SNR - Industry

SNR ball bearing units Operating and Maintenance

63

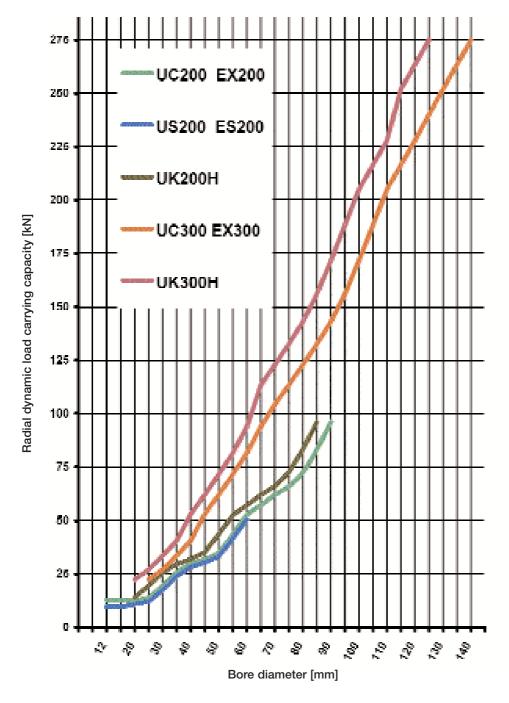
3

Grey cast iron ball bearing units

Load capacity

SNR housings permit the complete utilization of the bearing insert load rating. The specified radial dynamic load rating of the inserts can be presumed as the maximum radial load capacity of the unit.

For the housings of the T200 and T300 series the radial dynamic load rating must be multiplied by a factor of 0.3.


The maximum axial load capacity of the inserts is 0.5 x C_{0r} (radial static load rating).

The following safety factors must be taken into consideration for various types of stress:

Type of stress	Safety factor
Constant load	1
Dynamic load	1 – 1.5
Moderate shock load	2
High shock load	> 3

Radial dynamic load ratings (C_r) for inserts of the series UC200 / UC300 / US200 / ES200 EX200 / EX300 / UK200 / UK300

Material

Surfaces

SNR pressed steel ball bearing units are made of cold rolled sheet steel.

SNR pressed steel ball bearing units are zinc-plated.

Load capacity

Maximum load capacity of the housing in radial direction:

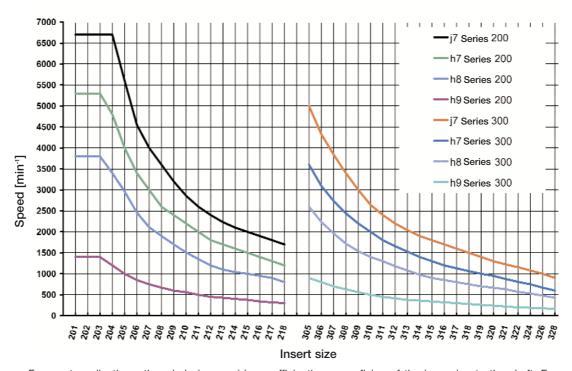
Flanged unit:	С _г х 0.25
Pillow block unit:	C _r x 0.10

Maximum load capacity of the housing in axial direction:

Flanged unit:	С _г х 0.10
Pillow block uni:	Ċ _r x 0.10

 C_r = radial dynamic load rating of the bearing insert used.

Bearing Inserts


Materials

Inner and outer rings as well as the balls of the SNR ball bearing inserts are made of hardened 100 Cr6 bearing steel.

Inserts are generally supplied with riveted two-piece steel plate cages. The seals are made of nitrile rubber and zinc-plated sheet metal.

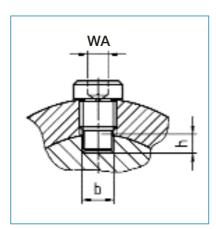
Fixing to the shaft

One advantage of the SNR ball bearing units are the minimum demands that this type of bearing arrangement makes on the shaft. It must neither be hardened nor ground and the surface quality too has few requirements. We recommend shaft materials having tensile strength of at least 500 N/mm². The maximal admissible speed is depending not only on the bearing geometry but also on the tolerance of the shaft diameter, as can be seen in the following diagram.

For most applications, threaded pins provide a sufficiently secure fixing of the inner ring to the shaft. For eccentric locking collars, it is recommended to use shafts manufactured according to **h6-h9** for the bearing seats. If tapered adapter sleeves are used, the shaft tolerance **h9** to **h11** is sufficient. If severe operating conditions are encountered, such as vibrations or shocks, a slight interference fit is preferred.

Bearing inserts

Set screws for bearing inserts


Metric

Set			Bearing	insert		Max. tightening	Hexagon	
screw	U	с	US	ES	E)	(torque	socket
	CL	JC	CUS	CES	CEX		[Nm]	WA
M5 x 0.8			201-203				3.5	2.5
M6 x 1	201-206	305-306	204-207	201-206	201-206		5.5	3.0
M8 x 1	207-209	307	208-210	207-210	207-210	305-307	11.5	4.0
M10 x 1.25	210-212	308-309	211-212	211-212	211-215	308-312	22.0	5.0
M12 x 1.25	213-218	310-314			216-218	313-314	33.0	6.0
M14 x 1.5		315-316					42.0	7.0
M16 x 1.5		317-319				315-317	64.0	8.0
M18 x 1.5		320-324					75.0	9.0
M20 x 1.5		326-328				318-320	120.0	10.0

Inch

Set			Bearing insert				Max. tightening	Hexagon
screw	U	С	US	ES	EX		torque	socket
	CL	JC	CUS	CES	CE	Х	[Nm]	WA
No.10 - 32 UNF			201-08				3.2	3/32
			203-11					
1/4 - 28 UNF	201-08	305-14	204-12	201-08	201-08		3.7	1/8
	206-20	306-19	206-20	205-16	205-16			
5/16 -24 UNF	207-22	307-20	207-22	206-18	206-18	305-14	8.0	5/32
	209-28	307-23	211-35	210-31	210-31	307-23		
3/8 -24 UNF	210-30	308-24	212-36	211-32	211-32	308-24	16.8	3/16
	213-40	309-28	212-39	212-39	215-48	312-39		
7/16 -20 UNF	214-44	310-30			217-52	313-40	27.1	7/32
	217-52	314-44			218-56	314-44		
1/2 -20 UNF		315-47					33.9	1/4
	218-56	315-48						
5/8 -18 UNF		317-52				315-48	54.5	5/16
		320-64				317-52		
3/4 -16 UNF						318-56	65.2	3/8
						320-64		

Dimensions of the shaft slot.

Dimensions, floating bearing screws

Designation		
floating bearing		
screw	Thread	WA
SH 06 x 075	M6x1	3
SH 06 x 090	M6x1	3
SH 06 x 100	M6x1	3
SH 06 x 110	M6x1	3
SH 08 x 105	M8x1	4
SH 08 x 115	M8x1	4
SH 10 x 110	M10x1.25	5
SH 10 x 125	M10x1.25	5
SH 10 x 135	M10x1.25	5
SH 12 x 145	M12x1.25	6
SH 12 x 155	M12x1.25	6
SH 12 x 175	M12x1.25	6
SH 14 x 200	M14x1.5	6
SH 16 x 215	M16x1.5	8
SH 16 x 235	M16x1.5	8
SH 18 x 250	M18x1.5	8
SH 18 x 300	M18x1.5	8
SH 20 x 330	M20x1.5	10

Fitting dimensions for floating bearing screws, 200 series

Desigr	nation F	Fitting dimensions [mm]			
Bearing insert	Screw	h	w		
UC 201	SH 06 x 11	0 3.0	4		
UC 202	SH 06 x 11	0 4.5	4		
UC 203	SH 06 x 09	0 3.5	4		
UC 204	SH 06 x 07	5 3.5	4		
UC 205	SH 06 x 07	5 3.5	4		
UC 206	SH 06 x 09	0 4.5	4		
UC 207	SH 08 x 10	5 4.5	6		
UC 208	SH 08 x 10	5 4.5	6		
UC 209	SH 08 x 10	5 5.0	6		
UC 210	SH 10 x 11	0 5.5	7		
UC 211	SH 10 x 12	5 6.0	7		
UC 212	SH 10 x 13	5 6.5	-		
UC 213	SH 10 x 13	5 6.5	7		
UC 214	SH 12 x 14	5 6.5	9		
UC 215	SH 12 x 14	5 6.5	9		
UC 216	SH 12 x 15	5 7.5	9		
UC 217	SH 12 x 17	5 8.5	9		
UC 218	SH 12 x 17	5 7.5	9		

Fitting dimensions for floating bearing screws, 300 series

Design	ation Fi	tting dime [mm]	nsions
Bearing insert	Screw	h	w
UC 305	SH 06 x 090	4.5	4
UC 306	SH 06 x 110	4.5	4
UC 307	SH 08 x 115	5.0	6
UC 308	SH 10 x 125	5.0	7
UC 309	SH 10 x 135	5.5	7
UC 310	SH 12 x 145	5.5	9
UC 311	SH 12 x 155	6.0	9
UC 312	SH 12 x 155	5.5	9
UC 313	SH 12 x 175	6.5	9
UC 314	SH 12 x 175	6.0	9
UC 315	SH 14 x 200	7.5	10
UC 316	SH 14 x 200	6.5	10
UC 317	SH 16 x 215	7.5	12
UC 318	SH 16 x 235	9.0	12
UC 319	SH 16 x 235	8.0	12
UC 320	SH 18 x 250	8.0	13
UC 321	SH 18 x 250	7.5	13
UC 322	SH 18 x 300	11.5	13
UC 324	SH 18 x 300	9.0	13
UC 326	SH 20 x 330	10.0	15
UC 328	SH 20 x 330	8.5	15

Tightening torques for groove nuts with adapter sleeve fixing

Bearin	g insert	Tightening torque [Nm]	Hook spanner DIN 1810 A size
UK 205	UK 305	20	38-45
UK 206	UK 306	30	45-50
UK 207	UK 307	40	52-55
UK 208	UK 308	50	58-62
UK 209	UK 309	60	65-70
UK 210	UK 310	70	65-70
UK 211	UK 311	95	68-75
UK 212	UK 312	125	80-90
UK 213	UK 313	150	85-92
UK 215	UK 315	350	98-105
UK 216	UK 316	400	98-105
UK 217	UK 317	450	110-115
UK 218	UK 318	550	120-130
	UK 319	650	120-130
	UK 320	800	120-130
	UK 322	1050	135-145
	UK 324	1350	155-165
	UK 326	1650	155-165
	UK 328	1900	180-195

The designation of the corresponding adapter sleeve is listed in the dimension tables.

Operating temperature

Standard ball bearing inserts are suitable for all applications in the temperature range of -20 °C to +100 °C.

SNR high temperature inserts were specially designed for applications with operating temperatures above the range mentioned previously. They have a steel plate cage like standard inserts. However, they are equipped with a high temperature grease and can be used up to + 200 °C. The suffix for these inserts is "T20" and is added to the bearing designation on orders , e.g., "UCP206T20".

For applications below the normal temperature range (down to -40 °C), we supply bearing inserts with the designation "T04". They also have a steel plate cage but are filled with a low temperature grease. On orders, the designation is also added to the end, e.g., "UCP206T04".

For further specifications about the lubricants used, refer to the section "Lubrication and maintenance" starting on page 34.

Bearing clearance

Standard ball bearing inserts are manufactured with an increased bearing clearance of group C3.

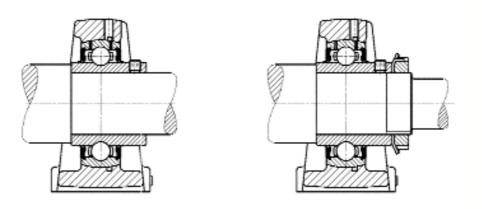
Inserts with conical bore for adapter sleeve fixing as well as inserts for high or low temperature applications have C4 bearing clearance.

The bearing clearance values can be found in the following tables:

Inserts with cylindrical bore

Bor	-	Radial bearing clearance								
nomina [mn			[µm] normal C3 C4							
above	-	min.	max.	min.	max.	min.	max.			
above	up to		max.		max.		max.			
10	18	3	18	11	25	18	33			
18	24	5	20	13	28	20	36			
24	30	5	20	13	28	23	41			
30	40	6	20	15	33	28	46			
40	50	6	23	18	36	30	51			
50	65	8	28	23	43	38	61			
65	80	10	30	25	51	46	71			
80	100	12	36	30	58	53	84			
100	120	15	41	36	66	61	97			
120	140	18	48	41	81	71	114			

Inserts with tapered bore


Boi nomina [mr	al size	Radial bearing clearance [µm] normal C3 C4					24
above	up to	min.	max.	min.	max.	min.	max.
24	30	13	28	23	41	32	50
30	40	15	33	28	46	39	60
40	50	18	36	30	51	43	68
50	65	23	43	38	61	54	84
65	80	25	51	46	71	64	99
80	100	30	58	53	84	74	114
100	120	36	66	61	97	89	134
120	140	41	81	71	114	109	159

Axial load capacity of bearing inserts

The axial load capacity of the inserts depends largely on the type of fixing on the shaft. The inner design of the raceways and balls is of little importance in most cases. A further factor is the shaft tolerance used.

In order to attain the largest possible axial load capacity for the respective type of fixing, it is necessary that the fixing element (e.g., threaded pin, adapter sleeve) is secured at the specified tightening torque.

For running conditions with strong vibrations or shock loads it is recommended to set the inner ring against a shaft shoulder and to secure with a groove nut and lock washer as necessary. In this case, the axial load carrying capacity of the inserts can be fully utilised like with standard deep groove ball bearings. This can amount to up to 0.5-times the radial static load rating C_{0r} . Such an application should be examined closely taking into consideration the respective load conditions.

Load carrying capacity and speed limits

Load carrying capacity and speed limits of the bearing inserts are specified in the dimension tables starting on page 160. The effect of shaft tolerances on speed limits is shown in the diagram on page 18.

Life calculation

Bearing life calculation

The inner design of bearing inserts for SNR ball bearing units are identical to deep groove ball bearings. They are manufactured out of the same material, have the same degree of precision, and are subject to the same strict production controls.

The calculation of bearing life and load ratings are performed using the calculation methods in accordance with ISO 281 and ISO 76.

Determining bearing sizes

Before calculating the life of bearing units, the loads occurring must be determined. The required bearing size essentially depends on the load and the speed. If the load occurs mostly while the bearing rotates, this is referred to as dynamic load. However, if the load acts mainly during stand still, at very low speeds, or with slight rotating movements, this is referred to as static load.

It is unimportant how the externally applied forces have their effect on the insert. The specification dynamic or static only refer to the operating condition of the bearing.

Dynamic equivalent load

If both radial and axial forces are applied to a bearing insert, these must be converted to an equivalent load (P) necessary for the calculation, as follows:

$P = X \bullet F_r + Y \bullet F_a \quad [kN]$

- Ρ dynamic equivalent load [kN]
- F_r = actual radial load [kN F_a = actual axial load [kN] X = radial factor = actual radial load [kN]

- = axial factor

Fa		<u>Fa</u> ≤ e		<u>Fa</u> Fr	> e
$\frac{F_a}{C_{0r}}$	е	x	Y	X	Y
0.014	0.19				2.30
0.028	0.22				1.99
0.056	0.26				1.71
0.084	0.28				1.55
0.110	0.30	1	0	0.56	1.45
0.170	0.34				1.31
0.280	0.38				1.15
0.420	0.42				1.04
0.560	0.44				1.00

- = limiting value
- C_{0r} = radial static load rating (see dimension tables for ball bearing units)

Static equivalent load

For a simultaneously occurring radial and axial static load, an equivalent load (P_0) must be determined:

$$P_0 = X_0 \cdot F_r + Y_0 \cdot F_a \quad [kN]$$

but: $P_0 = Fr$, if $\frac{F_a}{F_r} \le 0.8$

 P_0 = static equivalent load [kN] X_0 = static radial factor Y_0 = static axial factor

For all bearing inserts, the following applies:

 $X_0 = 0.6$ $Y_0 = 0.5$

Using the ratio *fs* it can be checked if sufficient static dimensioning for the insert has been ensured:

$$fs = \frac{C_{0r}}{P_0}$$

Some standard values are:

fs = 0.7	minimal demands for running smoothness and rotating movement
fs = 1.0	occasional rotating bearing, normal demands for running smoothness
fs = 2.0	high demands for running smoothness

It should be noted that this ratio does not provide any assurance against a break or similar, but instead, it is assurance against excessive local deformation in the rolling contact (ball/raceway).

Calculating bearing life

When calculating bearing life for bearing units, the following applies:

$$L_{10} = \left(\frac{Cr}{P}\right)^3$$

[10 ⁶ revolutions]

If the bearing life should be specified in hours, the following applies:

$$L10h = \left(\frac{Cr}{P}\right)^3 \cdot \frac{10^6}{60n} \qquad [h]$$

 $\boldsymbol{n} = \text{speed} \qquad [\min^{-1}]$

Life calculation

Example calculation

The bearing life of a UCP210 ball bearing unit under the following conditions:

Radial load:	Fr	= 2 kN
Axial load:	Fa	= 1.7 kN
Normal operating condition speed:	n	= 1800 min ⁻¹
UCP210 ball bearing unit data:	Cr	= 35.1 kN
	C _{0r}	= 23.2 kN

Dynamic equivalent bearing load:

 $P = X \cdot F_r + Y \cdot F_a$ [kN] with $\frac{F_a}{C_{0r}} = \frac{1.7 \text{ kN}}{23.2 \text{ kN}} = 0.073$ and $\frac{F_a}{F_r} = \frac{1.7 \text{ kN}}{2 \text{ kN}} = 0.85$

From Table 1:

with Fa/C_{0r} = 0.073, e is determined to be \approx 0.28

with Fa/Fr = 0.85 > e = 0.28

 \rightarrow X=0.56 Y=1.55

$$P = 0.56 \cdot 2 \, kN + 1.55 \cdot 1.7 \, kN = 3.76 \, kN$$

$$L_{10h} = \left(\frac{C_r}{P}\right)^3 \cdot \left(\frac{10^6}{60n}\right) \quad [h]$$

it follows
$$L_{10h} = \left(\frac{35.1}{3.76}\right)^3 \cdot \left(\frac{10^6}{60x1800}\right) = 7532 \text{ h}$$

The theoretical bearing life of the bearing unit, under normal operating conditions, is 7532 hours.

Protective caps

Designs

In order to obtain protection from rotating shafts, increased sealing action, or additional mechanical protection of the bearing units in harsh ambient conditions, it is possible to equip many of the SNR ball bearing units with protective caps made of stainless steel. These are available closed or open with a double lip seal for diameter lines 201 to 213.

SCC – closed protective cap for shaft ends

SCO – open protective cap with double lip seal for through shafts

Materials

The protective caps are manufactured from stainless steel. The double lip seal is made of silicon rubber.

Fixing on the housing

There is no need for special tools to assemble the protective caps on the housing. The cap is inserted in a groove in the housing, and is sufficiently secured by the resulting press fit.

Caution: Housings with a corresponding groove must be ordered with the specific Suffix "N", e.g.: "UCP.206.N"

Protective caps

Protective cap assembly

Protective cap assembly

Protective cap disassembly

Seals

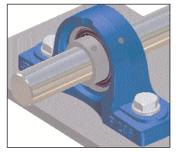
The double lip seal of the SNR protective cap is manufactured from silicon rubber, and is suitable for operating temperatures up to a maximum of +200 °C.

Units

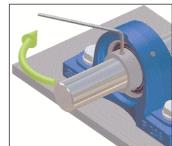
Designs

SNR ball bearing units are supplied as a ready-to-fit assembly. If relubrication is necessary, the included lubricating nipple must be mounted.

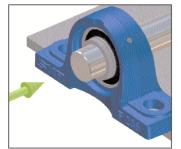
The spherical bearing seatings of the housings are manufactured in two different ISO tolerances. Bore diameters of up to 180 mm are manufactured in the tolerance class J7, which performes a firm seat for the bearing inserts.


Larger bore diameters are manufactured in the tolerance class **H7**. In this cases the insert is secured by a locking pin in the outer ring.

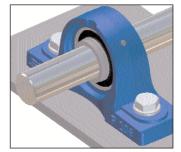
Assembly


SNR pillow blocks and inserts with set screw fixing

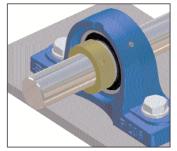
1. Release set screws and slide bearing unit onto the shaft.



2. Screw down the housing on a flat surface. Mount the housing on the other end of the shaft in the same manner.

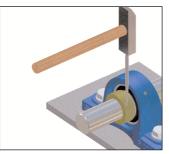


3. Screw down the set screws at the recommended tightening torque.

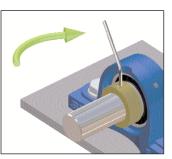

SNR pillow blocks and inserts with eccentric locking collar

1. Slide the unit onto the shaft. Do not tighten the eccentric locking collar.

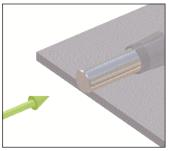
2. Tighten the screws slightly. Mount the unit on the other end of the shaft in the same manner. Securely tighten the screws.



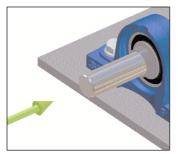
3. Preferably tighten the eccentric locking collar by hand in the direction of the shaft rotation.



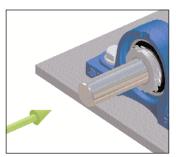
Assembly

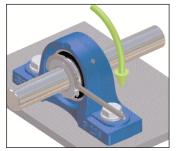


4. Tighten the eccentric locking collar with mandrel and hammer.

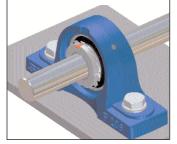


5. Tighten the set screws.


SNR pillow blocks and inserts with adapter sleeve fixing


1. Slide the adapter sleeve onto the shaft.

2. Slide the unit onto the shaft.


3. Align the unit on the shaft, then screw on the housing securely.

4. Mount the lock washer and groove nut and then tighten at the recommended tightening torque.

5. Secure the adapter sleeve (bend the tab of the lock washer into a slot in the groove nut).

Additional information about assembly

In order to prevent possible damage to the bearing insert due to improper assembly, the housing must first be screwed down onto its respective base or onto the frame before the inner rings of the inserts are tightened into their final position on the shaft. Otherwise, undesirable axial distortion could result and thus premature failure of the bearing.

The ends of the shaft should be provided with a chamfer for easier assembly.

It must be ensured that the set screws of the bearing inserts are screwed out far enough so that they do not project in the inner ring bore. Otherwise, assembly can be difficult or the shaft could even be damaged. Normally the bearing inner rings are slid onto the shaft with a tight loose fit. If for individual cases an interference fit proves to be essential, the inner rings should be fit using a suitable piece of pipe, preferably made of brass or plastic.

We also supply the respective assembly tools for all bearing inserts, as well as for standard bearings.

Direct hammer impacts on the inserts or the housing must be avoided because they can damage the bearing.

When assembly is finished, the shaft is initially turned by hand in order to ensure rotation without problems.

In operation, cast iron housings should be stressed by pressure force and not by tension, if possible. Take-up units must be positioned in that way, that the straining screw presses against the housing during adjustment.

Grey cast iron housings are not suitable for highly alternating or axial dynamic loads. In such cases, housings made of cast steel or nodular graphite iron should be used.

Mountings with large bearing spread and bearings which are exposed to additional axial loads because of highly variable temperatures, require special measures, such as mounting a floating bearing screw.

Securing the housing

If exact positioning of the bearing unit is required, some of the housing types can be secured using available centring, or straight or tapered pins. Housing types with possible positions of the pin bores can be found in the tables starting on page 190.

Lubrication and maintenance

SNR ball bearing units are filled with the required amount of grease at the factory. Thus additional lubrication during assembly is not necessary.

Relubrication is not necessary for normal operating conditions.


Under severe conditions, such as continuous operation at high speeds, high temperatures (above +70 °C operating temperature), heavy loads, or very humid or dirty surroundings, regular relubrication is necessary.

Relubrication is dependent on the insert size. Relubrication should be performed during operation (rotating insert under operating temperature). Press the suitable grease into the unit until a fresh collar of grease is formed on the seals.

Caution: The old grease must be allowed to emerge without hindrance.

Relubrication system

Grey cast iron housings are equipped with a lubrication groove within the spherical bore. The inserts have 4 lubrication holes in the outer ring which are arranged offset. Because of the arrangement of the lubrication holes, SNR inserts can be mounted in nearly all housings with lubrication groove and then be relubricated.

Lubricating nipple

The lubricating nipple used is made of steel and is zinc plated.

The following sizes of the lubricating nipple are used:

M6x1, M8x1, M10x1 and R1/8"

Specifications about suitable lubricating nipples for individual housings can be found in the dimension tables.

Delivery condition: Lubricating nipples are supplied together with the bearing units. They are not mounted. The lubrication hole in the housings is closed with a plastic plug.

Grease

SNR ball bearing inserts are lubricated for life at the factory. If relubrication is necessary because of severe operating conditions, grease having the same base and consistency should be used.

The greases for SNR ball bearing units have the following technical characteristics:

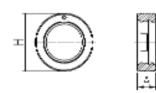
Range of application for grease	Grease base	Temperature range [°C]	Consistency DIN 51 818 NLGI class	Speed characteristic (n ∙ dm) [min⁻¹ • mm]	Viscosity at 40°C [mm²/s]
Standard	Lithium soap	-20 to +120	II	500 000	100
High temperatures (e.g., "T20")	Perfluorpolyether oil and PTFE	-40 to +260	II	300 000	400
Low temperatures (e.g., "T04")	Lithium soap	-60 to +120	111	-	25

Tolerances and Fixing of housings

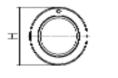
Tolerances of cast iron housings

Tolerance of spherical bearing seat

Nominal si E [m	Fit					
over	incl.					
	180					
180	300	H7				



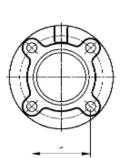
Tolerances of pillow block housings

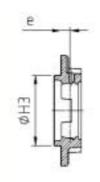

	ances m]	Tolera	Housing							
	J	н	PP	PA / PAE	PH / PG	PE	PLE	Р		
			203	203	203	203	203		203	
10()))			204	204	204	204	204		204	
			205	205	205	205	205	305	205	
dan taken ad	±700	±150	206	206	206	206	206	306	206	
_ J _			207	207	207	207	207	307	207	
				208	208	208	208	308	208	
				209	209	209	209	309	209	
				210	210	210	210	310	210	
				211		211	211	311	211	
				212		212	212	312	212	
								313	213	
		±200				214		314	214	
- ' -						215		315	215	
						216		316	216	
	1000					217		317	217	
	±1000					218		318	218	
								319		
11())) —								320		
		. 000						321		
		±300						322		
								324		
as-ta								326		
j l j								328		

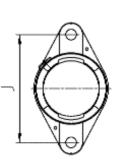
Tolerances of cartridge housings

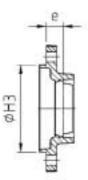
Housing	Tolerances [µm]								
	H	4	A	Radial Runout					
C200	max.	min.		max.					
203									
204	0	-30							
205									
206			±200	200					
207									
208	0	-35							
209									
210									
211									
212									
213	0	-40	±300	300					
214									
215	0	-46							
216									

Housing	Tolerances [µm]								
	ŀ	1	А	Radial Runout					
C300	max.	min.		max.					
305									
306	0	-35							
307			±200	200					
308									
309									
310									
311	0	-40							
312									
313									
314			±300						
315									
316		10		300					
317	0	-46							
318									
319									
320	0	50							
321 322	0	-52	±400						
322			±400						
324	0	-57							
328	0	-57							
520									

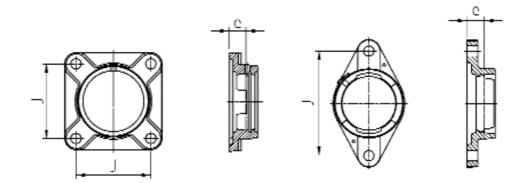


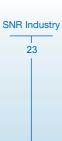

Tolerances and Fixing of housings



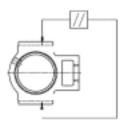

Tolerances of flanged housings

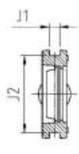
	Housing													
	F	FE	FCE	FC	FEE	FS	FTE	FLE	F	L	FLZ			
203		203		203			203	203	203					
204		204	204	204			204	204	204		204			
205	305	205	205	205	205	305	205	205	205	305	205			
206	306	206	206	206	206	306	206	206	206	306	206			
207	307	207	207	207	207	307	207	207	207	307	207			
208	308	208	208	208	208	308	208	208	208	308	208			
209	309	209	209	209	209	309	209	209	209	309	209			
210	310	210	210	210	210	310	210	210	210	310	210			
211	311	211	211	211		311		211	211	311				
212	312	212	212	212	212	312		212	212	312	212			
213	313	213	213	213		313			213	313				
214	314	214	214	214		314		214	214	314				
215	315	215	215	215		315		215	215	315				
216	316	216	216	216		316			216	316				
217	317	217	217	217		317			217	317				
218	318	218	218	218		318			218	318				
	319					319				319				
	320					320				320				
	321					321				321				
	322					322				322				
	324					324				324				
	326					326				326				
	328					328				328				



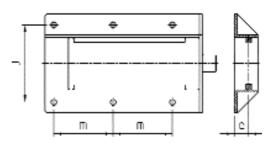


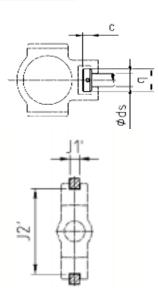
FD	FA	FAE	J	е	НЗ	Radial Runout max.
203 204 205 206 207 208	203 204 205 206 207 208 209 210	204 205 206 207	±700	±500		200
	211 212		±1000	±800	h8	300
						400




Tolerances and Fixing of housings

Tolerances of take-up housings


Hou	sing	Tolerances [µm]						
		J	1	J	2	Parallelism of		
	т	max.	min.	max.	min.	guiding groove max.		
204 205 206 207 208 209 210	305 306 307 308 309 310	+200	0	0	-500	500		
211 212 213 214 215 216 217 218	311 312 313 314 315 316 317 318	+300	0	0	-800	600		
	319 320 321 322					700		
	324 326 328					800		


Tolerances of stretcher frames

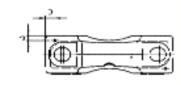
Housing	1	olerances	[µm]
WB	m	J	е
204 - 213	±700	±700	±500

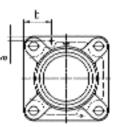
Tolerances stretcher frame accessories

Housing	Dimensions [mm]									
	Guidi	ing rail	nut of th	nreaded s	pindle					
T200	J2' ±0,5	J1'	ds	q	ο					
204	77		16	28						
205		11			12					
206	90		18	32						
207										
208										
209	103	15	26	42	14					
210										
211	131	20	30	56	20					
212										
213										
214	152	24	36	60	26					
215										
216	167									
217	175	28	42	65	30					

Housing	Dimensions [mm]					
	Guidi	ng rail	nut of th	nreaded s	pindle	
T300	J2' ±0,5	J1'	ds	q	0	
305	81	11	22	32	12	
306	91	15	24	38	14	
307	101		26	40	16	
308	113	16	28	46	18	
309	126		30	50	20	
310	141	18	32	55	22	
311	151	20	34	60	24	
312	161		36	64		
313	172		38		26	
314	182	24	42	75	28	
315	194					
316	206	28	46	90	34	
317	216	30	1			
318	230		50	95		
319	242				38	
320	262	32	52	100		
321						
322	287	36	55	110	42	
326	322	42	60	120	48	
326	352	46	65	130	52	
328	382		70	140	56	

Tolerances and Fixing of housings

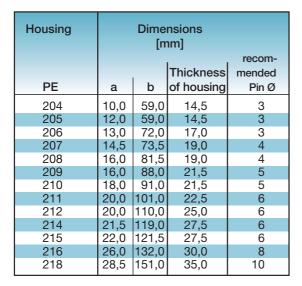


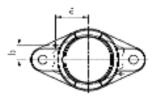

Fixing of housings

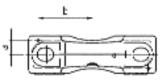
Pin placing

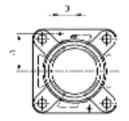
To meet an exact positioning of bearing units when mounted, the following cast iron housings are equipped with additional supporting surface for the positioning of pins.

Hous	sing			nsions nm]		Housing	Dimensions [mm]			
			L.,		recom-			recom-		
				Thickness	mended				Thickness	mended
Р	PH	a	b	of housing	Pin Ø	F	a	b	of housing	Pin Ø
203	203	5,0	8.0	15	3	203	6	30	9	3
204	204	5,0	8,0	15	3	204	6	30	9	3
205	205	6,0	9,0	16	3	205	6	34	9	3
206	206	6.0	13,0	18	3	206	6	35	10	3
207	207	6,0	11,0	19	4	207	7	38	12	4
208	208	9,0	12,0	19	4	208	8	40	12	4
209	209	9,0	12,0	20	5	209	8	43	14	5
210	210	10,0	13,0	22	5	210	8	47	14	5
211		10,0	13,0	22	6	211	8	47	15	6
212		10,0	17,0	25	6	212	8	50	15	6
213		9,0	18,5	27	6	213	9	52	15	6
214		9,0	15,0	27	6	214	9	54	20	6
215		9,5	16,0	28	6	215	9	54	20	6
216		11,0	17,0	30	8	216	10	55	20	8
217		11,0	17,0	32	8	217	10	58	20	8
218		11,0	18,0	34	10	218	11	62	20	10
305		5,5	12,5	16	4	305	6	37	9	4
306		6,5	11,5	19	4	306	7	40	11	4
307		8,0	13,0	21	5	307	8	46	12	5
308		9,0	13,0	23	5	308	8	48	13	5
309		10,0	14,0	25	6	309	8	48	14	6
310		10,0	15,0	28	6	310	9	52	15	6
311		12,0	19,0	31	8	311	10	55	16	8
312		13,0	22,5	33	8	312	10	56	17	8
313		12,5	22,0	36	10	313	11	56	17	10
314		13,0	21,0	40	10	314	11	62	20	10
315		13,0	26,0	40	10	315	11	65	20	10
316		15,0	30,0	45	10	316	11	70	22	10
317		15,0	30,0	45	10	317	11	70	22	11
318		15,0	30,0	50	10	318	12	78	24	10
319		20,0	32,0	50	10	319	12	80	24	10
320		20,0	32,0	55	13	320	14	85	26	13
321		20,0	32,0	55	13	321	14	85	26	13
322		22,5	35,0	60	13	322	14	90	29	13
324		25,0	35,0	70	13	324	14	95	34	13
326		29,0	35,0	80	13	326	15	105	39	13
328		29,0	35,0	80	16	328	17	120	42	16

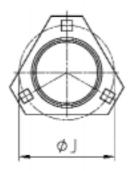


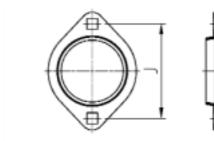

SNR Industry

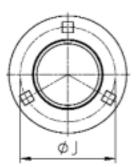

Fixing of housings

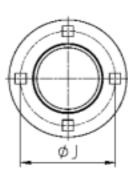

Housing	Dimensions [mm]						
				recom-			
			Thickness	mended			
FLE	а	b	of housing	Pin Ø			
204	31,0	14,5	8,5	3			
205	35,0	16,0	9,0	3			
206	42,5	17,0	10,0	3			
207	50,0	17,0	11,0	4			
208	55,0	19,0	11,0	4			
209	58,0	21,0	11,0	5			
210	60,0	22,5	11,0	5			
211	70,0	26,0	13,0	6			
212	75,0	26,0	14,0	6			
214	85,0	28,0	15,0	6			
215	85,0	30,0	15,0	6			

Housing	Dimensions [mm]					
				recom-		
			Thickness	mended		
FE	а	b	of housing	Pin Ø		
204	36,0	13,0	10,0	3		
205	40,5	15,0	11,0	3		
206	46,0	17,0	12,0	3		
207	51,0	18,0	12,5	4		
208	57,0	20,0	13,0	4		
209	60,5	21,0	13,0	5		
210	63,5	22,0	13,0	5		
211	71,0	25,0	15,0	6		
212	77,5	27,0	16,0	6		
214	85,0	29,0	18,0	6		
215	88,5	30,0	20,0	6		

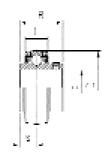

Tolerances and Fixing of housings



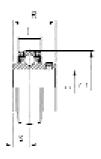

Tolerances of pressed steel housings


Tolerances of flanged housings

	Tolerance [µm]		
PF / PFT	PFL	PFE	J
203	203		
204	204		
205	205	205	±500
206	206	206	
207	207		
	208		
209			
210			±1000
211			
212			


4 mounting holes from shaft diameter 40 on

Tolerances of bearing inserts


Tolerances of outer ring

dian [[m	ninal neter D m]	Dr [µ	Κ _{ea} [μm]	
over	incl.	min.	max.	max.
	50	-11	0	20
50	80	-13	0	25
80	120	-15	0	35
120	150	-18	0	40
150	180	-25	0	45
180	250	-30	0	50
250	315	-35	0	60

Tolerances of inner ring

Nom dian (Tolerance of S [µm]	
over	incl.	
	50	±200
50	80	±250
80	120	±300
120	140	±350

CUC/CUS/CES/CEX

d	Nominal diameter d [mm]		∆dmp [µm]		∆E [µו	-
over	incl.	min.	max.	max.	min.	max.
	18	-8	0	10	-120	0
18	30	-8	0	10	-120	0
30	50	-10	0	13	-120	0

Tolerances and Fixing of housings

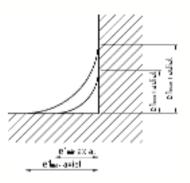
Tolerances of inner ring

UC/ES/US/EX

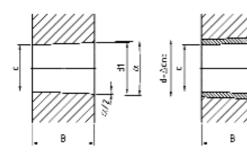
Nominal c [m over	ł	∆dı [µr min.		K _{ia} [µm] max.		Bs m] max.
	18	0	+18	12	-120	0
18	30	0	+21	15	-120	0
30	50	0	+25	18	-120	0
50	80	0	+30	22	-150	0
80	120	0	+35	28	-200	0
120	140	0	+40	35	-250	0

 $\Delta dmp = Allowance of the average bore diameter in a single plane$

 $\Delta Dmp~$ = Allowance of the average outer diameter in a single plane

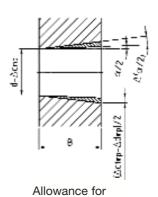

 K_{ia} = Radial runout of the inner race in an assembled bearing bearing insert

K_{ea} = Radial runout of the outer race in an assembled bearing bearing insert


 ΔBs = Allowance of a single inner race width

Tolerances of edge clearances

Nominal size of edge clearance e1	diai [n	ore meter nm]	e1 _{min} [mm]		e1 _{max} [mm] radiallaxial	
[mm]	over	incl.	radial	axial	radiai	axiai
0,6		40,0	0,6	0,6	1,0	2,0
1,0		50,0	1,0	1,0	1,5	3,0
1,1		120,0	1,1	1,1	2,0	3,5
1,5		120,0	1,5	1,5	2,3	4,0
2,0		80,0	2,0	2,0	3,0	4,5
	80,0				3,5	5,0
2,5		100,0	2,5	2,5	3,8	6,0
3,0		280,0	3,0	3,0	5,0	8,0
4,0			4,0	4,0	6,5	9,0



Tolerance of tapered bore

Allowance for

d1 C1+≙d'np

angle of taper

Nominal size

nominal size

(ninal neter d m]	Deviation ∆dmp ∆d1mp-∆dmp [μm] [μm]			
over	incl.	min.	max.	min.	max.
18	30	0	+33	0	+21
30	50	0	+39	0	+25
50	80	0	+46	0	+30
80	120	0	+54	0	+35
120	180	0	+63	0	+40

- = Nominal angle of taper α
- = Angle of inclination at end of cone $\alpha/2$
- = Deviation of angle of inclination $\Delta \alpha/2$
- В = Width of inner ring
- d = Nominal bore diameter
- d1 = Bore diameter at large cone end
- $\Delta dmp = Deviation of average bore diameter in a single plane$
- $\Delta d1mp =$ Deviation of bore diameter d1

= 4°46'18,8'' = 2°23'9,4'' <u>∆d1mp-∆dmp</u> [minutes] =1,716 • В

= d+0,083333 • B

