	115.888	141.283	166.688	192.088	217.488	242.888
37/64	0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884	243.284
19/32	0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281	243.681
39/64	0.609375	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678	244.078
5/ 8	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075	244.475
41/64	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472	244.872
21/32	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869	245.269
43/64	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266	245.666
11/16	0.687500	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662	246.062
45/64	0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.056	246.459
23/32	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456	246.856
47/64	0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853	247.253
3/ 4	0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250	247.650
49/64	0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647	248.047
25/32	0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044	248.444
51/64	0.796875	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441	248.841
13/16	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838	249.238
53/64	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234	249.634
27/32	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631	250.031
55/64	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028	250.428
7/ 8	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425	250.825
57/64	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.422	225.822	251.222
29/32	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219	251.619
59/64	0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616	252.016
15/16	0.937500	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012	252.412
61/64	0.953125	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409	252.809
31/32	0.968750	24.606	50.006	75.406	100.806	126.206	151.606	177.006	202.406	227.806	253.206
63/64	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203	253.603

Appendix table-13: Hardness conversion table (reference)-1

Appendix table-13: Hardness conversion table (reference)-1									
Rockwell hardness	Vickers	Brinell h	ardness	Rockwell	hardness	Shore			
C scale 1471.0N	hardness	Standard steel balls	Tungsten carbide steel balls	A scale 588.4N	B scale 980.7N	hardness			
68 67 66	940 900 865			85.6 85.0 84.5		97 95 92			
65 64 63 62 61	832 800 772 746 720		739 722 705 688 670	83.9 83.4 82.8 82.3 81.8		91 88 87 85 83			
60 59 58 57 56	697 674 653 633 613		654 634 615 595 577	81.2 80.7 80.1 79.6 79.0		81 80 78 76 75			
55 54 53 52 51	595 577 560 544 528	 500 487	560 543 525 512 496	78.5 78.0 77.4 76.8 76.3		74 72 71 69 68			
50 49 48 47 46	513 498 484 471 458	475 464 451 442 432	481 469 455 443 432	75.9 75.2 74.7 74.1 73.6		67 66 64 63 62			
45 44 43 42 41	446 434 423 412 402	421 409 400 390 381	421 409 400 390 381	73.1 72.5 72.0 71.5 70.9		60 58 57 56 55			
40 39 38 37 36	392 382 372 363 354	371 362 353 344 336	371 362 353 344 336	70.4 69.9 69.4 68.9 68.4	_ _ _ (109.0)	54 52 51 50 49			
35 34 33 32 31	345 336 327 318 310	327 319 311 301 294	327 319 311 301 294	67.9 67.4 66.8 66.3 65.8	(108.5) (108.0) (107.5) (107.0) (106.0)	48 47 46 44 43			
30 29 28 27 26	302 294 286 279 272	286 279 271 264 258	286 279 271 264 258	65.3 64.7 64.3 63.8 63.3	(105.5) (104.5) (104.0) (103.0) (102.5)	42 41 41 40 38			
25 24 23 22 21	266 260 254 248 243	253 247 243 237 231	253 247 243 237 231	62.8 62.4 62.0 61.5 61.0	(101.5) (101.0) 100.0 99.0 98.5	38 37 36 35 35			

¹⁾ Quoted from hardness conversion table (SAE J 417)

Appendix table-13: Hardness conversion table (reference)-2

Rockwell hardness	Vickers	Brinell h	ardness	Rockwell	Shore	
C scale 1471.0N	hardness	Standard steel balls	Tungsten carbide steel balls	A scale 588.4N	B scale 980.7N	hardness
20 (18) (16) (14) (12)	238 230 222 213 204	226 219 212 203 194	226 219 212 203 194	60.5 — — — —	97.8 96.7 95.5 93.9 92.3	34 33 32 31 29
(10) (8) (6) (4) (2) (0)	196 188 180 173 166 160	187 179 171 165 158 152	187 179 171 165 158 152		90.7 89.5 87.1 85.5 83.5 81.7	28 27 26 25 24 24

¹⁾ Quoted from hardness conversion table (SAE J 417)

1lb = 0.45359237 kg

Appendix table-14: Kg to lb conversion table

Appendix table-14. Ng to b conversion table										
kg		lb		kg		lb		kg		lb
0.454	1	2.205		15.422	34	74.957		30.391	67	147.71
0.907	2	4.409		15.876	35	77.162		30.844	68	149.91
1.361	3	6.614		16.329	36	79.366		31.298	69	152.12
1.814	4	8.818		16.783	37	81.571		31.751	70	154.32
2.268	5	11.023		17.237	38	83.776		32.205	71	156.53
2.722	6	13.228		17.690	39	85.980		32.659	72	158.73
3.175	7	15.432		18.144	40	88.185		33.112	73	160.94
3.629	8	17.637		18.597	41	90.390		33.566	74	163.14
4.082	9	19.842		19.051	42	92.594		34.019	75	165.35
4.536	10	22.046		19.504	43	94.799		34.473	76	167.55
4.990	11	24.251		19.958	44	97.003		34.927	77	169.76
5.443	12	26.455		20.412	45	99.208		35.380	78	171.96
5.897	13	28.660		20.865	46	101.41		35.834	79	174.17
6.350	14	30.865		21.319	47	103.62		36.257	80	176.37
6.804	15	33.069		21.772	48	105.82		36.741	81	178.57
7.257	16	35.274		22.226	49	108.03		37.195	82	180.78
7.711	17	37.479		22.680	50	110.23		37.648	83	182.98
8.165	18	39.683		23.133	51	112.44		38.102	84	185.19
8.618	19	41.888		23.587	52	114.64		38.555	85	187.39
9.072	20	44.092		24.040	53	116.84		39.009	86	189.60
9.525	21	46.297		24.494	54	119.05		39.463	87	191.80
9.979	22	48.502		24.948	55	121.25		39.916	88	194.01
10.433	23	50.706		25.401	56	123.46		40.370	89	196.21
10.886	24	62.911		26.855	57	125.66		40.823	90	198.42
11.340	25	55.116		26.308	58	127.87		41.277	91	200.62
11.793	26	57.320		26.762	59	130.07		41.730	92	202.83
12.247	27	59.525		27.216	60	132.28		42.184	93	205.03
12.701	28	61.729		27.669	61	134.48		42.638	94	207.23
13.154	29	63.934		28.123	62	136.69		43.091	95	209.44
13.608	30	66.139		28.576	63	138.69		43.546	96	211.64
14.061	31	68.343		29.030	64	141.10		43.996	97	213.85
14.515	32	70.548		29.484	65	143.30		44.452	98	216.05
14.969	33	72.753		29.937	66	145.51		44.906	99	218.26
[How to read the table] If for example you want to convert 10 kg to lb, find "10" in the 1kg = 2.2046226 lb										

[How to read the table] If for example you want to convert 10 kg to lb, find "10" in the middle column of the first set of columns. Look in the lb column directly to the right of "10," and you will see that 10 kg equals 22.046 lb. Oppositely, to convert 10 lb to kg, look in the kg column to the left of "10" and you will see that 10 lb equals 4.536 kg.

Appendix table 15: °C to °F conversion table

-100 -80 -60 -40 -30 -20 -10 0 1 2	°F -148.0 -112.0 - 76.0 - 40.0 - 22.0 - 4.0 14.0 32.0 33.8 35.6 37.4	°C 0.0 0.6 1.1 1.7 2.2 2.8 3.3 3.9 4.4 5.0	32 33 34 35 36 37 38 39 40	%F 89.6 91.4 93.2 95.0 96.8 98.6 100.4 102.2	°C 21.7 22.2 22.8 23.3 23.9 24.4 25.0	71 72 73 74 75 76	°F 159.8 161.6 163.4 165.2 167.0		°C 43.3 46.1 48.9 51.7 54.4	110 115 120 125 130	°F 230 239 248 257
-80 -60 -40 -30 -20 -10 0 1 2	-112.0 - 76.0 - 40.0 - 22.0 - 4.0 14.0 32.0 33.8 35.6 37.4	0.6 1.1 1.7 2.2 2.8 3.3 3.9 4.4 5.0	33 34 35 36 37 38 39	91.4 93.2 95.0 96.8 98.6 100.4	22.2 22.8 23.3 23.9 24.4	72 73 74 75	161.6 163.4 165.2 167.0		46.1 48.9 51.7	115 120 125	239 248 257
-60 -40 -30 -20 -10 0 1 2	- 76.0 - 40.0 - 22.0 - 4.0 14.0 32.0 33.8 35.6 37.4	1.1 1.7 2.2 2.8 3.3 3.9 4.4 5.0	34 35 36 37 38 39	93.2 95.0 96.8 98.6 100.4	22.8 23.3 23.9 24.4	73 74 75	163.4 165.2 167.0		48.9 51.7	120 125	248 257
-40 -30 -20 -10 0 1 2	- 40.0 - 22.0 - 4.0 14.0 32.0 33.8 35.6 37.4	1.7 2.2 2.8 3.3 3.9 4.4 5.0	35 36 37 38 39	95.0 96.8 98.6 100.4	23.3 23.9 24.4	74 75	165.2 167.0		51.7	125	257
-30 -20 -10 0 1 2 3 4 5	- 22.0 - 4.0 14.0 32.0 33.8 35.6 37.4	2.2 2.8 3.3 3.9 4.4 5.0	36 37 38 39	96.8 98.6 100.4	23.9 24.4	75	167.0				
-20 -10 0 1 2 3 4 5	- 4.0 14.0 32.0 33.8 35.6 37.4	2.8 3.3 3.9 4.4 5.0	37 38 39	98.6 100.4	24.4				54.4	120	200
-10 0 1 2 3 4 5	14.0 32.0 33.8 35.6 37.4	3.3 3.9 4.4 5.0	38 39	100.4		76	1600			130	266
0 1 2 3 4 5	32.0 33.8 35.6 37.4	3.9 4.4 5.0	39		25.0		100.0		57.2	135	275
1 2 3 4 5	33.8 35.6 37.4	4.4 5.0		102.2		77	170.6		60.0	140	284
2 3 4 5	35.6 37.4	5.0	40		25.6	78	172.4		65.6	150	302
3 4 5	37.4			104.0	26.1	79	174.2		71.1	160	320
4 5			41	105.8	26.7	80	176.0		76.7	170	338
5	20.2	5.6	42	107.6	27.2	81	177.8		82.2	180	356
	39.2	6.1	43	109.4	27.8	82	179.6		87.8	190	374
_	41.0	6.7	44	111.2	28.3	83	181.4		93.3	200	392
ь	42.8	7.2	45	113.0	28.9	84	183.2		98.9	210	410
7	44.6	7.8	46	114.8	29.4	85	185.0		104.4	220	428
8	46.4	8.3	47	116.6	30.0	86	186.8		110.0	230	446
9	48.2	8.9	48	118.4	30.6	87	188.6		115.6	240	464
10	50.0	9.4	49	120.2	31.1	88	190.4		121.1	250	482
11	51.0	10.0	50	122.0	31.7	89	192.2		148.9	300	572
12	53.6	10.6	51	123.8	32.2	90	194.0		176.7	350	662
13	55.4	11.1	52	125.6	32.8	91	195.8		204	400	752
14	57.2	11.7	53	127.4	33.3	92	197.6		232	450	842
15	59.0	12.2	54	129.2	33.9	93	199.4		260	500	932
16	60.8	12.6	55	131.0	34.4	94	201.2		288	550	1022
17	62.6	13.3	56	132.8	35.0	95	203.0		316	600	1112
18	64.4	13.9	57	134.6	35.6	96	204.6		343	650	1202
19	66.2	14.4	58	136.4	36.1	97	206.6		371	700	1292
20	68.0	15.0	59	138.2	36.7	98	208.4		399	750	1382
21	69.8	15.6	60	140.0	37.2	99	210.2		427	800	1472
22	71.5	15.1	61	141.8	37.8	100	212.0		454	850	1562
23	73.4	16.7	62	143.6	38.3	101	213.8		482	900	1652
24	76.2	17.2	63	145.4	38.9	102	215.6		510	950	1742
25	77.0	17.8	64	147.2	39.4	103	217.4		538	1000	1832
26	78.8	18.3	65	149.0	40.0	104	219.2		593	1100	2012
27	80.5	18.9	66	150.8	40.6	105	221.0		649	1200	2192
28	82.4	19.4	67	152.6	41.1	106	222.6		704	1300	2372
29	84.2	20.0	68	154.4	41.7	107	224.6		760	1400	2562
30	86.0	20.6	69	156.2	42.2	108	226.4		816	1500	2732
31	87.8	21.1	70	158.0	42.8	109	228.2		871	1600	2912
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31	7 44.6 8 46.4 9 48.2 10 50.0 11 51.0 12 53.6 13 55.4 14 57.2 15 59.0 16 60.8 17 62.6 18 64.4 19 66.2 20 68.0 21 69.8 22 71.5 23 73.4 24 76.2 25 77.0 26 78.8 27 80.5 28 82.4 29 84.2 30 86.0	7 44.6 7.8 8 46.4 8.3 9 48.2 8.9 10 50.0 9.4 11 51.0 10.0 12 53.6 10.6 13 55.4 11.1 14 57.2 11.7 15 59.0 12.2 16 60.8 12.6 17 62.6 13.3 18 64.4 13.9 19 66.2 14.4 20 68.0 15.0 21 69.8 15.6 22 71.5 15.1 23 73.4 16.7 24 76.2 17.2 25 77.0 17.8 26 78.8 18.3 27 80.5 18.9 28 82.4 19.4 29 84.2 20.0 30 86.0 20.6	7 44.6 7.8 46 8 46.4 8.3 47 9 48.2 8.9 48 10 50.0 9.4 49 11 51.0 10.0 50 12 53.6 10.6 51 13 55.4 11.1 52 14 57.2 11.7 53 15 59.0 12.2 54 16 60.8 12.6 55 17 62.6 13.3 56 18 64.4 13.9 57 19 66.2 14.4 58 20 68.0 15.0 59 21 69.8 15.6 60 22 71.5 15.1 61 23 73.4 16.7 62 24 76.2 17.2 63 25 77.0 17.8 64 26 78.8 18.3 65	7 44.6 7.8 46 114.8 8 46.4 8.3 47 116.6 9 48.2 8.9 48 118.4 10 50.0 9.4 49 120.2 11 51.0 10.0 50 122.0 12 53.6 10.6 51 123.8 13 55.4 11.1 52 125.6 14 57.2 11.7 53 127.4 15 59.0 12.2 54 129.2 16 60.8 12.6 55 131.0 17 62.6 13.3 56 132.8 18 64.4 13.9 57 134.6 19 66.2 14.4 58 136.4 20 68.0 15.0 59 138.2 21 69.8 15.6 60 140.0 22 71.5 15.1 61 141.8 23	7 44.6 7.8 46 114.8 29.4 8 46.4 8.3 47 116.6 30.0 9 48.2 8.9 48 118.4 30.6 10 50.0 9.4 49 120.2 31.7 12 53.6 10.6 51 123.8 32.2 13 55.4 11.1 52 125.6 32.8 14 57.2 11.7 53 127.4 33.3 15 59.0 12.2 54 129.2 33.9 16 60.8 12.6 55 131.0 34.4 17 62.6 13.3 56 132.8 35.0 18 64.4 13.9 57 134.6 35.6 19 66.2 14.4 58 136.4 36.1 20 68.0 15.0 59 138.2 36.7 21 69.8 15.6 60 140.0 <td< td=""><td>7 44.6 7.8 46 114.8 29.4 85 8 46.4 8.3 47 116.6 30.0 86 9 48.2 8.9 48 118.4 30.6 87 10 50.0 9.4 49 120.2 31.1 88 11 51.0 10.0 50 122.0 31.7 89 12 53.6 10.6 51 123.8 32.2 90 13 55.4 11.1 52 125.6 32.8 91 14 57.2 11.7 53 127.4 33.3 92 15 59.0 12.2 54 129.2 33.9 93 16 60.8 12.6 55 131.0 34.4 94 17 62.6 13.3 56 132.8 35.0 95 18 64.4 13.9 57 134.6 36.1 97 20</td><td>7 44.6 7.8 46 114.8 29.4 85 185.0 8 46.4 8.3 47 116.6 30.0 86 186.8 9 48.2 8.9 48 118.4 30.6 87 188.6 10 50.0 9.4 49 120.2 31.1 88 190.4 11 51.0 10.0 50 122.0 31.7 89 192.2 12 53.6 10.6 51 123.8 32.2 90 194.0 13 55.4 11.1 52 125.6 32.8 91 195.8 14 57.2 11.7 53 127.4 33.3 92 197.6 15 59.0 12.2 54 129.2 33.9 93 199.4 16 60.8 12.6 55 131.0 34.4 94 201.2 17 62.6 13.3 56 132.8 35.0</td><td>7 44.6 7.8 46 114.8 29.4 85 185.0 8 46.4 8.3 47 116.6 30.0 86 186.8 9 48.2 8.9 48 118.4 30.6 87 188.6 10 50.0 9.4 49 120.2 31.1 88 190.4 11 51.0 10.0 50 122.0 31.7 89 192.2 12 53.6 10.6 51 123.8 32.2 90 194.0 13 55.4 11.1 52 125.6 32.8 91 195.8 14 57.2 11.7 53 127.4 33.3 92 197.6 15 59.0 12.2 54 129.2 33.9 93 199.4 16 60.8 12.6 55 131.0 34.4 94 201.2 17 62.6 13.3 56 132.8 35.0</td><td>7 44.6 7.8 46 114.8 29.4 85 185.0 104.4 8 46.4 8.3 47 116.6 30.0 86 186.8 110.0 9 48.2 8.9 48 118.4 30.6 87 188.6 115.6 10 50.0 9.4 49 120.2 31.1 88 190.4 121.1 11 51.0 10.0 50 122.0 31.7 89 192.2 148.9 12 53.6 10.6 51 123.8 32.2 90 194.0 176.7 13 55.4 11.1 52 125.6 32.8 91 195.8 204 14 57.2 11.7 53 127.4 33.3 92 197.6 232 15 59.0 12.2 54 129.2 33.9 93 199.4 260 16 60.8 12.6 55 131.0 34.</td><td>7 44.6 7.8 46 114.8 29.4 85 185.0 104.4 220 8 46.4 8.3 47 116.6 30.0 86 186.8 110.0 230 9 48.2 8.9 48 118.4 30.6 87 188.6 115.6 240 10 50.0 9.4 49 120.2 31.1 88 190.4 121.1 250 11 51.0 10.0 50 122.0 31.7 89 192.2 148.9 300 12 53.6 10.6 51 123.8 32.2 90 194.0 176.7 350 13 55.4 11.1 52 125.6 32.8 91 195.8 204 400 14 57.2 11.7 53 127.4 33.3 92 197.6 232 450 15 59.0 12.2 54 129.2 33.9 93 199.4</td></td<>	7 44.6 7.8 46 114.8 29.4 85 8 46.4 8.3 47 116.6 30.0 86 9 48.2 8.9 48 118.4 30.6 87 10 50.0 9.4 49 120.2 31.1 88 11 51.0 10.0 50 122.0 31.7 89 12 53.6 10.6 51 123.8 32.2 90 13 55.4 11.1 52 125.6 32.8 91 14 57.2 11.7 53 127.4 33.3 92 15 59.0 12.2 54 129.2 33.9 93 16 60.8 12.6 55 131.0 34.4 94 17 62.6 13.3 56 132.8 35.0 95 18 64.4 13.9 57 134.6 36.1 97 20	7 44.6 7.8 46 114.8 29.4 85 185.0 8 46.4 8.3 47 116.6 30.0 86 186.8 9 48.2 8.9 48 118.4 30.6 87 188.6 10 50.0 9.4 49 120.2 31.1 88 190.4 11 51.0 10.0 50 122.0 31.7 89 192.2 12 53.6 10.6 51 123.8 32.2 90 194.0 13 55.4 11.1 52 125.6 32.8 91 195.8 14 57.2 11.7 53 127.4 33.3 92 197.6 15 59.0 12.2 54 129.2 33.9 93 199.4 16 60.8 12.6 55 131.0 34.4 94 201.2 17 62.6 13.3 56 132.8 35.0	7 44.6 7.8 46 114.8 29.4 85 185.0 8 46.4 8.3 47 116.6 30.0 86 186.8 9 48.2 8.9 48 118.4 30.6 87 188.6 10 50.0 9.4 49 120.2 31.1 88 190.4 11 51.0 10.0 50 122.0 31.7 89 192.2 12 53.6 10.6 51 123.8 32.2 90 194.0 13 55.4 11.1 52 125.6 32.8 91 195.8 14 57.2 11.7 53 127.4 33.3 92 197.6 15 59.0 12.2 54 129.2 33.9 93 199.4 16 60.8 12.6 55 131.0 34.4 94 201.2 17 62.6 13.3 56 132.8 35.0	7 44.6 7.8 46 114.8 29.4 85 185.0 104.4 8 46.4 8.3 47 116.6 30.0 86 186.8 110.0 9 48.2 8.9 48 118.4 30.6 87 188.6 115.6 10 50.0 9.4 49 120.2 31.1 88 190.4 121.1 11 51.0 10.0 50 122.0 31.7 89 192.2 148.9 12 53.6 10.6 51 123.8 32.2 90 194.0 176.7 13 55.4 11.1 52 125.6 32.8 91 195.8 204 14 57.2 11.7 53 127.4 33.3 92 197.6 232 15 59.0 12.2 54 129.2 33.9 93 199.4 260 16 60.8 12.6 55 131.0 34.	7 44.6 7.8 46 114.8 29.4 85 185.0 104.4 220 8 46.4 8.3 47 116.6 30.0 86 186.8 110.0 230 9 48.2 8.9 48 118.4 30.6 87 188.6 115.6 240 10 50.0 9.4 49 120.2 31.1 88 190.4 121.1 250 11 51.0 10.0 50 122.0 31.7 89 192.2 148.9 300 12 53.6 10.6 51 123.8 32.2 90 194.0 176.7 350 13 55.4 11.1 52 125.6 32.8 91 195.8 204 400 14 57.2 11.7 53 127.4 33.3 92 197.6 232 450 15 59.0 12.2 54 129.2 33.9 93 199.4

the first set of columns. Look in the °F column directly to the right of "10," and you will see that 10°C equals 50.0 °F. Oppositely, to convert 10°F to °C, look in the °C column to the left of "10" and you will see that 10°F equals -12.2°C.

 $^{\circ}C = \frac{5}{9}(^{\circ}F - 32)$

 $^{\circ}F = 32 + \frac{9}{5} ^{\circ}C$

Appendix table-16: Greek alphabet list

Roman type (upright)	Italic (slar	Name	
Upper case	Upper case	Lower case	
A	A	α	Alpha
В	В	β	Beta
Γ	Γ	γ	Gamma
Δ	Δ	δ	Delta
Е	Е	ε	Epsilon
Z	Z	ζ	Zeta
Н	Н	η	Eta
Θ	Θ	θ	Theta
I	I	L	lota
K	K	κ	Карра
Λ	Λ	λ	Lambda
M	M	μ	Mu
N	N	ν	Nu
臣	E	ξ	Xi
О	0	0	Omicron
П	П	π	Pi
Р	P	ρ	Rho
Σ	Σ	σ	Sigma
Т	T	τ	Tau
Υ	Υ	υ	Upsolon
Φ	Φ	φ	Phi
X	X	χ	Khi
Ψ	Ψ	ψ	Psi
Ω	Ω	ω	Omega

HEADQUARTERS

NTN Corporation URL https://www.ntn.co.jp

1-3-17, Kyomachibori, Nishi-ku, Osaka-shi, Osaka 550-0003 Japan Phone: +81-6-6443-5001

NTN USA Corporation URL http://www.ntnamericas.com

1600 E. Bishop Court. P.O. Box 7604. Mount Prospect. IL 60056-7604. U.S.A. Phone: +1-847-298-7500 Fax: +1-847-294-1209

SALES NETWORK

NTN Bearing Corp. of America

Head Office / 1600 E. Bishop Court, P.O. Box 7604, Mount Prospect, IL 60056-7604, U.S.A. Phone: +1-847-298-7500 Fax: +1-847-699-9744

Peoria Sales Office / 2413 North Main Street, East Peoria, Illinois 61611, U.S.A.

Phone: +1-309-699-8600 Fax: +1-309-699-8670

NTN Automotive Center / 39255 W. 12 Mile Road, Farmington Hills, MI 48331-2975, U.S.A.

Phone: +1-248-324-4700 Fax: +1-248-324-1103

NTN Bearing Corp. of Canada Ltd. URL http://www.ntnamericas.com

Head Office / 305 Courtneypark Drive West, Mississauga, Ontario, L5W 1Y4, Canada Phone: +1-905-564-2700 Fax: +1-905-564-9023

Edmonton Branch / 4608-97th Street, Edmonton, Alberta T6E 5N9, Canada

Phone: +1-780-435-6200 Fax: +1-780-435-3600

Toronto Branch / 305 Courtneypark Drive West, Mississauga, Ontario L5W 1Y4, Canada

Phone: +1-905-564-2700 Fax: +1-905-564-9609

Montreal Branch / 4973 Levy Street, St-Laurent, Quebec, H4R 2N9, Canada Phone: +1-514-333-8054 Fax: +1-514-333-1078

NTN Wälzlager (Europa) GmbH. URL http://www.ntn-snr.com

Head Office / Max-Planck-Str. 23, 40699 Erkrath, F.R.Germany Phone: +49-211-2508-0 Fax: +49-211-2508-400

Stuttgart Branch / Plieninger Str. 63B, 70794 Filderstadt F.R.Germany

Phone: +49-711-123901-0 Fax: +49-711-123901-660

NTN Bearings (UK) Ltd. URL http://www.ntn-snr.com

Wellington Crescent, Fradley Park, Lichfield, Staffordshire, WS13 8RZ, UK Phone: +44-1543-445000 Fax: +44-1543-445035

NTN-SNR ROULEMENTS. URL http://www.ntn-snr.com

Head Office / 1. rue des Usines B.P. 2017 74010 Annecy Cedex, France Phone: +33-4-50-65-30-00 Fax: +33-4-50-65-30-88

Lyon Branch / 51, rue des Docks, 69009 Lyon, France

Phone: +33-4-78-66-68-00 Fax: +33-4-78-66-68-20

Paris Branch / 6, rue Auguste Comte, BP49, 92174 Vanves Cedex, France Phone: +33-1-40-93-66-00 Fax: +33-1-40-93-66-10

Cran Gevrier Branch / 6 route de la Salle, 74960, Cran Gevrier, France

Phone: +33-4-50-65-93-00 Fax: +33-4-50-65-93-46

Argonay Branch / 114, Rte de Champ Farçon, 74370, Argonay, France Phone: +33-4-50-65-94-00 Fax: +33-4-50-65-94-25

SNR Wälzlager GmbH.

Head Office / Max-Planck-Str. 23, 40699 Erkrath, F.R.Germany

Phone: +49-211-2508-0 Fax: +49-211-2508-400

Bielefeld Branch / Friedrich-Hagemann-Straße 66, 33719 Bielefeld, F.R.Germany Phone: +49-521-9-24-00-0 Fax: +49-521-9-24-00-90

Stuttgart Branch / Plieninger Str. 63B, 70794 Filderstadt F.R.Germany Phone: +49-711-123901-0 Fax: +49-711-123901-660

NTN-SNR ITALIA S.P.A.

Head Office / Via Riccardo Lombardi, 19/4, 20153 Milan, Italy Phone: +39-02-47-99-86-1 Fax: +39-02-33-50-06-56

Bologna Office/ Via Maestri del Lavoro 3/A 40138 Bologna, Italy Phone: +39-051-47-53-51-74 Fax: +39-051-47-53-84-92

NTN-SNR IBERICA SA / Edificio A - Planta Baja Derecha, C / Basauri, 17, 28023 - Madrid, Spain

Phone: +34-916-71-89-13 Fax: +34-916-73-65-48

NTN-SNR RULMENTI S.R.L. / Zona Industriala-Vest, 6 Strada Salzburg, 24 00 SIBIU, Romania

Phone: +40-269-20-35-00 Fax: +40-269-20-35-25

NTN-SNR Marocco / Route cotiere 111, Quartier industriel, Polygone 1, Casablanca, Morocco

Phone: +212-522-66-76-80 Fax: +212-522-66-5166

NTN Bearing-Singapore (Pte) Ltd. URL https://www.ntnsg.com

No.9 Clementi Loop Singapore 129812

Phone: + 65-64698066 Fax: +65-64695400

NTN Bearing-Vietnam Co., Ltd.

17th Floor, Viettower Building, No.1 Thai Ha street, Trunng Liet Ward, Dong Da District, Hanoi, Vietnam Phone: +84-4-37347660 Fax: +84-4-37347662

NTN Bearing India PVT. Ltd. URL http://ntnbearing.in

Head Office / No. 86, 2nd Floor, Polyhose Towers Mount Road Guindy Chennai 600032, India Phone: +91-44-66867700 Fax: +91-44-66867701

Delhi Branch / 819, 8th Floor, International Trade Tower, Nehru Place, New Delhi - 1100019, India Phone: +91-11-40520407 Fax: +91-11-40520407

Mumbai Branch / Unit No :1104, DLH PARK, S V Road, Goregaon West, Mumbai - 400062, India Phone: +91-22-28768501 Fax: +91-22-28768900

Kolkata Branch / 8th Floor, "C" Landmark Building, AJC Bose Road, Kolkata - 700020, India Phone: +91-33-46031129

NTN (China) Investment Corp. URL https://www.ntn.com.cn

Shanghai Head Office / No.6 building No.1666 Nanle Road, Songjiang Industrial Zone, Songjiang, Shanghai 201611, China Phone: +86-21-5774-5500 Fax: +86-21-5778-2898

Beijing Branch / Unit 2808, Fortune Financial Center, No.5 Dongsanhuan Zhong Road, Chaoyang District, Beijing 100020, China Phone: +86-10-6568-3069 Fax: +86-10-6568-2278

Guangzhou Branch / Room 3606, Onelink Center, No.230-232 Tianhe Road, Tianhe District, Guangzhou 510620, China Phone: +86-20-3877-2943 Fax: +86-20-3877-2942

Nanjing Branch / D1D2, Nanjing Centre, NO.1 Zhongshan South Rd, Qinhuai District, Nanjing 210005, China Phone: +86-25-8477-5355 Fax: +86-25-8477-5360

Chongqing Branch / Room 15-6, Carnival mansion, No.9 Guanyingqiao Street, Jiangbei District, Chongqing 400020, China Phone: +86-23-6796-0812 Fax: +86-23-6796-0878

Shenyang Branch / Room 2606, China Resources Building, No.286 Qingnian Road, Heping District, Shenyang 110004, China Phone: +86-24-3137-9186 Fax: +86-24-3137-9185

NTN China Ltd. URL http://www.ntnchina.com

Hong Kong Office / Room 2003-05, Gala Place, No.56 Dundas Road, Mongkok, Kowloon, Hong Kong Phone: +852-2385-5097 Fax: +852-2385-2138

NTN Bearing-Thailand Co., Ltd. URL http://www.ntn.co.th

Head Office / 29th Floor Paniathani Tower, 127/34 Nonsee Road, Chongnonsee, Yannawa, BANGKOK 10120, Thailand Phone: +66-2-681-0401 Fax: +66-2-681-0409

Khon Kaen Branch / 189/191 Ruenrom Road, Mueang, Khon Kaen 400003.

Phone: +66-43-222237 Fax: +66-43-223061

Haad Yai Branch / 156/101-102 Moo 1, Lopburi Ramesuan Road, Klong Hae, Had Yai, Songkhla 90110

Phone: +66-74-292651 Fax: +66-74-292656

Chiangmai Branch / 208 Moo 4, Wong wan rob klang, Nong Hoi, Amphur Muang, Chiang Mai 50000 Phone: +66-53-142571 Fax: +66-53-142573

NTN Bearing-Malaysia Sdn. Bhd.

Head Office / No.2, Jalan Arkitek U 1/22, Hicom Glenmarie Industrial Park, 40150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone: +60-3-55696088 Fax: +60-3-55690200

Butterworth Branch / 5063, Jalan Sungai Nvior Indah, Taman Sungai Nvior Indah, 12100 Butterworth, Penang, Malaysia Phone: +60-4-3328312 Fax: +60-4-3324407

Ipoh Branch Office / 65, Medan Kidd, Kinta Mansion, 30200 Ipoh, Malaysia

Phone: +60-5-2547743 Fax: +60-5-2538077

Kuantan Branch / B-72, Ground Floor, Jalan Beserah 25300 Kuantan, Malaysia

Phone: +60-9-5141132 Fax: +60-9-5141164

Johor Bahru Branch / 51 Jalan, Sri Bahagia 5, Taman Sri Bahagia, Tampoi, 81200 Johor Bahru, Malaysia Phone: +60-7-2364929 Fax: +60-7-2370897

PT. NTN Bearing Indonesia

MidPlaza 1, 7th Floor, Jl. Jend. Sudirman Kav. 10 -11 Jakarta, Indonesia 10220 Phone: +62-21-5707676 Fax: 62-21-5707699

NTN-CBC (Australia) Pty. Ltd. URL https://www.conbear.com.au

18 Worth Street Chullora NSW 2190, Sydney Australia

Phone: +61-2-9947 9200 Fax: +61-2-9502 4013

NTN de Mexico, S.A. URL http://www.ntnamericas.com/es

Head Office / Emilio Cárdenas No.158 Apdo.124, C.P.54030, Tlalnepantla, Edo.deMéxico, Mexico

Phone: +52-55-5390-1133 Fax: +52-55-5565-8545

Guadalajara Branch / Calle 22 No.2465, Zona Industrial, C.P.44940, Guadalajara, Jalisco, Mexico

Phone: +52-33-3145-1448 Fax: +52-33-3145-1594

Monterrey Branch / Av. America del Norte 209, Fracc. Industrial Las Americas, C.P.67120, Guadalupe, Nuevo Leon Phone: +52-818-334-9932 Fax: +52-818-334-9932

NTN Sudamericana, S.A. URL http://www.ntnamericas.com

World Trade Center Panamá, Piso 16. Oficina 1601, Urbanización Marbella, Calle 53 Este, Apartado Postal 0832-0487, Panamá, República de Panamá

Phone: +507-269-4777 Fax: +507-264-5592

NTN Rolamentos do Brasil Ltda. URL https://www.ntn.com.br

Av. das Industrias, 380-Parque Industrial-CEP 83.820-332-Fazenda Rio Grande-PR-BRAZIL Phone: +55-41-3-627-80-00 Fax: +55-52-3-627-80-80

NTN Korea Co., Ltd.

Head Office / 10th Fl., 124, Sejong-Daero, Jung-Gu, Seoul, 04520, Korea Phone: +82-2-720-3666 Fax: +82-2-720-3669

Busan Branch / Rm.707, 5, Jungang-Daero 775 Beon-Gil, Busanjin-Gu, Busan, 47251, Korea Phone: +82-51-811-1351 Fax: +82-51-811-1353

NOTE: The appearance and specifications may be changed without prior notice if required to improve performance. Although care has been taken to assure the accuracy of the data compiled in this catalog, NTN does not assume any liability to any company or person for errors or omissions.

